1y ago

15 Views

1 Downloads

380.78 KB

10 Pages

Tags:

Transcription

Name: Class: Date:ID: AQuadratics Unit Test ReviewMultiple ChoiceIdentify the choice that best completes the statement or answers the question.1. Identify the vertex of the graph. Tell whether it is a minimum or maximum.a.b.(0, –1); minimum(–1, 0); maximumc.d.(0, –1); maximum(–1, 0); minimum2. Which of the quadratic functions has the narrowest graph?1a. y x 2b. y x 2c. y 4x 243. Which of the quadratic functions has the widest graph?1b. y 4x 2c. y 0.3x 2a. y x 23y d.4y x254. If m n , then the graph of y mx 2 is narrower than y nx 2 .a. alwaysb. sometimesc. never5. A parabola has an axis of symmetry.a. alwaysb. sometimesc.11 2x9d.never

Name:ID: A6. Solve x 2 2 6 by graphing the related function.c.a.There are two solutions: 2 and –2.b.There are two solutions: 2 and –2.d.There are no real number solutions.There are two solutions: 8 .7. The quadratic equation x 2 a 0, where a 0, has at least one real number solution.a. alwaysb. sometimesc. neverSolve the equation using square roots.8. x 2 20 4a.24b. –4c.d.2 24no real number solutions

Name:ID: A9. Find the value of x. If necessary, round to the nearest tenth.a.7.3 in.b.10.3 in.c.12.4 in.d.14.6 in.c.d.z –3 or z 9z –3 or z –9c. 3,58d.3 5 ,4 2c.59 , 27d.5 9 ,3 2Solve the equation by factoring.10. z 2 6z 27 0a. z 3 or z 9b. z 3 or z –911. 15 8x 2 14x3a. 5,8b.2 4 ,5 312. 6x 2 17x 13 20x 2 325 95 9a.,b. ,3 22 713. The expression ax 2 bx 0 has the solution x 0.a. alwaysb. sometimesc.never14. Find the value of n such that x 2 19x n is a perfect square trinomial.36119a. b.c. 361d.423612Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth.15. 2a 2 46a 252 0a. 18, 28b.–9, –14c.39, 14d.–18, 28

Name:ID: A16. A rocket is launched from atop a 101-foot cliff with an initial velocity of 116 ft/s.a. Substitute the values into the vertical motion formula h 16t 2 vt c . Let h 0.b. Use the quadratic formula find out how long the rocket will take to hit the ground after it is launched.Round to the nearest tenth of a second.c. 0 16t 2 116t 101; 0.8 sa. 0 16t 2 101t 116; 0.8 sb. 0 16t 2 116t 101; 8 sd. 0 16t 2 101t 116; 8 sUse any method to solve the equation. If necessary, round to the nearest hundredth.17. 7x 2 16x 28 0a. 3.45, –1.16b.–3.45, 1.16c.2.3, –2.3d.6.89, –2.3218. 7x 2 16x 8a. 0.42, –2.71b.2.71, –0.42c.35.43, –33.14d.5.42, –2.95b 2 4ac 3c.b 2 4ac 0c.219. For which discriminant is the graph possible?a.b 2 4ac 4b.Find the number of real number solutions for the equation.20. x 2 0x 1 0a. 0b.14

Name:ID: A21. Graph the set of points. Which model is most appropriate for the set?(–6, –1), (–3, 2), (–1, 4), (2, 7)c.a.linearexponentiald.b.quadraticlinear5

Name:ID: A22. Graph the set of points. Which model is most appropriate for the set?(–2, 10), (–1,1), (1, 1), (2, 10)c.a.quadraticlineard.b.quadraticexponential23. The table shows the estimated number of deer living in a forest over a five-year period. Are the data bestrepresented by a linear, exponential, or quadratic model? Write an equation to model the ential; y 91 0.77 xc.quadratic; y 0.77x 2 91b.linear; y 0.77x 91d.quadratic; y 91x 2 0.776

Name:ID: A24. In an exponential model, the y values decrease as the x values increase.a. alwaysb. sometimesc. never25. The equation x 2 n 0 has at least one real number solution when n 0.a. alwaysb. sometimesc. never7

ID: AQuadratics Unit Test ReviewAnswer SectionMULTIPLE CHOICE1. ANS:OBJ:STA:KEY:2. ANS:OBJ:STA:KEY:3. ANS:OBJ:STA:KEY:4. ANS:OBJ:STA:5. ANS:OBJ:STA:KEY:6. ANS:OBJ:NAT:STA:TOP:7. ANS:OBJ:NAT:STA:KEY:8. ANS:OBJ:NAT:STA:TOP:9. ANS:OBJ:NAT:STA:TOP:KEY:CPTS: 1DIF: L2REF: 10-1 Exploring Quadratic Graphs10-1.1 Graphing y ax 2NAT: NAEP 2005 A1e ADP J.2.3 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2e NJ 4.3.12 B.1 NJ 4.3.12 B.4bTOP: 10-1 Example 1quadratic function parabola maximum minimum vertexCPTS: 1DIF: L2REF: 10-1 Exploring Quadratic Graphs10-1.1 Graphing y ax 2NAT: NAEP 2005 A1e ADP J.2.3 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2e NJ 4.3.12 B.1 NJ 4.3.12 B.4bTOP: 10-1 Example 3quadratic function parabolaCPTS: 1DIF: L3REF: 10-1 Exploring Quadratic Graphs10-1.1 Graphing y ax 2NAT: NAEP 2005 A1e ADP J.2.3 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2e NJ 4.3.12 B.1 NJ 4.3.12 B.4bTOP: 10-1 Example 3quadratic function parabolaAPTS: 1DIF: L4REF: 10-1 Exploring Quadratic Graphs10-1.1 Graphing y ax 2NAT: NAEP 2005 A1e ADP J.2.3 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2e NJ 4.3.12 B.1 NJ 4.3.12 B.4bKEY: quadratic function reasoningAPTS: 1DIF: L3REF: 10-1 Exploring Quadratic Graphs10-1.2 Graphing y ax 2 cNAT: NAEP 2005 A1e ADP J.2.3 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2e NJ 4.3.12 B.1 NJ 4.3.12 B.4baxis of symmetry parabola reasoningCPTS: 1DIF: L2REF: 10-3 Solving Quadratic Equations10-3.1 Solving Quadratic Equations by GraphingNAEP 2005 A4a NAEP 2005 A4c ADP I.4.1 ADP J.3.5 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2c NJ 4.3.12 B.2f NJ 4.3.12 D.2c NJ 4.3.12 B.110-3 Example 1KEY: solving quadratic equations graphing quadratic functionCPTS: 1DIF: L3REF: 10-3 Solving Quadratic Equations10-3.1 Solving Quadratic Equations by GraphingNAEP 2005 A4a NAEP 2005 A4c ADP I.4.1 ADP J.3.5 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2c NJ 4.3.12 B.2f NJ 4.3.12 D.2c NJ 4.3.12 B.1solving quadratic equations reasoningDPTS: 1DIF: L2REF: 10-3 Solving Quadratic Equations10-3.2 Solving Quadratic Equations Using Square RootsNAEP 2005 A4a NAEP 2005 A4c ADP I.4.1 ADP J.3.5 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2c NJ 4.3.12 B.2f NJ 4.3.12 D.2c NJ 4.3.12 B.110-3 Example 2KEY: solving quadratic equations square rootBPTS: 1DIF: L3REF: 10-3 Solving Quadratic Equations10-3.2 Solving Quadratic Equations Using Square RootsNAEP 2005 A4a NAEP 2005 A4c ADP I.4.1 ADP J.3.5 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2c NJ 4.3.12 B.2f NJ 4.3.12 D.2c NJ 4.3.12 B.110-3 Example 3solving quadratic equations square root word problem problem solving1

ID: A10. ANS:REF:NAT:STA:KEY:11. ANS:REF:NAT:STA:KEY:12. ANS:REF:NAT:STA:13. ANS:REF:NAT:STA:14. ANS:OBJ:NAT:TOP:15. ANS:OBJ:STA:KEY:16. ANS:OBJ:STA:KEY:17. ANS:OBJ:STA:KEY:18. ANS:OBJ:STA:KEY:19. ANS:OBJ:NAT:TOP:20. ANS:OBJ:NAT:TOP:KEY:CPTS: 1DIF: L210-4 Factoring to Solve Quadratic EquationsOBJ: 10-4.1 Solving Quadratic EquationsNAEP 2005 A4a NAEP 2005 A4c ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.C.2TOP: 10-4 Example 2factoring solving quadratic equationsDPTS: 1DIF: L210-4 Factoring to Solve Quadratic EquationsOBJ: 10-4.1 Solving Quadratic EquationsNAEP 2005 A4a NAEP 2005 A4c ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.C.2TOP: 10-4 Example 3solving quadratic equations factoringBPTS: 1DIF: L310-4 Factoring to Solve Quadratic EquationsOBJ: 10-4.1 Solving Quadratic EquationsNAEP 2005 A4a NAEP 2005 A4c ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.C.2KEY: solving quadratic equations factoringAPTS: 1DIF: L310-4 Factoring to Solve Quadratic EquationsOBJ: 10-4.1 Solving Quadratic EquationsNAEP 2005 A4a NAEP 2005 A4c ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.C.2KEY: solving quadratic equations factoring reasoningBPTS: 1DIF: L2REF: 10-5 Completing the Square10-5.1 Solving by Completing the SquareNAEP 2005 A4a ADP J.3.5 ADP J.5.3STA: 8NJ 4.5.E.1a10-5 Example 1KEY: solving quadratic equations completing the squareCPTS: 1DIF: L2REF: 10-6 Using the Quadratic Formula10-6.1 Using the Quadratic FormulaNAT: ADP I.4.1 ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.E.3 8NJ 4.5.A.2dTOP: 10-6 Example 1quadratic formula solving quadratic equationsBPTS: 1DIF: L2REF: 10-6 Using the Quadratic Formula10-6.1 Using the Quadratic FormulaNAT: ADP I.4.1 ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.E.3 8NJ 4.5.A.2dTOP: 10-6 Example 3quadratic formula solving quadratic equations word problem problem solving multi-part questionAPTS: 1DIF: L3REF: 10-6 Using the Quadratic Formula10-6.2 Choosing an Appropriate Method for SolvingNAT: ADP I.4.1 ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.E.3 8NJ 4.5.A.2dTOP: 10-6 Example 4solving quadratic equationsBPTS: 1DIF: L3REF: 10-6 Using the Quadratic Formula10-6.2 Choosing an Appropriate Method for SolvingNAT: ADP I.4.1 ADP J.3.5 ADP J.5.3NJ 4.3.12 D.2b 8NJ 4.5.E.3 8NJ 4.5.A.2dTOP: 10-6 Example 4solving quadratic equationsCPTS: 1DIF: L2REF: 10-7 Using the Discriminant10-7.1 Number of Real Solutions of a Quadratic EquationNAEP 2005 D1e NAEP 2005 A2g ADP J.4.5 ADP J.5.310-7 Example 1KEY: discriminant solving quadratic equationsCPTS: 1DIF: L2REF: 10-7 Using the Discriminant10-7.1 Number of Real Solutions of a Quadratic EquationNAEP 2005 D1e NAEP 2005 A2g ADP J.4.5 ADP J.5.310-7 Example 1solving quadratic equations one solution two solutions discriminant2

ID: A21. ANS:REF:OBJ:NAT:STA:KEY:22. ANS:REF:OBJ:NAT:STA:KEY:23. ANS:REF:OBJ:NAT:STA:KEY:24. ANS:REF:OBJ:NAT:STA:25. ANS:OBJ:NAT:STA:KEY:APTS: 1DIF: L210-8 Choosing a Linear, Quadratic, or Exponential Model10-8.1 Choosing a Linear, Quadratic, or Exponential ModelNAEP 2005 A1e NAEP 2005 A2d ADP J.4.8 ADP J.5.3 ADP J.5.4NJ 4.3.12 B.4a NJ 4.3.12 B.1TOP: 10-8 Example 1linear function graphingBPTS: 1DIF: L210-8 Choosing a Linear, Quadratic, or Exponential Model10-8.1 Choosing a Linear, Quadratic, or Exponential ModelNAEP 2005 A1e NAEP 2005 A2d ADP J.4.8 ADP J.5.3 ADP J.5.4NJ 4.3.12 B.4a NJ 4.3.12 B.1TOP: 10-8 Example 1quadratic function graphingAPTS: 1DIF: L310-8 Choosing a Linear, Quadratic, or Exponential Model10-8.1 Choosing a Linear, Quadratic, or Exponential ModelNAEP 2005 A1e NAEP 2005 A2d ADP J.4.8 ADP J.5.3 ADP J.5.4NJ 4.3.12 B.4a NJ 4.3.12 B.1TOP: 10-8 Example 3exponential function word problem problem solvingBPTS: 1DIF: L310-8 Choosing a Linear, Quadratic, or Exponential Model10-8.1 Choosing a Linear, Quadratic, or Exponential ModelNAEP 2005 A1e NAEP 2005 A2d ADP J.4.8 ADP J.5.3 ADP J.5.4NJ 4.3.12 B.4a NJ 4.3.12 B.1KEY: exponential function reasoningCPTS: 1DIF: L4REF: 10-3 Solving Quadratic Equations10-3.2 Solving Quadratic Equations Using Square RootsNAEP 2005 A4a NAEP 2005 A4c ADP I.4.1 ADP J.3.5 ADP J.4.5 ADP J.5.3NJ 4.3.12 B.2c NJ 4.3.12 B.2f NJ 4.3.12 D.2c NJ 4.3.12 B.1solving quadratic equations no solution reasoning3

Quadratics Unit Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. _ 1. Identify the vertex of the graph. Tell whether it is a minimum or maximum. a. (0, –1); minimum c. (0, –1); maximum b. (–1, 0); maximum d. (–1, 0); minimum _ 2. Which of the quadratic functions has the .

Related Documents: