Integral Equation Methods - MIT OpenCourseWare

2y ago
113 Views
2 Downloads
517.23 KB
32 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Braxton Mach
Transcription

Introduction to Simulation - Lecture 22Integral Equation MethodsJacob WhiteThanks to Deepak Ramaswamy, Michal Rewienski,Xin Wang and Karen Veroy

OutlineIntegral Equation MethodsExterior versus interior problemsStart with using point sourcesStandard Solution Methods in 2-DGalerkin MethodCollocation MethodIssues in 3-DPanel IntegrationSMA-HPC 2003 MIT

Interior Versus Exterior ProblemsInteriorExterior 2T 0outside 2T 0insideTemperatureknown on surface“Temperature in a Tank”Temperatureknown on surface“Ice Cube in a Bath”What is the heat flow?Heat FlowSMA-HPC 2003 MIT T nsurfaceThermal conductivity

Exterior Problem in Electrostaticspotential v- 2Ψ 0OutsideΨ is given on SurfaceWhat is the capacitance?CapacitanceSMA-HPC 2003 MITDielectric Permitivity Ψ nsurface

Drag Force in a MicroresonatorCourtesy of Werner Hemmert, Ph.D. Used with permission.ResonatorComputed ForcesBottom ViewSMA-HPC 2003 MITDiscretized StructureComputed ForcesTop View

What is common about these problems.Exterior ProblemsDrag Force in MEMS device - fluid (air) creates drag.Coupling in a Package - Fields in exterior create couplingCapacitance of a Signal Line - Fields in exterior.Quantities of Interest are on the surfaceMEMS device - Just want surface traction forcePackage - Just want coupling between conductorsSignal Line - Just want surface charge.Exterior Problem is linear and space-invariantMEMS - Exterior Stokes Flow equation (linear).Package - Maxwell’s equations in free space (linear).Signal Line - Laplace’s equation in free space (linear).But problems are geometrically very complex!

Exterior ProblemsSurfaceWhy not use Finite-Differenceor FEM methods2-D Heat Flow ExampleT 0 at But, musttruncate themesh TOnly needon the surface, but T is computed everywhere nMust truncate the mesh, T ( ) 0 becomes T ( R ) 0SMA-HPC 2003 MIT

Green’s FunctionLaplace’s Equation(In 2-D22( x x0 ) ( y y0 ))If u log 2u 2uthen 2 2 0 for all ( x, y ) ( x0 , y0 ) x yIn 3-DIf u 1( x x0 ) ( y y0 ) ( z z0 )222 2u 2u 2uthen 2 2 2 0 for all ( x, y, z ) ( x0 , y0 , z0 ) x y zProof: Just differentiate and see!SMA-HPC 2003 MIT

Laplace’s Equationin 2-DSimple Ideau is given on surfaceSurface( x0 , y0 )Let u log( 2u 2u 2 0 outside2 x y( x x0 ) ( y y0 )2 2u 2u 2 0 outside2 x y2)Problem SolvedDoes not match boundary conditions!SMA-HPC 2003 MIT

Simple IdeaLaplace’s Equationin 2-D“More Points”u is given on surface 2u 2u 2 0 outside2 x y( x2 , y2 )( x1 , y1 )nLet u ωi logi 1(( xn , yn )( x xi ) ( y yi )22) ω G ( x x , y y )ni 1iiiPick the ωi ' s to match the boundary conditions!SMA-HPC 2003 MIT

Simple IdeaLaplace’s Equationin 2-D“More Points Equations”(x , y )t1t1Source Strengths selectedto give correct potential attest points.( x2 , y2 )( x1 , y1 )( xn , yn ) G ( xt x1 , yt y1 ) L L G ( xt xn , yt yn ) ω Ψ ( xt , yt ) 111111 1 MOMM M M MOMM G x x , y y L L G x x , y y ω n Ψ x , y 11tntntnntnn tntn (SMA-HPC 2003 MIT)()()

Computational results using points approachCircle with Charges r 9.5Potentials on the Circlen 20SMA-HPC 2003 MITrR 10n 40

Laplace’s Equationin 2-DIntegral FormulationLimiting ArgumentWant to smear point charges onto surfaceResults in an Integral EquationΨ ( x ) G ( x, x′ ) σ ( x′ ) dS ′surfaceHow do we solve the integral equation?SMA-HPC 2003 MIT

Laplace’s Equationin 2-DBasis Function ApproachBasic IdeanRepresent σ ( x ) ωi ϕ i ( x ){i 1Basis FunctionsExample BasisRepresent circle with straight linesAssume σ is constant along each lineThe basis functions are “on” the surfaceCan be used to approximate the densityMay also approximate the geometrySMA-HPC 2003 MIT

Laplace’s Equationin 2-DBasis Function ApproachGeometric Approximation isnot new.Piecewise Straight surface basisTriangles for 2-D FEMFunctions approximate the circle approximate the circle too!Ψ ( x) approxsurfaceSMA-HPC 2003 MITnG ( x, x′ ) ωiϕi ( x′ ) dS ′i 1

Laplace’s Equationin 2-Dx1xnlnl1x2l2Ψ ( x) Basis Function ApproachPiecewise Constant StraightSections Example.1) Pick a set of n Points on thesurface2) Define a new surface byconnecting points with n lines.3) Define ϕ i ( x ) 1 if x is on line liotherwise, ϕ i ( x ) 0nni 1i 1G ( x, x′ ) ωiϕi ( x′ ) dS ′ ωiapproxsurfaceSMA-HPC 2003 MITG ( x, x′ ) dS ′ line liHow do we determine the ω i ' s ?

Basis Function ApproachLaplace’s Equationin 2-DR ( x) Ψ ( x) Residual Definition andminimizationnG ( x, x′ ) ωiϕi ( x′ ) dS ′approxsurfacei 1We will pick the ω i ' s to make R ( x ) small.General Approach: Pick a set of test functionsφ1 ,K , φn , and force R ( x ) to be orthogonal to the set φ ( x )R ( x ) dS 0iSMA-HPC 2003 MITfor all i.

Basis Function ApproachLaplace’s Equationin 2-DResidual minimization usingtest functions φ ( x ) R ( x ) dS φ ( x ) Ψ ( x ) dS iinφi ( x ) G ( x, x′ ) ω jϕ j ( x′ ) dS ′dS 0j 1approxsurfaceWe will generate different methods by chosing the φ1 ,K , φn ,()Collocation: φi ( x ) δ x xti (point-matching)Galerkin Method: φi ( x ) ϕ i ( x ) (basis test)SMA-HPC 2003 MIT

Basis Function ApproachLaplace’s Equationin 2-DCollocationCollocation: φi ( x ) δ ( xi ) (point-matching) δ ( x x ) R ( x ) dS R ( x ) Ψ ( x ) titi( )n Ψ xti ω jj 1(G xti , x′tiapproxsurface (n) ω ϕ ( x′) dS ′ 0j 1j)G xti , x′ ϕ j ( x′ ) dS ′approxsurface14444244443Ai , j A1,1 L L A1,n ω1 Ψ ( xt1 ) M O M M M MO M M M An ,1 L L An ,n ω n Ψ xtn ( )SMA-HPC 2003 MITj

Laplace’s Equationin 2-Dxn lnxt1l1l2x2Basis Function ApproachCentroid Collocation forPiecewise Constant Bases( )nΨ xti ω jj 1 ()G xti , x′ ϕ j ( x′ ) dS ′approxsurfaceCollocation point inline center A1,1 L L A1,n ω1 Ψ ( xt1 ) M O M M M MO M M M An ,1 L L An ,n ω n Ψ xtn ( )SMA-HPC 2003 MIT( )nΨ xti ω jj 1 G ( x , x′) dS ′tiline j1442443Ai , j

Laplace’s Equationin 2-D( )nΨ xti ω jj 1Basis Function ApproachCentroid CollocationGenerates a nonsymmetric A G ( x , x′) dS ′tiline j1442443Ai , jxt1xt2l1A1,2 l2 G ( x , x′) dS ′ G ( xt1line 2SMA-HPC 2003 MITt2line1, x′ ) dS ′ A2,1

Laplace’s Equationin 2-DBasis Function ApproachGalerkinGalerkin: φi ( x ) ϕ i ( x ) (test basis) ϕ ( x ) R ( x ) dS ϕ ( x ) Ψ ( x ) dS inϕi ( x ) G ( x, x′ ) ω jϕ j ( x′ ) dS ′dS 0i nϕi ( x ) Ψ ( x ) dS ω japproxsurfacej 1144424443bi A1,1 L L M O MO An ,1 L Lapproxsurface G ( x, x′ ) ϕi ( x ) ϕ j ( x′ ) dS ′dSapprox approxsurface surface14444444244444443Ai , jA1,n ω1 b1 M M M M M M An ,n ω n bn If G ( x, x′) G ( x′, x) then Ai , j A j ,iSMA-HPC 2003 MITj 1A is symmetric

Basis Function ApproachLaplace’s Equationin 2-Dlnl1 xnl2Galerkin for PiecewiseConstant Basesx2n Ψ ( x ) dS ω G ( x, x′) dS ′dSlinei14243bij 1jlinei line j144424443Ai , j A1,1 L L A1,n ω1 b1 M O M M M MO M M M An ,1 L L An ,n ω n bn SMA-HPC 2003 MIT

3-D Laplace’sEquationBasis Function ApproachPiecewise Constant BasisIntegral Equation: Ψ ( x ) surfaceDiscretize Surface intoPanels1σ ( x′ ) dS ′x x′nRepresent σ ( x ) ωi ϕ i ( x ){i 1Basis Functionsϕ j ( x ) 1 if x is on panel jPanel j ϕ ( x ) 0 otherwisejSMA-HPC 2003 MIT

3-D Laplace’sEquationPut collocation points atpanel centroidsBasis Function ApproachCentroid Collocation( )nΨ xci ω jxci Collocationpointj 1G(x panel jci), x′ dS ′144424443Ai , j A1,1 L L A1,n ω1 Ψ ( xc1 ) M O M M M MO M M M An ,1 L L An ,n ω n Ψ xcn ( )SMA-HPC 2003 MIT

Basis Function Approach3-D Laplace’sEquationCalculating Matrix Elementsxci CollocationzpointyAi , j x panel j1dS ′xci x′Panel jOne pointquadratureApproximationFour pointquadratureApproximationSMA-HPC 2003 MITPanel AreaAi , j xci xcentroid j40.25* Areaj 1xci x po int jAi , j

Basis Function Approach3-D Laplace’sEquationCalculating “Self-Term”xci CollocationzpointyAi ,i x panel i1dS ′xci x′Panel iOne pointquadratureApproximationAi ,i panel iSMA-HPC 2003 MITAi ,iPanel Area xci xci1424301dS ′ is an integrable singularityxci x′

Basis Function Approach3-D Laplace’sEquationCalculating “Self-Term”Tricks of the tradezxci CollocationypointPanel ix Ai ,i panel iDisk of radius Rsurroundingcollocation point Integrate in two Ai ,i diskpiecesDisk Integral hassingularity but hasanalytic formulaSMA-HPC 2003 MIT disk1dS ′xci x′11dS ′ dS ′ xci x′rest of panel xci x′R 2π1dS ′ xci x′0 01rdrdθ 2π Rr

Basis Function Approach3-D Laplace’sEquationCalculating “Self-Term”Other Tricks of the tradezxci CollocationypointxPanel iAi ,i panel i1dS ′xci x′14243Integrand is singular1) If panel is a flat polygon, analytical formulas exist2) Curve panels can be handled with projectionSMA-HPC 2003 MIT

Basis Function Approach3-D Laplace’sEquationGalerkin (test basis)nϕ ( x ) Ψ ( x ) dS ω ϕ ( x ) G ( x, x′ )ϕ ( x′ ) dS ′dS 14424431444442444443ibij 1jijAi , jFor piecewise constant Basisn1dS ′dSΨ ( x ) dS ′ ω j 14 panelipaneljx x′243 j 114444244443biAi , j A1,1 L L A1,n ω1 b1 M O M M M MO M M M An ,1 L L An ,n ω n bn SMA-HPC 2003 MIT

3-D Laplace’sEquationBasis Function ApproachProblem with dense matrixIntegral Equation Method Generate HugeDense Matrices A1,1 L L A1,n ω1 Ψ ( xc1 ) M O M M M MO M M M An ,1 L L An ,n ω n Ψ xcn ( )Gaussian Elimination Much Too Slow!SMA-HPC 2003 MIT

SummaryIntegral Equation MethodsExterior versus interior problemsStart with using point sourcesStandard Solution MethodsCollocation MethodGalerkin MethodNext Time Æ “Fast” SolversUse a Krylov-Subspace Iterative MethodCompute MV products Approximately

Integral Equation Methods Exterior versus interior problems Start with using point sources Standard Solution Methods Collocation Method Galerkin Method Next Time Æ“Fast” Solvers Use a Krylov-Subspace Iterative Method Compute MV produc

Related Documents:

1. Merancang aturan integral tak tentu dari aturan turunan, 2. Menghitung integral tak tentu fungsi aljabar dan trigonometri, 3. Menjelaskan integral tentu sebagai luas daerah di bidang datar, 4. Menghitung integral tentu dengan menggunakan integral tak tentu, 5. Menghitung integral dengan rumus integral substitusi, 6.

Integral Equations - Lecture 1 1 Introduction Physics 6303 discussed integral equations in the form of integral transforms and the calculus of variations. An integral equation contains an unknown function within the integral. The case of the Fourier cosine transformation is an example. F(k)

What are boundary integral equations? We can reformulate boundary value problems for PDEs in a domain as integral equations on the boundary of that domain. We typically use them for linear, elliptic, and homogeneous PDEs, but not always. Boundary integral equation methods refer to the numeric

An integral equation is an equation in which an unknown function appears under one or more integration signs. Any integral calculus statement like {y R b a (x)dxor y(x) R x a (x)dxcan be considered as an integral equation. If you noticed I have used two types

integral equation is the Fredholm integral equation of the second type. 1.2 Background of the Problem The partial differential equation which is identified with the name of Pierre Simon Marquis de Lapl

Unlocking Knowledge, Empowering Minds About MIT OpenCourseWare › MIT OpenCourseWare Free and open educational resource (Syllabi, lecture notes, videos, psets, exams, Java applets ) No credit, degrees, or faculty access 1.5 - 2 million visitors/month (including 10,000 HS students) Publishing 1

Keywords: Integral equation, numerical methods, hybrid methods. 1 Introduction Many scientists for solving integral equations, used methods from the theory of numer-ical methods for solving ordinary differential equations. As it is known, there is a wide arsenal of numerical methods for solving ordina

anatomi tulang berdasarkan gambar berikut ini! Diaphysis: This is the long central shaft Epiphysis: Forms the larger rounded ends of long bones Metaphysis: Area betweent the diaphysis and epiphysis at both ends of the bone Epiphyseal Plates: Plates of cartilage, also known as growth plates which allow the long bones to grow in length during childhood. Once we stop growing, between 18 and 25 .