Optimal Control And Estimation - Princeton University

3y ago
44 Views
5 Downloads
1.36 MB
24 Pages
Last View : 6d ago
Last Download : 3m ago
Upload by : Abby Duckworth
Transcription

Optimal Control and EstimationMAE 546, Princeton UniversityRobert Stengel, 20181Copyright 2018 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/ stengel/MAE546.htmlhttp://www.princeton.edu/ stengel/OptConEst.htmlPreliminaries!Tuesday and Thursday, 3-4:20 pm!Room 306, Friend Center! ! Reference! ! GRADING!–!–!–!–!Class participation: 15%!5-min quizzes: 10%!Homework assignments: 35%!Final Paper: 40%!–! R. Stengel, Optimal Control and Estimation, Dover, 1994!–! Various journal papers and book chapters! ! Resources!–! Blackboard ! ! ! Course Home Page, Syllabus, and Links! ! www.princeton.edu/ stengel/MAE546.html!–! Engineering Library, including Databases and e-Journals! ! ! ! Assignments will be submitted using the notation andsymbols of this course!!2

Syllabus - !1Week !Tuesday ! !1 !Overview and PreliminariesFunctions!!2! Principles for Optimal Controlof Dynamic Systems !!3! Path Constraints and !!Numerical Optimization!!!4! Linear-Quadratic (LQ) Control!Thursday!! !!!Minimization of Static Cost!!!Principles for Optimal Control!Part 2!!!!Minimum-Time and -Fuel!!Optimization!!!!Dynamic System Stability!!!!!Cost Functions and!Controller Structures!!5!Linear-Quadratic Regulators!!!6!LQ Control System Design!!Modal Properties of LQ Systems!!!!!!!!!!MID-TERM BREAK!3Syllabus - 2!Week !Tuesday ! !!7! Spectral Properties of LQ Systems! !!!!8!Probability and Statistics!! !!!!!9!Propagation of Uncertainty!!in Dynamic Systems !!!10 !Kalman-Bucy Filter !!!11 !Nonlinear State Estimation!!12 !Stochastic Optimal Control!Control!!!READING PERIOD!!!!!!!Thursday!! !!Singular-Value Analysis!!!!Least-Squares Estimation for !!Static Systems!!Kalman Filter !!Nonlinear State Estimation ! !!Adaptive State Estimation!!Linear-Quadratic-Gaussian!Final Paper due on "Dean's!Date”!4

Typical OptimizationProblems ! Minimize the probable error in an estimate of thedynamic state of a system ! Maximize the probability of making a correctdecision ! Minimize the time or energy required to achieve anobjective ! Minimize the regulation error in a controlledsystem ! Estimation! ! Control!5Dynamic SystemsDynamic Process: Current state depends onprior statex dynamic stateu inputw exogenous disturbancep parametert or k time or event indexObservation Process: Measurement maycontain error or be incompletey output (error-free)z measurementn measurement errorAll of these quantities are vectors6

Mathematical Modelsof Dynamic SystemsDynamic Process: Current state depends onprior statex dynamic stateu inputw exogenous disturbancep parametert time indexObservation Process: Measurement maycontain error or be incompletey output (error-free)z measurementn measurement errorContinuous-time dynamic process:Vector Ordinary Differential Equationdx(t)x! (t) f[x(t), u(t), w(t), p(t),t]dtt time, sOutput Transformationy(t) h[x(t),u(t)]Measurement with Errorz(t) y(t) n(t)7Example: LateralAutomobile Dynamics!Constant forward (axial) velocity, uNo rigid-body rolling motionState Vector!" x #% " Side velocity, m/s' ' Yaw angle rate, rad/s' Lateral position, m ! '' Yaw angle, rad& #vry%'''''&Parameter Vector!#%%%%%p %%%%%% mI zz!Y !v!Y !" steer !N !v!N !" steer & #( %( %( %( %( %( %( %( %( %( %( %' mass, kg&(Lateral moment of inertia, N-m((Side force sensitivity to side velocity, N/(m/s)(Side force sensitivity to steering angle, N/rad(( (Yawing moment sensitivity to side velocity, N-m/(m/s) ((Yawing moment sensitivity to steering angle, N-m/rad (( 'Control and Disturbance Vectors!u ! steer Steering angle, rad" vwindw # froad% "%Crosswind, m/s' ''& # Side force on front wheel, N '&Output and Measurement Vectors!" y % " Lateral position, m %y ' ' # ! '& # Yaw angle, rad '&" ymeasured % " y error %' z ' # ! measured '& # ! error '&8

