By Prof. Dr. Manfred Sietz And Dr. Andreas Sonnenberg .

3y ago
44 Views
2 Downloads
1.34 MB
67 Pages
Last View : 29d ago
Last Download : 3m ago
Upload by : Mika Lloyd
Transcription

Short introduction intoAnalytical Chemistryby Prof. Dr. Manfred Sietzand Dr. Andreas Sonnenberg(PowerPoint slides)

What is Analytical Chemistry? study of methods for determining thecomposition of substances– qualitative („what?“)– quantitative („how much?“) see also:http://en.wikipedia.org/wiki/Analytical chemistry, the free encyclopediaFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

OverviewClinical analytical chemistrye.g. analysis of blood or urineEnvironmental analyticalchemistry e.g. heavy metalsin soil or waterAnalytical ChemistryForensic analytical chemistrye.g. comparison of DNA codesor trace analysis of clothings(„guilty or not?“)Quality controle.g. analysis of vitamincontent in food samplesFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

10 steps of chemical analysis1. Sampling (sampling errors!)2. Sample naming3. Sample preparation4. Analysis5. Signal recording6. Signal processing7. Evaluation of analysis results (correctness,exactness, reproducibility)8. Plausibility check9. Certification10. FilingFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Instruments for AnalysisComponents of a typical 01DigitalunitDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Evaluation of analysis resultsThe average value x of all single results in a series ofmeasurements is to be calculated by following formula:x x1 x2 x3 . xnx innnand ; n number of single results.i 1The precision P of an analysis is determinedby the range of standard deviation S 1 ( xi x ) 2 S n 1 1/ 2undP SxFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Types of errorstype maloptimalmissXXXgrosserrorX XXXX X XXXX X XX XXbiased errorXbadgoodgoodbadFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg-

Extend of correctness and precision120number of measurementsextend of correctness100extend of precision8060402006,56,66,76,86,97,0average value7,17,27,3true valueFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Concentration units A one molecular solution contains 1 mole of amaterial solved in one liter of solvent (e.g. water). Theunit is mole per liter. Example: A one molecular saline solution contains58,44 g common salt NaCl solved in one liter water.1 g NaCl solved in 1 liter water would correspond to1000 ppm; 1 mg NaCl solved in 1 L would correspondto 1 ppm. One liter water with 25 degree Celsius weighs 1000 gor 1.000.000 mg; 1 mg NaCl in 1.000.000 mg watermeans, that the water contains 1 ppm NaCl; 1ppm 1 mg per litreFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Detection limitMinimum concentration or weight of analytethat can be detected at a knownconfidence levelFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Applicable Concentration RangeInstrument responseFig. 1-7 pg. 14LOLLOQ limit of quantitativemeasurementLOQUseful rangeLOL limit of linearresponseConcentrationDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Limit of determination,detection limit and blank value98Ab 6 Sb7Absorption65limit ofdeterminationAb 3 Sb43Ab2detection limitSb1001234567amount in µgS standard deviation, b blank valueFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Typical methods forquantitative analysis of heavy metals in soil, water or wastewater is ATOMIC SPECTROSCOPY of solvents in soil, air, water or wastewater is GAS CHROMATOGRAPHYFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

We start withCHROMATOGRAPHYTHIN LAYERCHROMATOGRAPHY,A SEPARATION METHODFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Example: Qualitative analysis of green grassWe take some green grass, add a little amountof a solvent and press and stir the mixture untilit gets a dark green color. We take a smallportion of that green liquid by a capillary glassand put a liquid spot on a thin layer of white(Si-O-)3Si-OH („stationary phase“). We let thesolvent dry.Then we put the plate into some differentsolvent („mobile phase“) and let the solventascend.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Mechanisms IThe component stays mainlyat the surface of the stationaryphase (adsorption) resp. in thestationary liquid phase(distribution), while thecomponent o stays mainly inthe mobile phase.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Mechanisms IIAs soon as new mobile phase flows, thecomponents staying in the mobile phaseare being transported. They get incontact with unallocated solid or liquidstationary phase. The stationary phasemainly adsorbes or disssolves thecomponent .Adsorbed resp. in liquid stationaryphase dissolved molecules o trespass inthe mobile phase and are beingtransported further more.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Mechanisms IIIAfter multiple repitition of the abovementioned processes, the twocomponents are being seperated.The moleculs o mainly stay in themobile phase and obviously movefaster than the moleculs .In other words: the Rf-value of istsmaller than the value of o.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

