High-Resolution NMR Techniques I N Organic Chemistry

2y ago
130 Views
5 Downloads
418.99 KB
6 Pages
Last View : 6d ago
Last Download : 3m ago
Upload by : Camden Erdman
Transcription

High-Resolutio nNMR Techniques i nOrganic ChemistryTIMOTHY D W CLARIDGE

ForewordPrefaceAcknowledgementsVVIIIXChapter 1. Introduction1 .1 . The development of high-resolution NMR1 .2 . Modern high-resolution NMR and this book1 .2 .1 . What this book contains1 .2 .2. Pulse sequence nomenclature1 .3 . Applying modern NMR techniquesReferences1457812Chapter 2 . Introducing high-resolution NM R2.1 . Nuclear spin and resonance2.2 . The vector model of NMR2 .2 .1 . The rotating frame of reference2 .2 .2. Pulses2 .2 .3 . Chemical shifts and couplings2 .2 .4. Spin-echoes2.3 . Time and frequency domains2.4 . Spin relaxation2 .4 .1 . Longitudinal relaxation : establishing equilibrium2 .4 .2 . Measuring T l with the inversion-recovery sequence2 .4 .3 . Transverse relaxation : loss of magnetisation in the x-y plane2 .4 .4 . Measuring T 2 with a spin-echo sequence2 .5 . Mechanisms for relaxation2.5 .1 . The path to relaxation2.5 .2 . Dipole-dipole relaxation2.5 .3 . Chemical shift anisotropy relaxation2.5 .4 . Spin-rotation relaxation2.5 .5 . Quadrupolar 38394043Chapter 3. Practical aspects of high-resolution NM R3 .1 . An overview of the NMR spectrometer3 .2 . Data acquisition and processing3 .2.1 . Pulse excitation3 .2.2 . Signal detection3 .2.3 . Sampling the FID3 .2.4 . Quadrature detection3 .2.5 . Phase cycling3 .2.6 . Dynamic range and signal averaging3 .2 .7 . Window functions3 .2 .8 . Phase correction3 .3 . Preparing the sample3 .3 .1 . Selecting the solvent3 .3 .2 . Reference compounds45484851525963657073757577

3 .3 .3 . Tubes and sample volumes3 .3 .4 . Filtering and degassing3 .4. Preparing the spectrometer3 .4 .1 . The probe3 .4 .2 . Tuning the probe3 .4 .3 . The field-frequency lock3 .4 .4 . Optimising the field homogeneity : shimming3 .5 . Spectrometer calibrations3 .5 .1 . Radiofrequency pulses3 .5 .2 . Pulsed field gradients3 .5 .3 . Sample temperature3 .6 . Spectrometer performance tests3 .6 .1 . Lineshape and resolution3 .6 .2. Sensitivity3 .6.3 . Solvent 0610710911 0Chapter 4. One-dimensional technique s4 .1 . The single-pulse experiment4.1 .1 . Optimising sensitivity4.1 .2 . Quantitative measurements and integration4.2 . Spin decoupling methods4 .2 .1 . The basis of spin decoupling4 .2 .2 . Homonuclear decoupling4 .2 .3 . Heteronuclear decoupling4 .3 . Spectrum editing with spin-echoes4 .3 .1 . The J-modulated spin-echo4 .3 .2 . APT4 .4 . Sensitivity enhancement and spectrum editing4 .4 .1 . Polarisation transfer4 .4 .2. INEPT4 .4 .3 . DEPT4 .4.4. PENDANT4 .5 . Observing quadrupolar nucleiReferences11 111 211 411 611 711 712012512512 812913 013 213 9142143145Chapter 5 . Correlations through the chemical bond I : Homonuclear shiftcorrelation5 .1 . Introducing two-dimensional methods5 .1 .1 . Generating a second dimension5 .2 . Correlation spectroscopy (COSY)5 .2 .1 . Correlating coupled spins5 .2 .2 . Interpreting COSY5 .2 .3 . Peak fine structure5 .3 . Practical aspects of 2D NMR5 .3 .1 . 2D lineshapes and quadrature detection5 .3 .2 . Axial peaks5 .3 .3 . Instrumental artefacts5 .3 .4 . 2D data acquisition5 .3 .5 . 2D data processing5 .4 . Coherence and coherence transfer5 .4 .1 . Coherence-transfer pathways5 .5 . Gradient-selected spectroscopy5 .5 .1 . Signal selection with pulsed field gradients5 .5 .2 . Phase-sensitive experiments5 .5 .3 . PFGs in high-resolution NMR5.5 .4 . Practical implementation of PFGs5 .6. Alternative COSY sequences5 .6 .1 . Which COSY approach?5 .6 .2 . Double-quantum filtered COSY (DQF-COSY)5 .6 .3 . COSY-ß14 814 915 315 515 615 916016 116716 817017217417 717 817 918 318 418 618 718 818 9197