Lateral AutomobileDynamics ExampleDynamic Process!" x! ( t ) #v! ( t )r! ( t )y! ( t )!! ( t )Observation Process!"Y ( x, u, w )% m' ' N ( x, u, w )' I yy' ' u sin ! v cos!'& #r%''''''''&x1 %'x2 'x3 ''x4 '&" " y % " y1 % " 0 0 1 0 % ' y ' ' # ! '& # y2 '& # 0 0 0 1 & #" z1 % " y1 n1' z # z2 '& # y2 n2%''&Discrete-Time Models ofDynamic SystemsDynamic Process: Current state depends onprior statex dynamic stateu inputw exogenous disturbancep parametert time indexObservation Process: Measurement maycontain error or be incompletey output (error-free)z measurementn measurement errorDiscrete-time dynamic process:Vector Ordinary Difference Equationx k 1 fk [x k ,u k ,w k ,p k , k]k time index, -(t k 1 ! t k ) Output Transformationy k h k [x k ,u k ]time interval, sMeasurement with Errorz k y k nk10

Approximate Discrete-Time LateralAutomobile Dynamics Example!Approximate Dynamic Process!(Rectangular Integration)!" x k 1 #vk 1rk 1yk 1! k 1"Yk ( x k ,u k ,w k ) % m' N k ( x k ,u k ,w k )' (' I yy' '& uk sin! k vk cos! k rk#%'''' ( t k 1 ) t k )''''&Observation Process!" ykyk # ! k% " y1k' '& y2 k#%''&" " 0 0 1 0 % ' # 0 0 0 1 & #" z1kzk z2 k#x1k %'x2 k ''x3k 'x4 k ''&%''&" y1 n1kk y2 k n2 k#%''&11Dynamic System Model Types ! NTV ! NTI ! LTV ! LTIdx(t) f [ x(t), u(t), w(t), p(t),t ]dtdx(t) f [ x(t), u(t), w(t)]dtdx(t) F(t)x(t) G(t)u(t) L(t)w(t)dtdx(t) F x(t) G u(t) L w(t)dt12

Controllability andObservability !Controllability: State can be broughtfrom an arbitrary initial condition tozero in finite time by the use ofcontrolObservability: Initial state can bederived from measurements over afinite time intervalSubsets of the system may beeither, both, or neitherEffects of Stability !Blocks subject to feedback control? ! ! !–! Stabilizability–! Detectability13Introduction to Optimization!14

Optimization Implies Choice ! ! ! ! !Choice of best strategyChoice of best design parametersChoice of best control historyChoice of best estimateOptimization is provided byselection of best control variable(s)15Tradeoff BetweenTwo Cost FactorsMinimum-Cost Cruising Speed ! NominalTradeoff ! Fuel CostDoubled–! Fuel cost proportional tovelocity-squared–! Cost of time inverselyproportional to velocity ! Time CostDoubled16

DesirableCharacteristics ofa Cost Function, J ! Scalar ! Clearly defined (preferably unique)maximum or minimum–! Local–! Global ! Preferably positive-definite (i.e., always apositive number)17Criteria for Optimization ! Names for criteria–!–!–!–!–!MinimumFigure of meritPerformance indexUtility functionValue functionCost function, JJ kx 2 ! Optimal cost function J* ! Optimal control u* ! Different criteria lead to differentoptimal solutionsMaximumJ ke! x2 ! Types of Optimality Criteria–! Absolute–! Regulatory–! Feasible18

