Quantum Symmetric Kac-Moody Pairs - Lancaster

2y ago
72 Views
2 Downloads
593.04 KB
33 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Adalynn Cowell
Transcription

Quantum symmetric Kac-Moody pairsStefan KolbSchool of Mathematics and StatisticsNewcastle UniversityLancasterSeptember 6, 2012based on arXiv:1207.6036

Symmetric pairs for quantum groupschar(k ) 0, k kg semisimple Lie algebra /k , θ : g g,θ2 Id,g k p.Generalizations:Uq (g) quantum envel. algebra.g symmetrizable Kac-Moody alg.P1. Construct θq : Uq (g) Uq (g)dim(θ(b ) b ) (1st kind)P2. Construct Uq0 (k) Uq (g)dim(θ(b ) b ) (2nd kind)Solved by M. Noumi, T. Sugitani,M. Dijkhuizen, G. Letzterclassified by V. Kac, S. Wang ’92.Main result of this talkLet g be a symmetrizable Kac-Moody algebra and θ an involutiveautomorphism of the second kind. Then both θq and Uq0 (k) can beconstructed. There exists a rich structure theory.

Symmetric pairs for quantum groupschar(k ) 0, k kg semisimple Lie algebra /k , θ : g g,θ2 Id,g k p.Generalizations:Uq (g) quantum envel. algebra.g symmetrizable Kac-Moody alg.P1. Construct θq : Uq (g) Uq (g)dim(θ(b ) b ) (1st kind)P2. Construct Uq0 (k) Uq (g)dim(θ(b ) b ) (2nd kind)Solved by M. Noumi, T. Sugitani,M. Dijkhuizen, G. Letzterclassified by V. Kac, S. Wang ’92.Main result of this talkLet g be a symmetrizable Kac-Moody algebra and θ an involutiveautomorphism of the second kind. Then both θq and Uq0 (k) can beconstructed. There exists a rich structure theory.

Symmetric pairs for quantum groupschar(k ) 0, k kg semisimple Lie algebra /k , θ : g g,θ2 Id,g k p.Generalizations:Uq (g) quantum envel. algebra.g symmetrizable Kac-Moody alg.P1. Construct θq : Uq (g) Uq (g)dim(θ(b ) b ) (1st kind)P2. Construct Uq0 (k) Uq (g)dim(θ(b ) b ) (2nd kind)Solved by M. Noumi, T. Sugitani,M. Dijkhuizen, G. Letzterclassified by V. Kac, S. Wang ’92.Main result of this talkLet g be a symmetrizable Kac-Moody algebra and θ an involutiveautomorphism of the second kind. Then both θq and Uq0 (k) can beconstructed. There exists a rich structure theory.

Symmetric pairs for quantum groupschar(k ) 0, k kg semisimple Lie algebra /k , θ : g g,θ2 Id,g k p.Generalizations:Uq (g) quantum envel. algebra.g symmetrizable Kac-Moody alg.P1. Construct θq : Uq (g) Uq (g)dim(θ(b ) b ) (1st kind)P2. Construct Uq0 (k) Uq (g)dim(θ(b ) b ) (2nd kind)Solved by M. Noumi, T. Sugitani,M. Dijkhuizen, G. Letzterclassified by V. Kac, S. Wang ’92.Main result of this talkLet g be a symmetrizable Kac-Moody algebra and θ an involutiveautomorphism of the second kind. Then both θq and Uq0 (k) can beconstructed. There exists a rich structure theory.

Examples of quantum symmetric Kac-Moody pairsb 2 with Chevalley involutionq-Onsager algebra: slBaseilhac, Belliard: factorisable scattering on the half line.Terwilliger: polynomial association schemes.twisted q-Yangians: dim(g) .Consider bg0 g k [t, t 1 ] kc with involutionθb : bg0 bg0 ,b t n ) θ(x) t n ,θ(xb c.θ(c)bg0 k0 p0 . Construction of Uq0 (k0 ) Uq (bg0 )A. Molev, E. Ragoucy, P. Sorba ’03: θ of type AI, AIIN. Guay, X. Ma ’11: θ of type AIIIquantized generalized intersection matrix algebras(Y. Tan, R. Lv ’05, ’12)