5 .6 .4 . Delayed-COSY: detecting small couplings5 .6 .5 . Relayed-COSY5 .7 . Total correlation spectroscopy (TOCSY)5 .7 .1 . The TOCSY sequence5 .7 .2 . Using TOCSY5 .7 .3 . Implementing TOCSY5 .8 . Correlating dilute spins : INADEQUATE5 .8 .1 . 2D INADEQUATE5 .8 .2 . 1D INADEQUATE5 .8 .3 . Implementing INADEQUATE5 .8 .4 . Variations on INADEQUATEReferences19920020 120220520821 121 221 321 521 621 8Chapter 6 . Correlations through the chemical bond II : Heteronuclear shiftcorrelatio n6.1 . Introduction6.2 . Sensitivity6 .3 . Heteronuclear single-bond correlation spectroscopy6 .3 .1 . Heteronuclear multiple-quantum correlation (HMQC)6 .3 .2. Heteronuclear single-quantum correlation (HSQC)6 .3 .3 . Practical implementations6 .3 .4. Hybrid experiments6 .4 . Heteronuclear multiple-bond correlation spectroscopy6 .4 .1 . The HMBC sequence6 .4 .2. Applying HMBC6 .5 . Traditional X-detected correlation spectroscopy6 .5 .1 . Single-bond correlations6 .5 .2 . Multiple-bond correlations and small couplingsReferences22 122222422422923 023 824424 524825 125 225 425 6Chapter 7 . Separating shifts and couplings : J-resolved spectroscopy7 .1 . Introduction7 .2 . Heteronuclear J-resolved spectroscopy7 .2.1 . Measuring long-range proton-carbon coupling constants7 .2.2 . Practical considerations7 .3 . Homonuclear J-resolved spectroscopy7 .3 .1 . Tilting, projections and symmetrisation7 .3 .2 . Applications7 .3 .3 . Practical considerations7 .4 . Indirect' homonuclear J-resolved spectroscopyReferences25 926 026 326 626 726 827 027 327 327 4Chapter 8 . Correlations through space : The nuclear Overhauser effect8 .1 . Introduction8 .2 . Definition of the NOE8 .3 . Steady-state NOEs8 .3 .1 . NOEs in a two-spin system8 .3 .2 . NOEs in a multispin system8 .3 .3 . Summary8 .3 .4 . Applications8 .4 . Transient NOEs8 .4.1 . NOE kinetics8 .4.2 . Measuring internuclear separations8 .5 . Rotating-frame NOEs8 .6 . Measuring steady-state NOEs : NOE difference8 .6 .1 . Optimising difference experiments8 .7 . Measuring transient NOEs : NOESY8 .7 .1 . The 2D NOESY sequence8 .7 .2 . 1D NOESY sequences8 .7 .3 . Applications27 727 927 927 928 829 429 630 130 230 330 430 630 731 331 432 0323