!MinimumCost Functions with TwoControl Parameters ! 3-D plot of equal-costcontours (iso-contours) !Maximum ! 2-D plot of equal-costcontours (iso-contours)19Real-World TopographyLocal vs. globalmaxima/minima20

Cost Functions withEquality Constraints ! Must stay on the trail ! Equality constraint mayallow control dimension tobe reducedc ( u1 ,u2 ) 0 ! u2 fcn ( u1 )J ( u1 ,u2 ) J !"u1 , fcn ( u1 ) # J ' ( u1 )21Example: Minimize Concentrations ofBacteria, Infected Cells, and Drug Usage ! ! ! ! !x1 Concentration of apathogen, which displaysantigenx2 Concentration ofplasma cells, which arecarriers and producers ofantibodiesx3 Concentration ofantibodies, whichrecognize antigen and killpathogenx4 Relative characteristicof a damaged organ [0 healthy, 1 dead]What is a reasonable cost function to minimize?!22

Optimal Estimate of the State,x, Given Uncertainty23Optimal State Estimation ! Goals–! Minimize effects of measurement error on knowledge of the state–! Reconstruct full state from reduced measurement set (r ! n)–! Average redundant measurements (r " n) to estimate the full state ! Method–! Provide optimal balance between measurements and estimatesbased on the dynamic model alone24

Typical Problems in OptimalControl and Estimation!25Minimize anAbsolute Criterion ! Achieve a specific objective–! Minimum time–! Minimum fuel–! Minimum financial cost ! to achieve a goal ! What is thecontrol variable?26

Optimal System RegulationFind feedback control gains that minimize trackingerror in presence of random disturbances27Feasible Control Logic ! Find feedbackcontrolstructure thatguaranteesstability (i.e.,that keeps !xfrom diverging)http://www.youtube.com/watch?v 8HDDzKxNMEY28

Cost Functions withInequality Constraints ! Must stay to theleft of the trail ! Must stay to theright of the trail29Static vs. DynamicOptimization ! Static–! Optimal state, x*, and control, u*, are fixed,i.e., they do not change over time ! J* J(x*, u*) ! Functional minimization (or maximization) ! Parameter optimization ! Dynamic–! Optimal state and control vary over time ! J* J[x*(t), u*(t)] ! Optimal trajectory ! Optimal feedback strategy ! Optimized cost function, J*, is a scalar,real number in both cases30

Deterministic vs.Stochastic Optimization ! Deterministic–! System model, parameters, initial conditions, anddisturbances are known without error–! Optimal control operates on the system with certainty ! J* J(x*, u*) ! Stochastic–! Uncertainty in ! ! ! ! !system modelparametersinitial conditionsdisturbancesresulting cost function–! Optimal control minimizes theexpected value of the cost: ! Optimal cost E{J[x*, u*]} ! Cost function is a scalar, real numberin both cases31Example: Pursuit-Evasion: #Competitive OptimizationProblem ! !Pursuer s goal: minimize final miss distanceEvader s goal: maximize final miss distance ! Minimax (saddle-point) cost function ! Optimal control laws for pursuer and evader! u P (t) ! C P (t) C PE (t) ! x̂ P (t) & '#&#&u(t) ##" u E (t) &%#" C EP (t) C E (t) &% #" x̂ E (t) &%Example of a differential game, Isaacs (1965),Bryson & Ho (1969)32

Example: SimultaneousLocation and Mapping (SLAM)Durrant- Whyte et al !Build or update a local map withinan unknown environment–! Stochastic map, defined by meanand covariance–! SLAM Algorithm State estimationwith extended Kalman filter–! Landmark and terrain tracking33Next Time:!Minimization of Static CostFunctions!!Reading:!"Optimal Control and Estimation(OCE): Chapter 1, Section 2.1!34

Supplemental Material!35Math Review! ! ! ! ! ! ! !Scalars and Vectors!Matrices, Transpose, and Trace!Sums and Multiplication!Vector Products!Matrix Products!Derivatives, Integrals, and Identity Matrix!Matrix Inverse!36

