R Introduction To Electronics

3y ago
23 Views
3 Downloads
1.94 MB
272 Pages
Last View : 28d ago
Last Download : 3m ago
Upload by : Azalea Piercy
Transcription

RCRCib1 vid /2- vod -Introduction toElectronics vo1-βib2βib1rπ vo2-ib2rπvid /2 vX(β 1)i(β 1)iAnOnlineTextRb1b2EBBob ZulinskiRCRCAssociateProfessor vod of ElectricalEngineeringvvib2o1o2ib1Michigan Technological University- vid /2-βib2βib1rπrπvid /2 vX(β 1)ib1(β 1)ib2REBVersion 2.0

Introduction to ElectronicsDedicationHuman beings are a delightful and complex amalgam ofthe spiritual, the emotional, the intellectual, and the physical.This is dedicated to all of them; especially to thosewho honor and nurture me with their friendship and love.ii

Introduction to ElectronicsiiiTable of ContentsPreface xviPhilosophy of an Online Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviNotes for Printing This Document . . . . . . . . . . . . . . . . . . . . . . . . xviiiCopyright Notice and Information . . . . . . . . . . . . . . . . . . . . . . . . xviiiReview of Linear Circuit Techniques 1Resistors in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Resistors in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Product Over Sum 1Inverse of Inverses 1Ideal Voltage Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ideal Current Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Real Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Current Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222344A quick exercise 4What’s missing from this review? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5You’ll still need Ohm’s and Kirchoff’s Laws 5Basic Amplifier Concepts 6Signal Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ground Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .To work with (analyze and design) amplifiers . . . . . . . . . . . . . . . . . . . . .66777Voltage Amplifier Model 8Signal Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Amplifier Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Amplifier Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Open-Circuit Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Current Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Power Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Introduction to ElectronicsivPower Supplies, Power Conservation, and Efficiency 11DC Input Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Conservation of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Amplifier Cascades 13Decibel Notation 14Power Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cascaded Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Current Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Using Decibels to Indicate Specific Magnitudes . . . . . . . . . . . . . . . . . . .1414141515Voltage levels: 15Power levels 16Other Amplifier Models 17Current Amplifier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Transconductance Amplifier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Transresistance Amplifier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Amplifier Resistances and Ideal Amplifiers 20Ideal Voltage Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ideal Current Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ideal Transconductance Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ideal Transresistance Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Uniqueness of Ideal Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2021222323Frequency Response of Amplifiers 24Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Magnitude Response 24Phase Response 24Frequency Response 24Amplifier Gain 24The Magnitude Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Causes of Reduced Gain at Higher Frequencies . . . . . . . . . . . . . . . . . . 26Causes of Reduced Gain at Lower Frequencies . . . . . . . . . . . . . . . . . . 26

Introduction to ElectronicsvDifferential Amplifiers 27Example: 27Modeling Differential and Common-Mode Signals . . . . . . . . . . . . . . . . . 27Amplifying Differential and Common-Mode Signals . . . . . . . . . . . . . . . . 28Common-Mode Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Ideal Operational Amplifiers 29Ideal Operational Amplifier Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 29Op Amp Operation with Negative Feedback . . . . . . . . . . . . . . . . . . . . . 30Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Op Amp Circuits - The Inverting Amplifier 31Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Op Amp Circuits - The Noninverting Amplifier 33Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Input and Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Op Amp Circuits - The Voltage Follower 34Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Input and Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Op Amp Circuits - The Inverting Summer 35Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Op Amp Circuits - Another Inverting Amplifier 36Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Op Amp Circuits - Differential Amplifier 38Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Op Amp Circuits - Integrators and Differentiators 40The Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40The Differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Introduction to ElectronicsviOp Amp Circuits - Designing with Real Op Amps 42Resistor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Source Resistance and Resistor Tolerances . . . . . . . . . . . . . . . . . . . . . 42Graphical Solution of Simultaneous Equations 43Diodes 46Graphical Analysis of Diode Circuits 48Examples of Load-Line Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Diode Models 50The Shockley Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Forward Bias Approximation 51Reverse Bias Approximation 51At High Currents 51The Ideal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52An Ideal Diode Example 53Piecewise-Linear Diode Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55A Piecewise-Linear Diode Example 57Other Piecewise-Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Diode Applications - The Zener Diode Voltage Regulator 59Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Load-Line Analysis of Zener Regulators . . . . . . . . . . . . . . . . . . . . . . . . 59Numerical Analysis of Zener Regulators . . . . . . . . . . . . . . . . . . . . . . . . 61Circuit Analysis 62Zener Regulators with Attached Load . . . . . . . . . . . . . . . . . . . . . . . . . . 63Example - Graphical Analysis of Loaded Regulator 64Diode Applications - The Half-Wave Rectifier 66Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66A Typical Battery Charging Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67The Filtered Half-Wave Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Relating Capacitance to Ripple Voltage 70

Introduction to ElectronicsviiDiode Applications - The Full-Wave Rectifier 72Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721st (Positive) Half-Cycle 722nd (Negative) Half-Cycle 72Diode Peak Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Diode Applications - The Bridge Rectifier 74Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741st (Positive) Half-Cycle 742nd (Negative) Half-Cycle 74Peak Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Diode Applications - Full-Wave/Bridge Rectifier Features 75Bridge Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Full-Wave Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Filtered Full-Wave and Bridge Rectifiers . . . . . . . . . . . . . . . . . . . . . . . . 75Bipolar Junction Transistors (BJTs) 76Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Qualitative Description of BJT Active-Region Operation . . . . . . . . . . . . 77Quantitative Description of BJT Active-Region Operation . . . . . . . . . . . 78BJT Common-Emitter Characteristics 80Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Input Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Active Region 81Cutoff 82Saturation 82The pnp BJT 83BJT Characteristics - Secondary Effects 85

Introduction to ElectronicsviiiThe n-Channel Junction FET (JFET) 86Description of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Equations Governing n-Channel JFET Operation . . . . . . . . . . . . . . . . . 89Cutoff Region 89Triode Region 89Pinch-Off Region 89The Triode - Pinch-Off Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90The Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Metal-Oxide-Semiconductor FETs (MOSFETs) 92The n-Channel Depletion MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92The n-Channel Enhancement MOSFET . . . . . . . . . . . . . . . . . . . . . . . . 93Comparison of n-Channel FETs 94p-Channel JFETs and MOSFETs 96Cutoff Region 98Triode Region 98Pinch-Off Region 98Other FET Considerations 99FET Gate Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99The Body Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Basic BJT Amplifier Structure 100Circuit Diagram and Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Load-Line Analysis - Input Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Load-Line Analysis - Output Side . . . . . . . . . . . . . . . . . . . . . . . . . . . .A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Basic FET Amplifier Structure 107Amplifier Distortion 110Biasing and Bias Stability 112100100102104

Introduction to ElectronicsixBiasing BJTs - The Fixed Bias Circuit 113Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113For b 100 113For b 300 113Biasing BJTs - The Constant Base Bias Circuit 114Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114For b 100 114For b 300 114Biasing BJTs - The Four-Resistor Bias Circuit 115Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Bias Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117To maximize bias stability 117Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118For b 100 (and VBE 0.7 V) 118For b 300 118Biasing FETs - The Fixed Bias Circuit 119Biasing FETs - The Self Bias Circuit 120Biasing FETs - The Fixed Self Bias Circuit 121Design of Discrete BJT Bias Circuits 123Concepts of Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Design of the Four-Resistor BJT Bias Circuit . . . . . . . . . . . . . . . . . . . . 124Design Procedure 124Design of the Dual-Supply BJT Bias Circuit . . . . . . . . . . . . . . . . . . . . . 125Design Procedure 125Design of the Grounded-Emitter BJT Bias Circuit . . . . . . . . . . . . . . . . 126Design Procedure 126Analysis of the Grounded-Emitter BJT Bias Circuit . . . . . . . . . . . . . . . 127

Introduction to ElectronicsxBipolar IC Bias Circuits 129Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129The Diode-Biased Current Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Current Ratio 130Reference Current 131Output Resistance 131Compliance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Using a Mirror to Bias an Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Wilson Current Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Current Ratio 133Reference Current 134Output Resistance 134Widlar Current Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Current Relationship 135Multiple Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137FET Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Linear Small-Signal Equivalent Circuits 138Diode Small-Signal Equivalent Circuit 139The Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139The Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Diode Small-Signal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Notation 142BJT Small-Signal Equivalent Circuit 143The Common-Emitter Amplifier 145Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Constructing the Small-Signal Equivalent Circuit . . . . . . . . . . . . . . . . .Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145146147148148

Introduction to ElectronicsxiThe Emitter Follower (Common Collector Amplifier) 149Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149150151152Review of Small Signal Analysis 153FET Small-Signal Equivalent Circuit 154The Small-Signal Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Transconductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155FET Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156The Common Source Amplifier 157The Small-Signal Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157158158158The Source Follower 159Small-Signal Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159160161162Review of Bode Plots 164Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Bode Magnitude Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Bode Phase Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Single-Pole Low-Pass RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164165166167Gain Magnitude in dB 167Bode Magnitude Plot 168Bode Phase Plot 169Single-Pole High-Pass RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Bode Magnitude Plot 170Bode Phase Plot 171

Introduction to ElectronicsxiiCoupling Capacitors 172Effect on Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172Constructing the Bode Magnitude Plot for an Amplifier . . . . . . . . . . . . 174Design Considerations for RC-Coupled Amplifiers 175Low- & Mid-Frequency Performance of CE Amplifier 176Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Midband Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Effect of the Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . .The Effect of the Emitter Bypass Capacitor CE . . . . . . . . . . . . . . . . . .176177178179180The Miller Effect 183Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Deriving the Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184The Hybrid-p BJT Model 185The Model . . . . . . . .

Introduction to Electronics ii Dedication Human beings are a delightful and complex amalgam of the spiritual, the emotional, the intellectual, and the physical.

Related Documents:

LG Electronics V10 10 LG Electronics V20 10 LG Electronics V30 30 LG Electronics V40 ThinQ Dual SIM 80 LG Electronics V50 ThinQ 160 LG Electronics VELVET 4G 100 LG Electronics VELVET 5G 120 LG Electronics X Powe

work/products (Beading, Candles, Carving, Food Products, Soap, Weaving, etc.) ⃝I understand that if my work contains Indigenous visual representation that it is a reflection of the Indigenous culture of my native region. ⃝To the best of my knowledge, my work/products fall within Craft Council standards and expectations with respect to

Medical Electronics Lab This Lab facilitates two major skills development: 1. Basic Analog & Digital Electronics 2. Medical Electronics ( Application of electronics in biomedical ) For Basic Electronics skills development the Lab is equipped with Com3 Kits which have electronics trainer boards interfaced with software on PC. This

1 Opto Electronics PG (Opto Electronics & Communication Systems) 2 Fibre Optics PG (Opto Electronics & Communication Systems) 3 Optical Communication Technology PG (Opto Electronics & Communication Systems) 4 Power Electronics B Tech Electrical & Electronics Engg. (CUSAT) 5 DC Machines and Transformers B Tech

Analogue Electronics: 24 hours of lectures and tutorials (12 weeks 2 hours/week) Assessment for analogue electronics: Mid-semester test in November, analogue electronics only, 1 hour, 8% of the final mark. Final examination in January, analogue & digital electronics, 2 hours, 50% of the final mark.

Accelerators and Electronics Many accelerators have aging infrastructures, including their electronics While this might be a problem on many other fronts, the older electronics are better suited to high radiation environments than modern electronics As many accelerators are modernizing their electronics or are significantly changing their infrastructures, facilities are finding .

Electronics Code A.2 Conceptualize, Analyze & Design A.2.1 Signal Processing System A.2.2 Analog and Digital Electronics System. A.2.3 Communication Systems A2.4 Electro-Acoustics System A.2.5 Broadcast System A 2.6 Instrument ation A.2.7 Control System. A 2.8 Industrial Electronics A.2.9 Power Electronics A.2.10 Electronics Devices and Systems .

INTRODUCTION TO POWER ELECTRONICS Power Electronics is a field which combines Power (electric power), Electronics and Control systems. Power engineering deals with the static and rotating power equipment for the generation, transmission and distribution of electric power. Electronics deals with the study of solid state semiconductor power .