Laser Accelerators For High Energy Physics

2y ago
11 Views
2 Downloads
842.38 KB
17 Pages
Last View : 1m ago
Last Download : 2m ago
Upload by : Brenna Zink
Transcription

Accelerator Research Department BLaser Accelerators forHigh Energy PhysicsDept. of Applied PhysicsRobert L. ByerChair, Applied Physics Dept.,Stanford UniversityOn behalf of the LEAP and E163 Collaborations:C. D. Barnes, E. R. Colby, B. M. Cowan, R. J. Noble,D. T. Palmer, R. H. Siemann, J. E. Spencer, D. R. WalzStanford Linear Accelerator Center / ARDBR. L. Byer, T. Plettner, J. A.WisdomStanford University / Applied Physics Dept.T.I. Smith, R. L. SwentStanford University / Hansen Experimental Physics LaboratorySLAC DOE Review April 2-4, 20021

Accelerator Research Department BDept. of Applied PhysicsCoherent Sources of RadiationSource Frequency [GHz]FEMsFELsLASERSSource Fluence [TW/cm2]TUBESSLAC DOE Review April 2-4, 20022

Accelerator Research Department BDept. of Applied PhysicsSource Efficiency [%]Efficiency of Power SourcesYb:KGd(WO4)2l 1.037mGt 112 fsecPave 1.3 Wh 28%SLAC PPM Klystronl 2.624 cmGt 3 msecPave 27 kWh 65%TUBESFEMsFELsLASERS(RF Compression, modulatorlosses not included)Source Frequency [GHz]SLAC DOE Review April 2-4, 20023

Accelerator Research Department BProgress in LithographyDept. of Applied Physics300 MHz1.2 GHz4.8 GHz9.6 GHzSLAC DOE Review April 2-4, 20024

Accelerator Research Department BDept. of Applied PhysicsLarge-Market TechnologiesU.S. Government, projected for 2002[1]:Revenue: 2.1 trillionDOE and NSF: 3.2 4.5 7.7 billionSemiconductor industry, domestic, in 1999[2]:Revenue: 168.6 billionR&D: 22 billionTelecommunications industry, worldwide, proj. for 2001[3]:Revenue: 1 trillion (including services)R&D: 25 billion [4] (top 30)Laser machining & welding, 30 billion/year à laser diode bars[1] “The Budget of the United States Government, FY2002”, OMB.[2] “Is Basic Research the Government’s Responsibility?”, Cahners Business Information, (2000).[3] J. Timmer, “Telecommunications Services Industry”, Hoover’s Business Network, (2000).[4] “International Science Yearbook 2001”, Cahners Business Information, 2001.SLAC DOE Review April 2-4, 20025

Accelerator Research Department BTechnical RoadmapDept. of Applied PhysicsLEAP1.2.3.Demonstrate the physics of laser acceleration in dielectric structuresDevelop experimental techniques for handling and diagnosing picoCoulombbeams on picosecond timescalesDevelop simple lithographic structures and test with beamDamageThresholdImprovementE163Phase I.Characterize laser/electron energy exchange in vacuumPhase II.Demonstrate optical bunching and accelerationPhase III. Test multicell lithographically produced structuresNow and Future1.2.3.4.5.Demonstrate carrier-phase lock of two ultra fast lasers [NIST, Stanford, SP]Continue development of highly efficient DPSS-pumped broadband modeand carrier-locked lasers [DARPA Grant, SBIR Solicitation]Devise power-efficient lithographic structures [CIS, SBIR Solicitation]Devise stabilization and timing systems for large-scale machine [LIGO] SLAC DOE Review April 2-4, 20026