8 .7 .4. Measuring chemical exchange : EXSY8 .8 . Measuring rotating-frame NOEs : ROESY8 .8.1 . The 2D ROESY sequence8 .8 .2. 1D ROESY sequences8 .8 .3 . Applications8 .9 . Measuring heteronuclear NOEs8 .10. Experimental considerationsReferences32 632832933 233 233 533 633 7Chapter 9 . Experimental method s9 .1 . Composite pulses9 .1 .1 . A myriad of pulses9 .1 .2 . Inversion vs. refocusing9 .2 . Broadband decoupling and spin-locks9 .2 .1 . Spin-locks9 .2 .2 . Adiabatic pulses9 .3 . Selective excitation and shaped pulses9.3 .1 . Shaped soft pulses9 .3 .2 . DANTE sequences9 .3 .3 . Excitation sculpting9 .3 .4. Practical considerations9 .4 . Solvent suppression9 .4 .1 . Presaturation9 .4.2. Zero excitation9 .4 .3 . Pulsed field gradients9 .5 . Recent methods9 .5 .1 . Heterogeneous samples and MAS9 .5 .2 . Diffusion-ordered spectroscopyReferences34 134434434634734 834 835 035435 535 735 936 136236336636636837 1Appendix . Glossary of acronyms373Index375

The development of high-resolution NMR 1 1.2. Modern high-resolution NMR and this book 4 1 .2.1. What this book contains 5 1 .2.2. Pulse sequence nomenclature 7 1.3. Applying modern NMR techniques 8 References 12 Chapter 2. Introducing high-resolution NMR 2.1. Nuclear spin and resonance 13 2.2. The vector

Related Documents:

1985 –First Protein Structure solved by NMR 2009 –First 1 Gigahertz NMR Spectrometer (23.5 T) 2019 –High Temperature Superconducting Magnets 1.1 GHz NMR, St. Jude, Memphis TN 1.2 GHz NMR, Florence, Italy 1938 –NMR of LiCl molecular beams. Rabi (Columbia University) 1946 –NMR

Aug 01, 2018 · 1H NMR, 19F NMR, 31P NMR experiments -about 3 5 mg 13C NMR short run experiment (0.5 -1 hr) about 20 50 mg; long run experiment about 5 10 mg 0.6-0.7 ml of NMR solvent is appropriate for the right solvent level in NMR tube. Unsuitable solvent level can lea

NMR SOLVENTS Deuterated Solvents for NMR NMR Solvents NMR Reference Standards NMR Tubes. Cambridge Isotope Laboratories, Inc. www.isotope.com s tel: 978-749-8000 800-322-1174 (USA) fax: 978-749-2768 cilsales@isotope.com TABLE OF CONTENTS

NMR techniques for the structural characterisation of these heterocyclic compounds. 1 . unobservable on a high resolution NMR spectrometer. The 1D 15N NMR experiment is much less sensitive than 1H and 13C NMR experiments, it yields narrow lines and has a large chemical shift range. It

Texts of Wow Rosh Hashana II 5780 - Congregation Shearith Israel, Atlanta Georgia Wow ׳ג ׳א:׳א תישארב (א) ׃ץרֶָֽאָּהָּ תאֵֵ֥וְּ םִימִַׁ֖שַָּה תאֵֵ֥ םיקִִ֑לֹאֱ ארָָּ֣ Îָּ תישִִׁ֖ארֵ Îְּ(ב) חַורְָּ֣ו ם

5 nuclear magnetic resonance (nmr) spectroscopy 33 5.1 the physics of nuclear spins and nmr instruments 33 5.2 continuous wave (cw) nmr spectroscopy 37 5.3 fourier-transform (ft) nmr spectroscopy 39 5.4 chemical shift in 1h nmr spectroscopy 40 5.5 spin-spin coupling in 1h nmr spectroscopy 50

14.1 An Introduction to NMR Spectroscopy A. The Basics of Nuclear Magnetic Resonance (NMR) Spectroscopy nuclei with odd atomic number have a S ½ with two spin states ( 1/2 and -1/2) 1H NMR (proton NMR): determines number and type of H atoms 13C NMR (proton

Designation: C 1116/C 1116M – 06 Standard Specification for Fiber-Reinforced Concrete1 This standard is issued under the fixed designation C 1116/C 1116M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e .