Examples of quantum symmetric Kac-Moody pairsb 2 with Chevalley involutionq-Onsager algebra: slBaseilhac, Belliard: factorisable scattering on the half line.Terwilliger: polynomial association schemes.twisted q-Yangians: dim(g) .Consider bg0 g k [t, t 1 ] kc with involutionθb : bg0 bg0 ,b t n ) θ(x) t n ,θ(xb c.θ(c)bg0 k0 p0 . Construction of Uq0 (k0 ) Uq (bg0 )A. Molev, E. Ragoucy, P. Sorba ’03: θ of type AI, AIIN. Guay, X. Ma ’11: θ of type AIIIquantized generalized intersection matrix algebras(Y. Tan, R. Lv ’05, ’12)

Examples of quantum symmetric Kac-Moody pairsb 2 with Chevalley involutionq-Onsager algebra: slBaseilhac, Belliard: factorisable scattering on the half line.Terwilliger: polynomial association schemes.twisted q-Yangians: dim(g) .Consider bg0 g k [t, t 1 ] kc with involutionθb : bg0 bg0 ,b t n ) θ(x) t n ,θ(xb c.θ(c)bg0 k0 p0 . Construction of Uq0 (k0 ) Uq (bg0 )A. Molev, E. Ragoucy, P. Sorba ’03: θ of type AI, AIIN. Guay, X. Ma ’11: θ of type AIIIquantized generalized intersection matrix algebras(Y. Tan, R. Lv ’05, ’12)

Uq (g0 )A (aij )i,j I symmetric, g g(A), g0 [g, g] Uq (g0 ) k (q)hEi , Fi , Ki , Ki 1 i Ii relationswith the following relations (for all i, j I):(1) Ki Ki 1 1 Ki 1 Ki ,(2)Ki Ej Ki 1aij q Ej ,Ki Kj Kj KiKi Fj Ki 1 q aij FjKi Ki 1q q 1(4) Fij (Ei , Ej ) 0 Fij (Fi , Fj )(3) Ei Fj Fj Ei δijwhere Fij (x, y ) if i 6 jP1 aij 1 a nij( 1)n 1 ax ij y x nnq [N] [N 1] .[N n 1]with Nn q q [1]q [2]q q .[n]q q ,n 1[m]q Hopf algebra with coproduct: (Ei ) Ei 1 Ki Ei (Fi ) Fi Ki 1 1 Fi (Ki ) Ki Kiq m q m.q q 1

Uq (g0 )A (aij )i,j I symmetric, g g(A), g0 [g, g] Uq (g0 ) k (q)hEi , Fi , Ki , Ki 1 i Ii relationswith the following relations (for all i, j I):(1) Ki Ki 1 1 Ki 1 Ki ,(2)Ki Ej Ki 1aij q Ej ,Ki Kj Kj KiKi Fj Ki 1 q aij FjKi Ki 1q q 1(4) Fij (Ei , Ej ) 0 Fij (Fi , Fj )(3) Ei Fj Fj Ei δijwhere Fij (x, y ) if i 6 jP1 aij 1 a nij( 1)n 1 ax ij y x nnq [N] [N 1] .[N n 1]with Nn q q [1]q [2]q q .[n]q q ,n 1[m]q Hopf algebra with coproduct: (Ei ) Ei 1 Ki Ei (Fi ) Fi Ki 1 1 Fi (Ki ) Ki Kiq m q m.q q 1

Uq (g0 )A (aij )i,j I symmetric, g g(A), g0 [g, g] Uq (g0 ) k (q)hEi , Fi , Ki , Ki 1 i Ii relationswith the following relations (for all i, j I):(1) Ki Ki 1 1 Ki 1 Ki ,(2)Ki Ej Ki 1aij q Ej ,Ki Kj Kj KiKi Fj Ki 1 q aij FjKi Ki 1q q 1(4) Fij (Ei , Ej ) 0 Fij (Fi , Fj )(3) Ei Fj Fj Ei δijwhere Fij (x, y ) if i 6 jP1 aij 1 a nij( 1)n 1 ax ij y x nnq [N] [N 1] .[N n 1]with Nn q q [1]q [2]q q .[n]q q ,n 1[m]q Hopf algebra with coproduct: (Ei ) Ei 1 Ki Ei (Fi ) Fi Ki 1 1 Fi (Ki ) Ki Kiq m q m.q q 1

Right coideal subalgebrasObserve: Let x g0 .kx g0 (commutative) Lie subalgebra of g0 .k hxi Hopf subalgebra of U(g0 ).But k hFi i is not a Hopf subalgebra of Uq (g0 ).DefinitionA subalgebra C Uq (g0 ) is called a right coideal subalgebra if (C) C Uq (g0 ).General principle: Quantum group analogs of Lie subalgebras of g0appear as right (or left) coideal subalgebras of Uq (g0 ).Example: k hFi i is RCSA of Uq (g0 ).