Scalars and Vectors ! Scalar: usually lower case: a, b, c, ,x, y, z ! Vector: usually bold or with underbar:x or x ! Ordered set ! Column of scalars ! Dimension n x 1!! x1 #&#x # x2 & ; y ### x &#" 3 %"3x14x13-D Vector ! Transpose: interchange rows andcolumnsxT ! x1"x2x3 # 371x3Matrices and Transpose ! Matrix:–! Usually bold capital or capital: F or F–! Dimension (m x n) ! Transpose:!#A ####"adbelmgh4x3c &f &k &&n &%–! Interchange rows and columns! a d#AT # b e# c f"abcdgl &h m &k n &%3x438 &&&&%

Trace of a Square MatrixnTrace of A ! aiii 1! a b#A # d e# g h"c &f & ; Tr ( A ) a e ii &%39Sums and Multiplication by a Scalar ! Operands must be conformable ! Conformable vectors and matrices are added term by term! (a c)! c ! a x #& ; x z #& ; z #db# (b d )"%"%"! a1A ##" a3 &&%! (a b )! b1 b2 a2 11& ; B #& ; A B ## ( a3 b3 )a4 &#" b3 b4 &%%"( a2 b2 )( a4 b4 ) &&% ! Multiplication of vector by scalar is–! associative–! commutative–! distributive! ax1 &#ax xa # ax2 &# ax &3%"axT ! ax1 ax2"ax3 # 40

Vector Products ! Inner (dot) product of vectors produces a scalarxT x x x ! x1"(1! m)(m !1) (1!1)x2! x1 #&%x3 # % x2 & (x12 x22 x32 ) % x &" 3 ! Outer product of vectors produces a matrix" x1 %' xxT x ! x x2 ' " x1# x '# 3 &(m !1)(1! m) (m ! m)x2" x2 1x3 % x2 x1& # x3 x1x1 x3 %'x2 x 3 ''x32 '&x1 x2x22x 3 x241Matrix Products ! Matrix-vector product transforms one vector into another!#y Ax ####"adbelmghc ! x !# ax1 bx2 cx31&& # dx1 ex2 fx3f &#x# 2 & #k &#gx1 hx2 kx3& x3 & #% # lx1 mx2 nx3n &% ""(n !1) (n ! m)(m !1) &&&&&% ! Matrix-matrix product produces a new matrix! a1A ##" a3! (a b a b )! b1 b2 a2 1 12 3& ; B #& ; AB ## ( a3b1 a4 b3 )a4 &#" b3 b4 &%%"(n ! m) (n ! l)(l ! m)( a1b2 a2b4 )( a3b2 a4b4 )42 &&%

Examples !Inner product !Rotation of expression for velocity vectorthrough pitch angle! 1 #2&%xT x !" 1 2 3 # % 2 & (1 4 9) 14 ( length )%" 3 & ! vx !cos'&#y # vy & #0#& # ( sin '##" vz &% 2 " !0 sin '100 cos'! ! vx # vx1 cos' vz1 sin '&#& vvy1 #&# y & #&#&% vz&%1 #" (vx1 cos' vz1 sin '#" &&&&%Matrix product! 1 2 ! a b ! a 2c b 2d && ##&#cd34% " 3a 4c 3b 4d %"%"43Vector TransformationExample" y Ax #2 4 6 %" x %1''3 !5 7 ' x2 '4 1 8 ' x '!9 !6 !3 '& # 3 &(n ! 1) (n ! m)(m ! 1)" ( 2x 4x 6x )123 ( 3x1 ! 5x2 7x3 ) ( 4x1 x2 8x3 ) # ( !9x1 ! 6x2 ! 3x3 )% "' ' ' ' ' '& #y1 %'y2 'y3 ''y4 '&44