The Retentionfactor RfDefinition: Rf Distance start-substance / Distance start-mobile phaseA: the Rf-valueB: the Rst-valuemobile phasestandardsubstancesubstancestartstartRf b/a dist. substance/dist. mob. phase Rst b/a dist. substance/dist. standardFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Thin layer chromatography is a qualitativeseparation technique.The substances are separated by their solubilityin the mobile phase and their affinity towardsthe stationary phase.The balanced distribution of a substance isdescribed by:cstationary phase / cmobile phase KTc concentration of a substanceK constant (depending on temperature)FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Separation of chlorophyllmobile phasestart, ca. 1 cm highFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Molecular structure of chlorophyll a and bFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Molecular structures of ß-Carotine and LuteinFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Absorption spectra of chlorophyll a and bFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Effective spectrum of photosynthesisFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Different chemical substances havedifferent chemical properties (polarity,solubility etc.)They are separable by different Rf-valuesin a thin layer chromatogram („TLC“).The TLC-method shows in a simple, quickand cheap way, how to analyse thecomposition of a natural substance likegreen grass.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Now we change the thin layer by a metalcolumn, filled with Si(OH)n and we change themobile phase from a solvent into a gas:GAS CHROMATOGRAPHYsee also:http://www.gaschromatography.com/basic.aspFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Gas Chromatography separation by partition between gaseousmobile phase and liquid stationary phasesupported by inert packing developed in 1941 by Martin and Synge applications did not come till 1950sDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Principles of gaschromatographic separationmixture of 3 componentsactual signalFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Assembly of a Gas Chromatograph1 H22 synthetic air(1 and 2 burning gases for FID)3 He (mobile phase)4 N2 (cheap possibility to dilutethe mobile phase)5 Cleaning column for N26 Injector7,8 capillary separation columns9,10 detectors11 workstation (signal recording)FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Fig. 27-3, pg. 704SyringeSeptum“Cross-sectional viewof a microflashvaporizer SeptumpurgeCarriergasColumnDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

ApparatusColumn Thermostatingtemperature:– slightly below or equal to av. b.p. ofcomponents– allows for tR between 2 and 30 min– programmableDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Fig. 27-5, pg. 706“Effect of temperatureon gas chromatograms:(a.) isothermal at 45oC;(b.) isothermal at 145oC;(c.) programmed at30oC to 180oC.”Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

ApparatusDetectors Flame Ionization Detector (FID)––––––sample burned in H2/air flamesample must be combustiblemust use electrometerflame resistance 1012Ωppm sensitivitydestructiveDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Fig. 27-6, pg. 707“A typical flameionization detector”Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

One typical application for gas chromatographyis the pesticide analysis of fruits and drinkingwater.Each pesticide correspond with an electricsignal („peak“), whereas the retention timesince injection of the sample is equivalent to asingle type of pesticide.The peak area shows the amount of pesticidein the sample.But how to be sure?FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Because of the rapid development of computersconnected to analytical systems, a fewproblems arise. Nowadays, measurementresults are automatically transferred to analysisreports. The reports are signed by thelaboratory head and are sent to the customer.So there is not always enough critical reviewconcerning the plausibility of analysis results.Still, the laboratory is responsible for the resultsand has to assume liability.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Atomic Spectroscopysee also:http://shsu.edu/ chemistry/primers/AAS.htmlFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Atomic SpectroscopyThese methods deal with the absorption andemission of radiation by atoms.The methods deal with free atoms.Line spectra are observedSpecific spectral lines can be used forelemental analysis - both qualitative andquantitative.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

AAS: The temperature of a Bunsen burnerflame is high enough to excite e.g. sodiumatoms from common salt to „shine“.1. (NaCl)solid2. (NaCl)gas3. Na4. Na*evaporation energy energy for atomization excitation energy emission of light (NaCl)gasNa ClNa*NaThe excitation in the third step is connected with different electron„jumps“, which take place all at the same time.Therefore the emission of light in step four is connected not only withthe emission of one spectral line, but with an emission of a completeline spectrum.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Flame AtomizersFig. 10-15, pg. 209"A laminar flow burner."burner o wastenebulizerDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Excitation sourcesThe method of flame excitation is of relative lowtemperature.Air/H2O2/H2N2O/C2H22100 C2700 C3050 CThis results in only a very small percentage ofatoms being ionized ( 1%). One option to go tohigher temperature is the Plasma emission.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Emission and AbsorptionEmission:Energy, Δ Ee.g. heatradiationenergy Δ Eatom inground stateatom inexcited stateatom inground stateAbsorption:Energy oflight(photons)atom inground stateatom inexcited stateFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Term diagram of sodiumFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Band spectrumEnergy-leveldiagram for asodium atomshowing thesource of a linespectrumThermal or electrical energyFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Atomic emissionMethods rely on the presence of specific emission linesElementMajor emission line, nmAgCuHgKZn328.1324,8253,7344,7334,5FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Components ofOptical InstrumentsFlame Atomic Absorption SpectrometerSourceWavelength SelectorDetectorSignal ProcessorReadoutSampleDr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Measurement principle IA line emitter, e.g. a hollowcathode lamp sends out theemission spectrum of onechemical element. In theflame, the concentration of thisatomized element is equal tothe proportion of absorbedradiation on the resonanceline. In the monochromator,the resonance line is selectedand all other lines are fadedout. Therefore the detectoronly sees the resonance line,whose attenuation is finallyregistered.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Measurement principle IILight attenuation isproportional toamount of metalatoms in the flame:I/I0 cFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Hollow Cathode Lamps (HCL)Fig. 9-11, pg. 215 "Schematic crosssection of a hollow cathode lamp."Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Dr. S. M. CondrenFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Analysis of total chromiumand hexavalent chromium(Cr(VI)) in leatherFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Leather goods are considered to be pure naturalproducts. Keeping in mind that during treatment ofanimal skins about 250 different chemicals (e.g.aldehydes, phenols, pesticides, acids, caustic solutions,heavy metals, solvents, softeners, coloring agentsplastics, oils and fats) are used, it appears not correct totitle leather as „natural products“.These chemical treated leather products can setdifferent chemicals free, as soon as they get in contactwith the human skin. These chemicals may display adangerous potential for the consumers health.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Therefore migration experiments were accomplished,which simulated the release of chromium andcarcinogenic Cr(VI) from leather by the application ofartificial sweat solutions.The results of the coincidentally selected 29 leathersamples were frightening:It was shown under the chosen conditions, that aprrox.1/2 of the samples released hexavalent, carcinogenicchromium in the simulated sweat.FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Total chromium of 29 leathersamples of 5 different categories180Total chromium in (mg/kg)Artificial sweat at pH 5,5160140120100806040200123Categorie45FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Concentration of Cr(VI) in 29 leathersamples of 5 different categories16Concentration of Cr(VI) (mg/kg)Artificial sweat at pH 5,514121086420123Categorie45FH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Thank you for your attentionFH Lippe und Höxter, University of Applied Science, Prof. Dr. M. Sietz, Dr. A. Sonnenberg