Admissible pairsA generalized Cartan matrix,g g(A)DefinitionLet X I be of finite type and τ Aut(A, X ).The pair (X , τ ) is called admissible if1τ 2 Id2τ X wX3If j I \ X and τ (j) j then αj (ρ X ) Z.Notation: Aut(A, X ): diagram automorphisms which fix X .wX : longest element in the parabolic subgroup WX W .ρ X : half sum of positive coroots for mX .(mX : semisimple Lie subalgebra corresponding to X .)

S. Araki: J. Math. Osaka City Univ. 13 (1962), 1 – 34.

Involutive automorphisms of the second kindBr (W ): Braid group associated to W .Action: Ad : Br (W ) Aut(g)si 7 Ad(si ) exp(ad(ei )) exp(ad( fi )) exp(ad(ei ))Theorem (Kac, Wang ’92)The following map is a bijection: , ,admissibleinvolutive automorphismsAut(A) Aut(g)pairsof g of the second kind(X , τ ) 7 θ(X , τ ) : Ad(s(X , τ )) Ad(wX ) τ ω.Notation:ω Chevalley involution:ω(ei ) fi , ω(fi ) ei , ω(h) h i I, h h.s(X , τ ) Hom(Q, k ) if j X or τ (j) j 1 s(X , τ )(αj ) i αj (2ρX )if j / X and τ (j) j αj (2ρ )X( i)if j / X and τ (j) j

Lusztig’s braid group actionBr (W ) Aut(Uq (g0 )),si 7 Ti ,w 7 TwwhereTi (Fi ) Ki 1 Ei ,Ti (Ei ) Fi Ki , aijTi (Kj ) Kj Kiand for j 6 i one has aTi (Ej ) ad(Ei ij )(Ej ),[ aij ]q [ aij 1]q . . . [1]qTi (Fj ) q aij ω(Ti (Ej )).Notation:ω Chevalley involution for Uq (g0 ):ω(Ei ) Fi , ω(Fi ) Ei , ω(Ki ) Ki 1ad(Ei )(x) Ei x Ki xKi 1 Ei i I.(adjoint action).

Quantum involution(X , τ ) admissible pair, θ θ(X , τ )Notation: MX k (q)hEi , Fi , Ki 1 i X iPQKh i I Kimi for h i I mi hi Q Goal: Define algebra automorphismθq θq (X , τ ) : Uq (g0 ) Uq (g0 )such that (1) θq (Kh ) Kθ(h)(2) θq MX IdMX(3) θqq 1 h Q θThings we do not ask for:θq Hopf algebra automorphism(θq )2 IdUq (g0 )The ansatz θq Ad(s(X , τ )) TwX τ ω does not satisfy (2).

Quantum involution(X , τ ) admissible pair, θ θ(X , τ )Notation: MX k (q)hEi , Fi , Ki 1 i X iPQKh i I Kimi for h i I mi hi Q Goal: Define algebra automorphismθq θq (X , τ ) : Uq (g0 ) Uq (g0 )such that (1) θq (Kh ) Kθ(h)(2) θq MX IdMX(3) θqq 1 h Q θThings we do not ask for:θq Hopf algebra automorphism(θq )2 IdUq (g0 )The ansatz θq Ad(s(X , τ )) TwX τ ω does not satisfy (2).

Quantum involution(X , τ ) admissible pair, θ θ(X , τ )Notation: MX k (q)hEi , Fi , Ki 1 i X iPQKh i I Kimi for h i I mi hi Q Goal: Define algebra automorphismθq θq (X , τ ) : Uq (g0 ) Uq (g0 )such that (1) θq (Kh ) Kθ(h)(2) θq MX IdMX(3) θqq 1 h Q θThings we do not ask for:θq Hopf algebra automorphism(θq )2 IdUq (g0 )The ansatz θq Ad(s(X , τ )) TwX τ ω does not satisfy (2).

Quantum involution(X , τ ) admissible pair, θ θ(X , τ )Notation: MX k (q)hEi , Fi , Ki 1 i X iPQKh i I Kimi for h i I mi hi Q Goal: Define algebra automorphismθq θq (X , τ ) : Uq (g0 ) Uq (g0 )such that (1) θq (Kh ) Kθ(h)(2) θq MX IdMX(3) θqq 1 h Q θThings we do not ask for:θq Hopf algebra automorphism(θq )2 IdUq (g0 )The ansatz θq Ad(s(X , τ )) TwX τ ω does not satisfy (2).

Quantum involution IIDefine algebra homomorphismΨ : Uq (g0 ) Uq (g0 )Ψ(Ei ) Ei Ki ,ThenΨ(Fi ) Ki 1 Fi ,θq Ad(s(X , τ )) TX τ ωΨ(Ki ) Ki .with TX TwX Ψsatisfies (1), (2), and (3). Moreover, TX commutes with τ .

Quantum symmetric pair coideal subalgebras(X , τ ) admissible pair, θ θ(X , τ ), g0 k0 p0The Lie algebra k0 is generated byhfor all h h0 with θ(h) hmX(semisimple Lie subalgebra corresp. to X )fi θ(fi )for all i I \ X .Notation: Kh Qi IKini if h Pi Ini hi Q .Define Uq0 (k0 ) to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi θq (Fi Ki )Ki 1for all i I \ X .Why θq (Fi Ki )Ki 1 ?Because there exist Zτ (i) Ei1 . . . Eir and ai , ai0 k (q) s.t.θq (Fi Ki ) ai TwX (Eτ (i) ) ai0 ad(Zτ (i) )(Eτ (i) ).Consequence: Uq0 (k0 ) is a right coideal subalgebra of Uq (g0 ), i.e. (Uq0 (k0 )) Uq0 (k0 ) Uq (g0 ).

Quantum symmetric pair coideal subalgebras(X , τ ) admissible pair, θ θ(X , τ ), g0 k0 p0The Lie algebra k0 is generated byhfor all h h0 with θ(h) hmX(semisimple Lie subalgebra corresp. to X )fi θ(fi )for all i I \ X .Notation: Kh Qi IKini if h Pi Ini hi Q .Define Uq0 (k0 ) to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi θq (Fi Ki )Ki 1for all i I \ X .Why θq (Fi Ki )Ki 1 ?Because there exist Zτ (i) Ei1 . . . Eir and ai , ai0 k (q) s.t.θq (Fi Ki ) ai TwX (Eτ (i) ) ai0 ad(Zτ (i) )(Eτ (i) ).Consequence: Uq0 (k0 ) is a right coideal subalgebra of Uq (g0 ), i.e. (Uq0 (k0 )) Uq0 (k0 ) Uq (g0 ).

Quantum symmetric pair coideal subalgebras(X , τ ) admissible pair, θ θ(X , τ ), g0 k0 p0The Lie algebra k0 is generated byhfor all h h0 with θ(h) hmX(semisimple Lie subalgebra corresp. to X )fi θ(fi )for all i I \ X .Notation: Kh Qi IKini if h Pi Ini hi Q .Define Uq0 (k0 ) to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi θq (Fi Ki )Ki 1for all i I \ X .Why θq (Fi Ki )Ki 1 ?Because there exist Zτ (i) Ei1 . . . Eir and ai , ai0 k (q) s.t.θq (Fi Ki ) ai TwX (Eτ (i) ) ai0 ad(Zτ (i) )(Eτ (i) ).Consequence: Uq0 (k0 ) is a right coideal subalgebra of Uq (g0 ), i.e. (Uq0 (k0 )) Uq0 (k0 ) Uq (g0 ).

Quantum symmetric pair coideal subalgebras(X , τ ) admissible pair, θ θ(X , τ ), g0 k0 p0The Lie algebra k0 is generated byhfor all h h0 with θ(h) hmX(semisimple Lie subalgebra corresp. to X )fi θ(fi )for all i I \ X .Notation: Kh Qi IKini if h Pi Ini hi Q .Define Uq0 (k0 ) to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi θq (Fi Ki )Ki 1for all i I \ X .Why θq (Fi Ki )Ki 1 ?Because there exist Zτ (i) Ei1 . . . Eir and ai , ai0 k (q) s.t.θq (Fi Ki ) ai TwX (Eτ (i) ) ai0 ad(Zτ (i) )(Eτ (i) ).Consequence: Uq0 (k0 ) is a right coideal subalgebra of Uq (g0 ), i.e. (Uq0 (k0 )) Uq0 (k0 ) Uq (g0 ).