Derivatives and Integrals ofVectors ! Derivatives and integrals of vectors are vectors ofderivatives and integrals ! dx1#dt &&dx # dx2& #dt &dt #&# dx3#"dt &%" ! x dt #! x dt! x dt! x dt123%'''''&45Matrix Identity and Inverse! 1 0 0 &#I3 # 0 1 0 &#" 0 0 1 &% !Identity matrix: no changewhen it multiplies aconformable vector or matrix !A non-singular square matrixmultiplied by its inverse formsan identity matrix# cos"AA % 0%% sin "!1# cos" % 0%% sin "y IyAA !1 A !1A I0 ! sin " & # cos"(%10(% 00 cos" '( % sin "0 ! sin " &(10(0 cos" '(0 ! sin " & # cos"(%100(%0 cos" (' % ! sin "# 1 0 0 & % 0 1 0 ((%% 0 0 1 ('0 sin "100 cos"!1&((('46

Matrix Inverse !A non-singular square matrixmultiplied by its inverse formsan identity matrix !The inverse allows a reverse transformation of vectorsof equal dimensionAA !1 A !1A Iy Ax; x A !1y; dim(x) dim(y) (n " 1); dim(A) (n " n)[A]!1Adj( A ) Adj( A ) Adet A(n " n)(1 " 1)Cofactors are signedminors of ACT ; C matrix of cofactorsdet Aijth minor of A is thedeterminant of A with the ithrow and jth column removed47Matrix Inverse Examplex 2 Ax1Transformation! x ! cos'&### y & # 0#" z &%#" sin '20 ( sin ' ! x &#&10&# y &0 cos' &% # z &%1"Inverse Transformation! x ! cos'& ##0# y & ##" z &% #" ( sin '1x1 A !1x 20 sin '100 cos' ! x &# y &&&#&% #" z &%248

Optimization Implies Choice ! Choice of best strategy ! Choice of best design parameters ! Choice of best control history ! Choice of best estimate

Related Documents:

Princeton Admission Office Box 430 Princeton, NJ 08542-0430 www.princeton.edu Experience Princeton EXPERIENCE PRINCETON 2019-20 Office of Admission . Finance Gender and Sexuality Studies Geological Engineering Global Health and Health Policy Hellenic Studies History and the Practice of Diplomacy

25 Valley Road, Princeton, New Jersey 08540 t 609.806.4204 f 609 .806.4225 October 16, 2013 Honorable President and Members of the Princeton Board of Education Princeton Public Schools County of Mercer Princeton

yDepartment of Electrical Engineering, Princeton University, Princeton, NJ 08544-5263 (jdurante@princeton.edu). zDepartment of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 0854

applied mathematics and control theory. By the nature of its . Princeton University, Princeton, NJ 08544 USA (e-mail: gfyoung@princeton.edu; naomi@princeton.edu). L. Scardovi is with the Department of Electrical and Computer Engineering, . In the companion paper

Quantitative Spatial Economics Stephen J. Redding and Esteban Rossi-Hansberg Department of Economics and Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544; email: reddings@princeton.edu, erossi@princeton.edu Annu. Rev. Econ. 2017. 9:21-58 The Annual Review of Economics is online at

Princeton-Blairstown Center . Registration Packet and Policies . Program Address: Princeton Office: 158 Millbrook Road 13 Roszel Road, Suite C204A . Blairstown, NJ 07825 Princeton, NJ 08540 . Phone: 908-362-6765 Phone: 609-921-0070 . Fax: 908-362-7699 Fax: 609-921-1344 . Revised 11/2018 . 2 . Princeton-Blairstown Center Registration Form

A tutorial on Bayesian nonparametric models Samuel J. Gershmana, , David M. Bleib a Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA b Department of Computer Science, Princeton University, Princeton NJ 08540, USA article info

Douglas S. Massey Curriculum Vitae June 4, 2018 Address: Office of Population Research Princeton University Wallace Hall Princeton, NJ 08544 dmassey@princeton.edu Birth: Born October 5, 1952 in Olympia, Washington, USA Citizenship: Citizen and Resident of the United States Education: Ph.D., Sociology, Princeton University, 1978 M.A., Sociology, Princeton University, 1977