Theory-Based Development Of Safe High-Energy Batteries

2y ago
7 Views
2 Downloads
5.32 MB
37 Pages
Last View : 5m ago
Last Download : 3m ago
Upload by : Gideon Hoey
Transcription

Birger HorstmannTheory-Based Development ofSafe High-Energy Batteries

IntroductionWhy do we need (metal-air) batteries?G. A. Hoffman, Scientific American 215(4), 34-41 (1966). HIU 01.02.20182

IntroductionLithium Ion Battery Applications Standard energy storage device Stationary, mobile, and portable applications27 kWh5 MWh10 kWh1 Wh500 Wh5 Wh HIU 01.02.20183

IntroductionBattery Types and Energy Densities Examples of rechargeable batteries Lithium ion (standard) Metal sulfur Metal air Metal ionAdelhelm P. et al., Beilstein Journal ofNanotechnology 6(1), 1016–1055 (2015).Clark S., Latz A. Horstmann B., Batteries,4(1), 5 (2018). HIU 01.02.20184

IntroductionMacroscopic Modelsvalidation GDEaqueous Li-O2precipitationaqueous Li-O2inhomogeneous SEILi-ion batteriesprecipitationSi-O2blend electrodesLi-ion batteriesO2 concentration / mol/m3pore-cloggingaprotic Li-O21.61.41.21.00.80.60.40.20.0discharge0SOC 100%SOC 80%SOC 60%SOC 40%SOC 20%SOC0%150300450600Cathode thickness / m750CO2 absorptionalkaline Zn-O2complexes and pHneutral Zn-O2 HIU 28/2/20155

IntroductionMesoscopic Modelssurface growthLi2O2dissolutionLi dendriteelementary kineticsO2 reductiongrowthSEIdouble layerionic liquids HIU 01.02.20186

Aqueous Zinc-Air BatteriesContent1. Introduction2. Aqueous Zinc-Air Batteries Alkaline Electrolyte Near-Neutral Electrolyte3. Lithium-Ion Batteries Growth of Solid ElectrolyteInterphase4. Conclusion HIU 01.02.20187

Aqueous Zinc Air BatteriesOverview Primary zinc-air battery commercial High specific energy (1086 Wh kg-1) Low cost High operational safety Development of zinc-air batteries Goal: electrochemical rechargeability Application: stationary energy storage Electrolytes: Aqueous alkaline Aqueous neutral Ionic liquids HIU 01.02.20188

Aqueous Alkaline Zinc Air BatteriesAlkaline Electrolyte: OverviewKOH Zn 4OH Zn OH2 4 Oe2 Zn OHg O2 1 eO2 2COe22 4 2e ZnO 2OH H2 O H2 O 2e 2OH 2OH CO2 3 H2 OAdvantages High ionic conductivity Stable discharge voltage Reliable at low currentsChallenges Carbonation of electrolyte Dendritic/mossy Zn deposition Zn passivationJ. Stamm, A. Varzi, A. Latz, B. Horstmann,Journal of Power Sources, 360, 136-149 (2017). HIU 01.02.20189

Aqueous Alkaline Zinc Air BatteriesGalvanostatic Discharge21ExperimentSimulated ZAB dischargevalidated by experiment31. Nucleation of ZnO2. Conversion reaction3. Step due toinhomogeneous ZnOprecipitation4. Voltage loss due to zincpassivation421Simulation34J. Stamm, A. Varzi, A. Latz, B. Horstmann,Journal of Power Sources, 360, 136-149 (2017). HIU 01.02.201810

Aqueous Zinc Air BatteriesAlkaline Coin Cell: Volume FractionsJ. Stamm, A. Varzi, A. Latz, B. Horstmann,Journal of Power Sources, 360, 136-149 (2017). HIU 01.02.201811