SpecializationKi 1Define A k [q, q 1 ](q 1) and (Ki ; 0)q .q 1DE0UA: A Ei , Fi , Ki 1 , (Ki ; 0)q i I’A-form’0U10 : k A UAProposition (‘well known’)There exists an isomorphism of algebras U10 U(g0 ) such that1 Ei 7 ei ,1 Fi 7 fi ,1 (Ki ; 0)q 7 hi00φ : Uq (g0 ) Uq (g0 ) linear map s.t. φ(UA) UA.φ Id φ UA0 : U10 U10(’specialization of φ’)00V Uq (g ) subspace. Define VA V UAandV k A VA U1(’specialization of V ’)Propositionθq (X , τ ) θ(X , τ ) and Uq0 (k0 ) U(k0 ).

SpecializationKi 1Define A k [q, q 1 ](q 1) and (Ki ; 0)q .q 1DE0UA: A Ei , Fi , Ki 1 , (Ki ; 0)q i I’A-form’0U10 : k A UAProposition (‘well known’)There exists an isomorphism of algebras U10 U(g0 ) such that1 Ei 7 ei ,1 Fi 7 fi ,1 (Ki ; 0)q 7 hi00φ : Uq (g0 ) Uq (g0 ) linear map s.t. φ(UA) UA.φ Id φ UA0 : U10 U10(’specialization of φ’)00V Uq (g ) subspace. Define VA V UAandV k A VA U1(’specialization of V ’)Propositionθq (X , τ ) θ(X , τ ) and Uq0 (k0 ) U(k0 ).

SpecializationKi 1Define A k [q, q 1 ](q 1) and (Ki ; 0)q .q 1DE0UA: A Ei , Fi , Ki 1 , (Ki ; 0)q i I’A-form’0U10 : k A UAProposition (‘well known’)There exists an isomorphism of algebras U10 U(g0 ) such that1 Ei 7 ei ,1 Fi 7 fi ,1 (Ki ; 0)q 7 hi00φ : Uq (g0 ) Uq (g0 ) linear map s.t. φ(UA) UA.φ Id φ UA0 : U10 U10(’specialization of φ’)00V Uq (g ) subspace. Define VA V UAandV k A VA U1(’specialization of V ’)Propositionθq (X , τ ) θ(X , τ ) and Uq0 (k0 ) U(k0 ).

Generalization and classificationLet c (ci )i I\X , s (si )i I\X AI\X such that ci (1) 1.Define Uq0 (k0 )c,s to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi ci θq (Fi Ki )Ki 1 si Ki 1Properties of C Uq0 (k0 )c,sfor all i I \ X .(for ‘good’ c, s):(1) C is a right coideal subalgebra of Uq (g0 ).(2) C specializes to U(k0 ).(3) Maximality condition: Let V Uq (g0 ) be a subspace such thatV specializes to U(k0 )C Vthen V C.Theorem (Letzter ’02)Let g be of finite type. If C Uq (g) is a subalgebra satisfying (1), (2),and (3) above. Then C Uq0 (k)c,s for some c, s as above.

Generalization and classificationLet c (ci )i I\X , s (si )i I\X AI\X such that ci (1) 1.Define Uq0 (k0 )c,s to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi ci θq (Fi Ki )Ki 1 si Ki 1Properties of C Uq0 (k0 )c,sfor all i I \ X .(for ‘good’ c, s):(1) C is a right coideal subalgebra of Uq (g0 ).(2) C specializes to U(k0 ).(3) Maximality condition: Let V Uq (g0 ) be a subspace such thatV specializes to U(k0 )C Vthen V C.Theorem (Letzter ’02)Let g be of finite type. If C Uq (g) is a subalgebra satisfying (1), (2),and (3) above. Then C Uq0 (k)c,s for some c, s as above.

Generalization and classificationLet c (ci )i I\X , s (si )i I\X AI\X such that ci (1) 1.Define Uq0 (k0 )c,s to be the subalgebra of Uq (g0 ) generated byKhfor all h Q with θ(h) hMXBi : Fi ci θq (Fi Ki )Ki 1 si Ki 1Properties of C Uq0 (k0 )c,sfor all i I \ X .(for ‘good’ c, s):(1) C is a right coideal subalgebra of Uq (g0 ).(2) C specializes to U(k0 ).(3) Maximality condition: Let V Uq (g0 ) be a subspace such thatV specializes to U(k0 )C Vthen V C.Theorem (Letzter ’02)Let g be of finite type. If C Uq (g) is a subalgebra satisfying (1), (2),and (3) above. Then C Uq0 (k)c,s for some c, s as above.

Generators and relationsLet Uθ0 k (q)hKh h Q , θ(h) hi and M X k (q)hEi i X i.Theorem0The algebra Uq0 (k0 )c is generated over M X Uθ by elements Bi for alli I and relationsKh Bi q αi (h) Bi KhEi Bj Bj Ei Ki Ki 1δijq q 1for all Kh Uθ0 , i I(1)for all i X , j I(2)Fij (Bi , Bj ) Cij (c)for some Cij (c) P J 1 aij(3)0M X Uθ BJ .Here, for any multi-index J (j1 , j2 , . . . , jn ) I n we defineBJ Bj1 Bj2 . . . Bjnwith Bi Fi if i X .and J n

Problems and outlookComplete the classification of subalgebras C satisfying (1), (2),and (3) up to Hopf algebra automorphism of Uq (g0 ) in theKac-Moody case.Relate the result to Poisson geometry for the correspondingsymmetric space in the finite case.Perform the program of harmonic analysis/special functions inthe non-finite case.Dream something up !

Quantum symmetric Kac-Moody pairs Stefan Kolb School of Mathematics and Statistics Newcastle University Lancaster September

Related Documents:

becomes Moody Distance Learning Moody Bible Institute named. Moody Aviation begins Moody Press becomes . Moody Publishers Moody Correspondence School begins. First Founder's Week . legacy of Moody Bible Institute, which started in 1886, Moody Theological Seminary was established 26 years ago to provide excellent biblical

Moody's Analytics and Moody's Investors Service maintain separate and independent economic forecasts. This publication uses the forecasts of Moody's Analytics. Moody's Analytics markets and distributes all Moody's Capital Markets Research materials. Moody's Analytics does not provide investment advisory services or products.

The Moody Education System Elements chapter provides detailed information on the core look and feel that expresses the Moody Education brands (including Moody Bible Institute, Moody Bible Institute Distance Learning and Moody Theological Seminary) and distinguishes them from other organizations. This foundational information gives you the

The "Moody . Archers" Story. The story behind the Moody Archers is a . cornerstone of Moody Bible Institute and deeply rooted in our history. For an athletics team like ours, the story behind the name and our mascot can be just as important — if not more important — than the logo itself. It is important to build equity in the Moody

According to the quantum model, an electron can be given a name with the use of quantum numbers. Four types of quantum numbers are used in this; Principle quantum number, n Angular momentum quantum number, I Magnetic quantum number, m l Spin quantum number, m s The principle quantum

1. Quantum bits In quantum computing, a qubit or quantum bit is the basic unit of quantum information—the quantum version of the classical binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics.

MOODY’S JAPAN K.K. (MOODY’S): MATTERS RELATING TO RATINGS ASSIGNMENT POLICY, ETC. PRESCRIBED UNDER ARTICLE 299, ITEM 36 (A) OF THE ANCE WITH RESPECT TOFINANCIAL INSTRUMENTS BUSINESS, ETC. 2. ASSUMPTIONS WHICH THE ASSESSMENT OF C REDIT STANDING WILL BE BASED ON . Sections (1) to (12) below are applicable to all of the above classification. (1) Global Rating Scales. Ratings assigned on Moody .

tulang dan untuk menilai efektivitas hasil pengobatan. Hasil pemeriksaan osteocalcin cukup akurat dan stabil dalam menilai proses pembentukan tulang. Metode pemeriksaan osteocalcin adalah enzyme-linked immunosorbent assay (ELISA). Nilai normalnya adalah: 10,1 9,4 ng/ml.8 Setelah disintesis, OC dilepaskan ke sirkulasi dan memiliki waktu paruh pendek hanya 5 menit setelah itu dibersihkan oleh .