Accelerator Research Department BDept. of Applied PhysicsThe Laser Electron Accelerator ProjectLEAPSLAC: R.H. SiemannJ.E. SpencerE. ColbyC. BarnesB. CowanHEPL: T.I. SmithR.L. SwentGinztonLabs: R.L. ByerT. PlettnerJ. A. WisdomFirst funded by Stanford patentmoney, subsequently fundedthough the DOE-HEP office ofAdvanced Accelerator Researchin 1997, renewed in 2000.Objective: To demonstrate laserdriven electron acceleration in adielectric structure in vacuum.SLAC DOE Review April 2-4, 20027

Accelerator Research Department BThe LEAP Accelerator CellDept. of Applied Physicscrossedlaser beamsHigh ReflectanceDielectric coatedsurfacesAccelerator cellslitelectronbeamFused silica prismsand flats 1 cmComputed Field Intensity, Et 21 cmElectron BeamSLAC DOE Review April 2-4, 20028

Accelerator Research Department BDept. of Applied Physics1.2.3.4.5.6.Sub-picoCoulomb electron beam pulse characterizationTransmission through 5 mm slitSpatial overlap to better than 20 mm (wo 40mm)Temporal overlap better than 100 psecLaser optical phase monitorDetailed laser damage threshold measurementsPresent Challenges1.2.3.Energy spread and timing jitterLack of knowledge of e-beam pulse durationDrifting experimental parameters at SCABefore the next run1.2.3.4.Momentum collimator to reduce from 13à6 keV RMSSimple lithographic accelerator cell designContinued laser-damage threshold measurementsImprove temporal overlap measurement to 30 psecAccomplishedSLAC DOE Review April 2-4, 20029

Accelerator Research Department BDept. of Applied PhysicsE163: Laser Accelerationat the NLCTAC. D. Barnes, E. R. Colby*, B. M. Cowan, R. J. Noble,D. T. Palmer, R. H. Siemann, J. E. Spencer, D. R. WalzStanford Linear Accelerator CenterR. L. Byer, T. Plettner, J. A.WisdomStanford UniversitySeptember 24, 2001* Spokesman.SLAC DOE Review April 2-4, 200210

Accelerator Research Department BLaser Acceleration at the NLCTANewLaserRoomDept. of Applied PhysicsNew BeamEnclosure8-PackRF SystemSLAC DOE Review April 2-4, 2002LaserAccelerationExperiment11

Accelerator Research Department BDept. of Applied PhysicsPhase I: Laser AccelerationScientific Goals: Thoroughly characterize thedependencies of the energy modulationon: Interaction length Crossing angle Slit width Relative laser phase Physical tolerances of the cellcrossedlaser beamsHigh ReflectanceDielectric coatedsurfacesAccelerator cellslitelectronbeamComputed Field Intensity, Et 2Fused silica prismsTechnical Goals:and flats Commission the experiment at the NLCTA Make progress understanding electric fieldbreakdown issues and the attendant designimplications Timing synchronizationESLAC DOE Review April 2-4, 200212

Accelerator Research Department BDept. of Applied PhysicsPhase II: Prebunch and AccelerateScientific Goals: Demonstrate and quantify opticalbunching Demonstrate and quantifyacceleration Determine the impact of beamtransport on bunching washoutTechnical Goals: Commission the IFEL prebuncher Understand mechanical stability required tomaintain attosecond-scale timingsynchronism Implement optical bunching diagnosticsEChristopher Barnes8 February 20025.4cmIFEL 12 cmCompressor ChicaneSLAC DOE Review April 2-4, 2002LEAP Cell13

Accelerator Research Department BDept. of Applied PhysicsPhase III: Multicell StructuresScientific Goals: Demonstrate multi-stageacceleration of optically bunchedbeam Quantify micropulse wakefieldsIncoming plane wavesLenslet ArrayPhase ControlLenslet ArrayElectron beamTechnical Goals: Master lithographic productiontechniques for silica or siliconmicrostructures Make progress understanding damagethreshold issues Fabricate integrated acceleratorcomponents Devise and test methods of beamfocussingSLAC DOE Review April 2-4, 2002EElectron beamTransmissionMode Structure14