Aqueous Alkaline Zinc Air BatteriesGalvanostatic Discharge Zn dissolution and ZnO precipitation is inhomogeneous ZnO does not nucleate at separatorZnO increasesreversible capacityJ. Stamm, A. Varzi, A. Latz, B. Horstmann,Journal of Power Sources, 360, 136-149 (2017). HIU 01.02.201812

Aqueous Alkaline Zinc Air BatteriesLifetime Limitation Exposure to CO2 limitsalkaline ZAB lifetimeCOe2 2OH CO2 3 H2 O Lowers electrolyte conductivity Slows reaction kineticsJ. Stamm, A. Varzi, A. Latz, B. Horstmann,Journal of Power Sources, 360, 136-149 (2017). HIU 01.02.201813

Aqueous Neutral Zinc Air BatteriesNear-Neutral Aqueous Electrolyte: OverviewZnCl2 – NH4Cl – NH4OH Zn Zn2 2e Zn2 𝑥𝑋 Zn 𝑋𝑦𝑦𝑥 Zn 𝑋 𝑥 H2 O Zn 𝑋 NH4 NH3 H 𝑥s 𝑦H g O2 Oe2 1 eO2 2 2H 2e H2 OAdvantages No carbonation of the electrolyte More homogeneous zinc deposition Improved cycling stabilityChallenges pH stability Solid discharge product Stable air electrodeS. Clark, A. Latz, B. Horstmann,Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201814

Aqueous Neutral Zinc Air BatteriesExperimental Validation A*STAR-IMRE, Singapore(Prof. Yun Zong) Experiments proof cyclingstabilityGoh, et al., J. Electrochem. Soc. 161 (14) A2080-2086, (2014).Sumboja et al., Power Sources 332, 330–336 (2016).S. Clark, A. Latz, B. Horstmann, ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201815

Aqueous Neutral Zinc Air BatteriesThermodynamics ofNeutral Electrolyte Quasiparticle model forzinc complexes Various zinc precipitates[Cl]T 3.36M[Cl]T 5.54MS. Clark, A. Latz, B. Horstmann,Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201816

Aqueous Neutral Zinc Air BatteriesElectrolyte Dynamics Electrolyte composition strongly coupled with pH, Zn2 ZnBAEZnBAENH4 NH3 H Zn2 nNH3 Zn(NH3)n2 Buffer reactionsstabilize pH Limited by slow NH3transport pH in BAE can becomeacidic during chargingS. Clark, A. Latz, B. Horstmann,Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201817

Aqueous Neutral Zinc Air BatteriesOptimization of Electrolyte Composition Electrolyte composition strongly affects cell performance. pH 6 - 7, high chloride content precipitation of unwanted solids pH 8, lower chloride content stable operationS. Clark, A. Latz, B. Horstmann,Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201818

Aqueous Neutral Zinc Air BatteriesDischarge Product and Energy Density Unwanted discharge product consumes electrolyte andpassivates Zn electrode.S. Clark, A. Latz, B. Horstmann,Rational Development of Neutral Aqueous Electrolytes for Zinc-Air Batteries.ChemSusChem 10, 4735–4747 (2017). HIU 01.02.201819

Aqueous Neutral Zinc Air BatteriesConclusion Metal air batteries: High risk / high gain Applications: Stationary, mobile, portable Various metal ions Lithium air batteries: lightweight Zinc air batteries: commercial Various electrolytes New aqueous electrolytes Ionic liquids HIU 01.02.201820

Lithium-Ion BatteriesContent1. Introduction2. Aqueous Zinc-Air Batteries Alkaline Electrolyte Near-Neutral Electrolyte3. Lithium-Ion Batteries Growth of SolidElectrolyte Interphase4. Conlusion HIU 01.02.201821

Lithium-Ion BatteriesLithium-Ion Batteries: Electrochemical Cellnegative electrodedischarge: anodeseparatorpostive electrodedischarge: cathodeSEIScrosati, B. & Garche, J., Journal of Power Sources,195(9), 2419. (2010). HIU 01.02.201822

Lithium-Ion BatteriesSolid Electrolyte Interphase (SEI)SEI is complicated Inorganic and organic components StructureYES, but universal stry/research/hardwick-group/research Long-term growth law 𝑳 𝒕 𝒕 SEI works in various systemsOur goal Develop simple mechanistic model Predict new observable properties fromfundamental assumptionsNie et. Al, JECS, 162 A7008-A7014 (2015) HIU 01.02.201823

Lithium-Ion BatteriesSolid Electrolyte Interphase (SEI)Formation Reduction of electrolyte on graphite,e.g. Ethylene Carbonate (EC)2EC 2Li 2e CH2 OCO2 Li 2 RSEI advantages Almost no further electrolyte reduction Protection of graphite from exfoliation Increase in mechanical stability ofgraphiteSEI disadvantages Li-ion consumptioncapacity fade Continuous growth Increase in impedancegraphiteLi SEI electrolyteECY Reviews & Papers on SEI composition:- Agubra, V. a., & Fergus, J. W. Journal of Power Sources268, 153–162 (2014).- Verma, P., Maire, P., & Novák, P. Electrochimica Acta55(22), 6332–6341 (2010).- Seo, D. M., Chalasani, D., Parimalam, B. S., Kadam, R.,Nie, M., & Lucht, B. L. (2014). ECS ElectrochemistryLetters , 3 (9), A91. HIU 01.02.201824

Lithium-Ion BatteriesContinuum Models in LiteratureDifferent rate-limiting transport mechanisms (RLTM) inliterature:Long-term SEI growth Homogeneous composition Single transport mechanism Fast reaction kineticstransportlimited growth𝑳 𝒕 𝒕 Single reaction interfaceSolvent/anion diffusion:- Pinson, M.B. & Bazant, M.Z. Journal of theElectrochemical Society 160, A243-A250 (2012).- Ploehn, H.J., Ramadass, P. & White,R.E. Journal of The ElectrochemicalSociety 151, A456 (2004).Electron conduction:- Christensen, J. & Newman, J. Journal of TheElectrochemical Society 151, A1977 (2004).Both:- Tang, M., Lu, S., & Newman, J. (2012). Journalof The Electrochemical Society, 159(11), A1775Tunneling:. Li et. al (2015). Journal of the ElectrochemicalSociety, 162(6), A858–A869.vs.Li Y ECe graphiteSEIelectrolyte HIU 01.02.201825

Lithium-Ion BatteriesModel Overview - Concept1D model for long-term growthTransport of all SEI precursors 𝑒 restricted to SEI Solvent restricted to poresNano porous SEIBinary solvent mixture EC/DMC Neglect Li and salt anionUp to two SEI compoundsF. Single, B. Horstmann, A. Latz, Journal of The Elec. Society, 164(11), E3132 (2017). HIU 01.02.2018F. Single, B. Horstmann, A. Latz, Phys. Chem. Chem. Phys., 18, 178101, (2016).26

Lithium-Ion BatteriesModel Overview – Transport & ReactionsElectronic current Ohm‘s law𝒋𝑬 𝝈 𝚽Solvent Fick s law Convection𝒋𝑬𝒋𝑫 𝑫 𝒄𝒋𝑪 c𝒗𝒋𝑫 𝒋𝑪Bruggeman Relation 𝝈 (𝟏 𝜺)𝟏.𝟓 𝝈𝐁𝐮𝐥𝐤 𝑫 𝜺𝜷 𝑫𝐁𝐮𝐥𝐤B.V. Reaction Rate, 𝒔 𝑨 sinh 𝜼𝟎 𝜼 𝚽 𝚽𝐄𝐂 ln 𝒄 𝑨 6𝜺𝑎01 𝜺 𝑎02 ′′𝜺6Primary Variables𝜺 𝜺𝟏 𝜺𝟐 ,𝒄,𝚽,𝒗Parameters𝟎𝜷, 𝝈𝐁𝐮𝐥𝐤 , 𝑫𝐁𝐮𝐥𝐤 , 𝒂𝟎 , 𝚽𝐄𝐂F. Single, B. Horstmann, A. Latz, Journal of The Elec. Society, 164(11), E3132 (2017). HIU 01.02.2018F. Single, B. Horstmann, A. Latz, Phys. Chem. Chem. Phys., 18, 178101, (2016).27

Lithium-Ion BatteriesSimulation: Single SEI CompoundPorous SEI HomogeneousSEI growth Transport limited 𝒕 - growth Governed / limited byelectron conduction𝝈 2𝑅𝑇 1 𝜷𝜺 𝐒𝐄𝐈 𝑫 𝑐𝐹 2 2𝜺𝑳 𝒕 𝑉1 𝝈 𝚫𝚽/𝜀SEI𝐹 𝒕F. Single, B. Horstmann, A. Latz, Journal of The Elec. Society, 164(11), E3132 (2017). HIU 01.02.2018F. Single, B. Horstmann, A. Latz, Phys. Chem. Chem. Phys., 18, 178101, (2016).28

Lithium-Ion BatteriesDual-layer SEI 𝑳 total SEI thickness 𝑳𝐈 thickness of the inner layerConversionDifferent reduction potentials𝟎 𝚽𝐄𝐂 𝟎. 𝟖 𝐕𝟎 𝚽𝐃𝐌𝐂 𝟎. 𝟑 𝐕ConversionSecond SEI species Co-solvent reduction Reduction of Li2EDCCo-solventreductionSimulation: Dual-Layer SEIBorodin, O., et al. (2015). Nanotechnology, 26(35), 354003.Lu, P., Li, C., Schneider, E. W., & Harris, S. J. (2014). Journal of PhysicalChemistry C, 118(2), 896. HIU 01.02.201829

Lithium-Ion BatteriesIdentifying RLTM HIU 01.02.201830

Lithium-Ion BatteriesIdentifying the RLTMCompare four differentRLT mechanisms1. Electron conduction2. Electron tunnelin3. Li-interstitial diffusion4. Solvent diffusionRelative capacity fade 𝚫𝐂after 9.3 months storage(open circuit) vs. the SOCduring storage.Experimental data:Keil, P., et al., (2016). Journal of TheElectrochemical Society, 163(9), A1872–A1880. HIU 01.02.201831

Lithium-Ion BatteriesIdentifying the RLTMCompare four differentRLT mechanisms 𝐂 𝟎𝚽𝐄𝐂 𝐎𝐂𝐕(𝐒𝐎𝐂) 𝐂 𝜶 𝐒𝐎𝐂 ln 𝟏 𝜷 𝐒𝐎𝐂𝟏 𝑭 𝐂 𝐞𝐱𝐩𝐎𝐂𝐕 𝐒𝐎𝐂𝟐 𝑹𝑻 𝐂 𝐜𝐨𝐧𝐬𝐭.Experimental data:Keil, P., et al., (2016). Journal of TheElectrochemical Society, 163(9), A1872–A1880. HIU 01.02.201832

OutlookConclusionExtended SEI modeling approach, predictions: Thickness evolution Dual-layer SEI (several scenarios) Porosity SOC dependence of cap. fadeComparison of different RLTMs: SEI thickness fluctuations (solvent diffusion) SOC dependence of cap. Fade RLTM: Interstitial DiffusionF. Single, B. Horstmann B., A. Latz, Phys.Chem. Chem. Phys., 18, 178101 (2016). Impedance spectroscopyF. Single, B. Horstmann B., A. Latz, Journal ofThe Elec. Society, 164(11), E3132 (2017).F. Single, A. Latz, B. Horstmann,submitted to ChemSusChem (2018). HIU 01.02.201833

ConclusionContent1. Introduction2. Aqueous Zinc-Air Batteries Alkaline Electrolyte Near-Neutral Electrolyte3. Lithium-Ion Batteries Growth of SolidElectrolyte Interphase4. Conclusion HIU 01.02.201834

ConlusionOutlook Understanding electrochemical surfaces (in-situ experiments?) Electrochemical surface layers, e.g., ionic liquids Interfacial stability, e.g., SEI, plating Electrodeposition and –dissolution, e.g., lithium metal Designing next-generation batteries Metal-air batteries Multi-valent ions Experimental designs Probabilistic/stochastic modeling of lithium-ion batteries State estimation Uncertainty propagation Stochastic scale coupling HIU 01.02.201835

ConclusionFunding Sources & Institutions BMBF: LuLi, LuZi, Li-EcoSafe EU-Horizon 2020: ZAS! Eureka-Eurostars: Simba DAAD: PostDoc Scholarship Helmholtz Association: HIU, GigaStore HIU 01.02.201836

ConclusionCo-Supervised StudentsPhD Students Timo Danner Fabian Single Simon Clark Tobias Schmitt Max Schammer Linda BolayMaster Students Daniel Eberle Emre Durmus Erkmen Karaca Johannes StammUniversity StuttgartInstitute for Thermodynamicsand Thermal EngineeringThank You! HIU 01.02.201837

HIU 2 Why do we need (metal-air) batteries? Introduction G. A. Hoff

Related Documents:

safe analysis is not included in this tutorial. Please see the fe-safe User Manual including fe-safe Tutorials for details, for instance: Tutorial 106: Using fe-safe with Abaqus .odb files . Start fe-safe /Rubber TM as described in the -safe feUser Manual. The Configure -safefe Project Directory window will be displayed:

Locking The Safe Step 1: Open safe Step 2: Take out any removable interior parts. Step 3: Remove the 2 lag screws using a 15mm socket and ratchet, then close and lock safe door. NOTE: Use caution as the safe is top heavy and due to the mass of the door, can tip easily when moving; installing the safe will take two or more people.

Evolution is a THEORY A theory is a well-supported, testable explanation of phenomena that have occurred in the natural world, like the theory of gravitational attraction, cell theory, or atomic theory. Keys to Darwin’s Theory Genetic variation is found naturally in all populations. Keys to Darwin’s Theory

Humanist Learning Theory 2 Introduction In this paper, I will present the Humanist Learning Theory. I’ll discuss the key principles of this theory, what attracted me to this theory, the roles of the learners and the instructor, and I’ll finish with three examples of how this learning theory could be applied in the learning environment.File Size: 611KBPage Count: 9Explore furtherApplication of Humanism Theory in the Teaching Approachcscanada.net/index.php/hess/article/view (PDF) The Humanistic Perspective in Psychologywww.researchgate.netWhat is the Humanistic Theory in Education? (2021)helpfulprofessor.comRecommended to you b

The Safe School Plan is based on guidance from the California Department of Education and the Office of the Attorney General (Safe Schools - A Planning Guide for Action, 2002 Edition). Use of the Safe School Plan will help to ensure safe school plans are prepared in compliance with CEC, Section 32281, and the WIC Reauthorization Act of 2004.

1.The domino theory developed by H. W. Heinrich, a safety engineer and pioneer in the field of industrial accident safety. 2.Human Factors Theory 3.Accident/Incident Theory 4.Epidemiological Theory 5.Systems Theory 6.The energy release theory, developed by Dr. William Haddon, Jr., of the Insurance Institute for Highway Safety. 7.Behavior Theory

Brief History (Impredicative) Type Theory. 1971 Per Martin-Löf,A theory of Types. (Predicative) Type Theory as Constructive Set Theory. 1979 Per Martin-Löf,Constructive Mathematics and Computer Programming . 1984 Per Martin-Löf,Intuitionistic Type Theory. (Predi

Fredrick Herzberg’s Two-Factor theory Douglas McGregor’s - X and Y theory David McCellands’s achievement motivation theory Alderfer’s ERG theory Vroom’s Expectancy theory (VIE) Porter-Lawler model of motivation Adam’s Equity theory Ouchi’s theory Z Fear and Punishme