Example: Qualitative analysis of green grass We take some green grass, add a little amount of a solvent and press and stir the mixture until it gets a dark green color. We take a small portion of that green liquid by a capillary glass and put a liquid spot on a thin layer of white (Si-O-) 3Si-OH („stationary phase“). We let the solvent dry.

Related Documents:

Prof. Hassan Soliman Prof. Hisham Abou Grida Prof. Hossam El Wakil Prof. Hossam Tawfik Prof. Ihab Nabil Prof. Mohamed El-Heneidy Prof. Mosaad Soliman Prof. Omar El Kasheif Prof. Sameh Zarad Prof. Sherif Moamen Prof. Tarek Radwan Prof. Usama El Nahas Prof. Wassila Taha Alphabetical Organizin

Dr. Intekhab Ahmed Prof. Bahram H. Arjmandi Prof. David A. Arnall Dr. Vivek Bhalla Prof. Bertrand Cariou Prof. Dmitry A. Chistyakov Prof. Fernando Cordido Prof. Franco Battista Ennio Folli Prof. Paul Albert Fournier Dr. Bruce H. Francis Dr. Xianxin Hua Prof. Joaquin Lado-Abeal Dr. Hongyun Lu Dr. Abbas A

Prof. Dr. Manfred Berg (Curt-Engelhorn-Professur für Amerikanische Geschichte) . David Stephen Heidler und Mark E. Neely, eds. Encyclopedia of the American Civil War: A Political, Social, and Military History. 5 vols. Santa Barbara, 2000. . Kutler, Stanley I., ed. Encyclopedia of the United States in the Twentieth Century. 4 vols. New York .

dr Stanko Boboš (Serbia), Prof. dr Ljiljana Nešić (Serbia), Prof. dr Petar Sekulić (Novi Sad), Prof. dr Mirjana Milošević (Serbia), Prof. dr Cvijan Mekić (Serbia), Prof. MVD Juraj Pivko, DSc. (Slovakia), Prof. dr Šandor Šomođi (Hungary), Prof. dr

Chinchu Mohan Debajit Datta Dileep Chandran Padinjare Muttikkal . Prof Goutam Das Prof Jayanta Mukhopadhyay Prof Madan Kumar Jha Prof Prasad K Bhaskaran Prof Rintu Banerjee Prof Sudeshna Sarkar Indian Institute of Science . cover and have also signi cantly a ected hydrology. Food requirements of the growing global popula-

DOCUMENTO FINALE DEL PERCORSO FORMATIVO Anno scolastico 2018/2019 Classe V Sez. A Indirizzo: AFM Numero alunni: 24 MATERIE E DOCENTI DEL CONSIGLIO DI CLASSE Materia Docente DIRITTO Prof. Elisa Barro ECONOMIA AZIENDALE Prof. Donatella Buttignol ECONOMIA POLITICA Prof. Elisa Barro FRANCESE Prof. Elena Trevet IRC Prof. Alice Paro INGLESE Prof .

Dr. Rajender Singh Director Sports Dr. Keshav Singh Gurjar Security Management. Faculty Deans Prof. Susheel K Gupta Yoga Prof. R.P. Pandey Social Sciences Prof. Suvigya Awasthi MBA (BBA, Hospital Admn.) Prof. A.K. Halwe Physical Science Prof. GBKS Prasad BHM&CT Prof. Avinash Tiwari Lif

An Introduction to Modal Logic 2009 Formosan Summer School on Logic, Language, and Computation 29 June-10 July, 2009 ; 9 9 B . : The Agenda Introduction Basic Modal Logic Normal Systems of Modal Logic Meta-theorems of Normal Systems Variants of Modal Logic Conclusion ; 9 9 B . ; Introduction Let me tell you the story ; 9 9 B . Introduction Historical overview .