Accelerator Research Department BDept. of Applied PhysicsMulticell Structure ConceptsTIR FusedSilica at 1.06mTIR Silicon at1.06 mTIR Silicon at2.5mElectronbeamsSLAC DOE Review April 2-4, 200215

Accelerator Research Department BDept. of Applied Physics Infrastructure: 10,500-square-foot class 100cleanroom Research includes a wide range of disciplinesand processes–Used for optics, MEMS, biology,chemistry, as well as traditional electronics–Equipment available for chemical vapordeposition, optical photolithography,oxidation and doping, wet processing,plasma etching, and other processes–Characterization equipment includingSEM and AFM availableA 60-million dollar 120,000-square-foot photonicslaboratory with 20 faculty, 120 doctoral, and 50postdoctoral researchers, completed in 2004.Current Research:Diode Pumped Solid State LasersDiode pumped lasers for gravitational wave receiversDiode pumped Laser Amplfier StudiesQuantum Noise of solid state laser amplifiersAdaptive Optics for Laser Amplifier beam controlThermal Modeling of Diode Pumped Nd:YAG lasersLaser Interferometry for Gravity Wave detectionSagnac Interferometer for Gravitational Wave DetectionLaser Inteferometer Isolation and Control StudiesInterferometry for Gravitational Wave DetectionTime and Frequency response characteristics of Fabry Perot Int.GALILEO research program: gravitational wave receiversQuasiphasematched Nonlinear DevicesQuasi Phasematched LiNbO3 for SHG of diode lasers, cw OPO studiesin LiNbO3, and diffusion bonded, GaAs nonlinear materialsSLAC DOE Review April 2-4, 200216

Accelerator Research Department BDept. of Applied PhysicsDirect laser acceleration offers the promise of a new acceleration methodbuilt from technologies that are being aggressively developed by industry.The LEAP collaboration is motivated by this promise to develop accelerators fromthese technologies and has developed the expertise for working in this challengingarena. Stanford University offers the knowledge and facilities to carry outmicrofabrication and laser development.Cost-effective expansion of the NLC Test Accelerator can provide theelectron beam for testing laser accelerator concepts, either as a singlepurpose (E163) or multi-purpose (ORION) facility.SLAC DOE Review April 2-4, 200217

Stanford University / Applied Physics Dept. T.I. Smith, R. L. Swent Stanford University / Hansen Experimental Physics Laboratory. SLAC DOE Review April 2-4, 2002 2 Accelerator Research Department B Coherent Sources of RadiationDept. of Applied Physics

Related Documents:

PANASONIC LASER MARKING SYSTEMS. 03 LP-100 CO 2 Laser Marker LP-200 CO Laser Marker LP-F FAYb Laser Marker LP-D Diode Laser Marker LP-300 CO Laser Marker LP-V FAYb Laser Marker 1996 1999 2001 2003 2004 LP-400 Laser Marker LP-G FAYb Laser Marker LP-Z FAYb Laser Marker

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

Epilog Laser The Leading Worldwide Provider of Laser Marking Technology Since 1988, Epilog Laser has been the leading provider of laser technology. From industrial fiber laser marking solutions to consumer CO2 laser models, Epilog Laser is known for the highest-quality laser etching and marking.

CHAPTER 1 Accelerators Use of Accelerators Quite simply, accelerators give high energy to subatomic particles, which then col- . high-energy and nuclear physics, synchrotro n radiation research, medical therapies, and some industrial applications. The accel erator at SLAC is an electron accelera- . Par

Laser treatment parameters for the Laser RAP sites included an average laser spot size of 4.1mm (range: 4-8mm). The average laser fluence used was 5.22J/cm2 (range 1.5-8.3J/cm2). At the Laser‐Only treated sites, a single laser pass was administered using a laser spot size of 4mm at an average laser fluence of 3.9J/cm2(range: 3.-4.6J/cm2).

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid