CHAPTER 8: EXPONENTS AND POLYNOMIALS Contents

2y ago
36 Views
2 Downloads
1.50 MB
32 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Mya Leung
Transcription

Chapter 8CHAPTER 8: EXPONENTS AND POLYNOMIALSChapter ObjectivesBy the end of this chapter, the student should be able to Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long divisionContentsCHAPTER 8: EXPONENTS AND POLYNOMIALS . 255SECTION 8.1: EXPONENTS RULES AND PROPERTIES . 256A.PRODUCT RULE OF EXPONENTS . 256B.QUOTIENT RULE OF EXPONENTS . 256C.POWER RULE OF EXPONENTS . 257D.ZERO AS AN EXPONENT. 258E.NEGATIVE EXPONENTS . 258F.PROPERTIES OF EXPONENTS . 259EXERCISE . 260SECTION 8.2 SCIENTIFIC NOTATION. 261A.INTRODUCTION TO SCIENTIFIC NOTATION . 261B.CONVERT NUMBERS TO SCIENTIFIC NOTATION . 262C.CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATION . 262D.MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATION . 263E.SCIENTIFIC NOTATION APPLICATIONS . 264EXERCISES . 266SECTION 8.3: POLYNOMIALS . 267A.INTRODUCTION TO POLYNOMIALS . 267B.EVALUATING POLYNOMIAL EXPRESSIONS . 269C.ADD AND SUBTRACT POLYNOMIALS . 270D.MULTIPLY POLYNOMIAL EXPRESSIONS . 272E.SPECIAL PRODUCTS . 274F.POLYNOMIAL DIVISION . 275EXERCISES . 281CHAPTER REVIEW . 283255

Chapter 8SECTION 8.1: EXPONENTS RULES AND PROPERTIESA. PRODUCT RULE OF EXPONENTSMEDIA LESSONProduct rule of exponents (Duration 2:57)View the video lesson, take notes and complete the problems below.π‘Ž3 π‘Ž2 (π‘Ž π‘Ž π‘Ž)(π‘Ž π‘Ž) π‘Ž5π’‚π’Ž 𝒂𝒏 π’‚π’Ž 𝒏Product rule:!Example 1: (2x 3 )(4x 2 )( 3x) Example 2: (5a3 b7 )(2a9 b2 c 4 ) Warning! The rule can only apply when you have the same base.YOU TRYSimplify:a) 53 510b) π‘₯ 1 π‘₯ 3 π‘₯ 2c) (2π‘₯ 3 𝑦 5 𝑧)(5π‘₯𝑦 2 𝑧 3 )B. QUOTIENT RULE OF EXPONENTSMEDIA LESSONQuotient rule of exponents (Duration 3:12)View the video lesson, take notes and complete the problems below.π‘Ž5 π‘Ž π‘Ž π‘Ž π‘Ž π‘Ž π‘Ž2π‘Ž3π‘Ž π‘Ž π‘ŽQuotient Rule:π’‚π’Žπ’‚π’ π’‚π’Ž 𝒏Example 1:π‘Ž7 𝑏2Example 2:π‘Ž3 𝑏 8π‘š7 𝑛46π‘š5 𝑛 YOU TRYSimplify.a)71375b)5π‘Ž3 𝑏5 𝑐 22π‘Žπ‘3 𝑐c)3π‘₯ 5π‘₯3𝑦256

Chapter 8C. POWER RULE OF EXPONENTSMEDIA LESSONPower rule of exponents (Duration 5:00)View the video lesson, take notes and complete the problems below.(ab)3 Power of a product: (𝒂𝒃)π’Žπ‘Ž 3(𝑏 ) π’‚π’Ž π’ƒπ’Ž 𝒂 π’Žπ’‚π’Žπ’ƒπ’ƒπ’ŽPower of a Quotient: () , if b is not 0.(π‘Ž2 )3 Power of a Power: (π’‚π’Ž )𝒏 π’‚π’Ž 𝒏Example 1: (5π‘Ž4 𝑏)35π‘š3Example 2: (2)9𝑛4 Warning! It is important to be careful to only use the power of a product rule with multiplication insideparenthesis. This property is not allowed for addition or subtraction, i.e.(π‘Ž 𝑏)π‘š π‘Žπ‘š 𝑏 π‘š(π‘Ž 𝑏)π‘š π‘Žπ‘š 𝑏 π‘šYOU TRYSimplify:π‘₯35a) (𝑦2 )d) (4π‘₯ 2 𝑦 5 )3b)e)237(52 )π‘Ž3 𝑏c)(π‘₯ 3 𝑦𝑧 2 )4f)( 8𝑧 )2(𝑐 8𝑑5)4π‘₯𝑦 2257

Chapter 8D. ZERO AS AN EXPONENTMEDIA LESSONZero as Exponent (Duration 3:51)View the video lesson, take notes and complete the problems below.π‘Ž3π‘Ž3 Zero Power Rule:π’‚πŸŽ 𝟏Example 2: (3π‘₯ 2 𝑦 0 )(5π‘₯ 0 𝑦 4 )Example 1: (5π‘₯ 3 𝑦𝑧 5 )0YOU TRYSimplify the expressions completelya) (3x 2 )0b)2π‘š0 𝑛63𝑛5E. NEGATIVE EXPONENTSMEDIA LESSONNegative Exponents (Duration 4:44)View the video lesson, take notes and complete the problems below.π‘Ž3π‘Ž5 Negative Exponent Rule: 𝒂 π’Ž where a and b are not 0.Example 1:7π‘₯ 53 1 𝑦𝑧 4𝟏1π’‚π’Žπ‘Ž π‘šπ‘Ž π‘šπ‘ π‘š π‘π‘š( ) ( ) π‘šπ‘π‘Žπ‘Ž π‘Žπ‘šExample 2:25π‘Ž 4 Warning! It is important to note a negative exponent does not imply the expression is negative, onlythe reciprocal of the base. Hence, negative exponents imply reciprocals.YOU TRYa)35 1 π‘₯b)π‘Ž3 𝑏2 𝑐2𝑑 1 β…‡ 4258

Chapter 8F. PROPERTIES OF EXPONENTSPutting all the rules together, we can simplify more complex expression containing exponents. Here weapply all the rules of exponents to simplify expressions.Exponent RulesProductπ’Žπ’Quotient𝒂 π’‚π’Ž 𝒏𝒂𝒏𝒂 𝒂 𝒂𝒂Zero Power𝒂 π’Ž π’‚π’Ž( ) π’Žπ’ƒπ’ƒ(𝒂𝒃)π’Ž π’‚π’Ž π’ƒπ’Ž π’Ž(π’‚π’Ž )𝒏 π’‚π’Ž 𝒏Power of a QuotientPower of a ProductNegative PowerPower of Powerπ’Žπ’Ž π’π’‚πŸŽ 𝟏Reciprocal of Negative Power𝟏 π’Žπ’‚Negative Power of a Quotient𝒂 π’Žπ’ƒ π’Ž π’ƒπ’Ž( ) ( ) π’Žπ’ƒπ’‚π’‚πŸ π’‚π’Žπ’‚ π’ŽMEDIA LESSONProperties of Exponents (Duration 5:00)View the video lesson, take notes and complete the problems below.Example 1: (4x 5 y 2 z)2 (2π‘₯ 4 𝑦 2 𝑧 3 )44Example 2: 2(2x2 y3 ) (x4 y 6 )(x 6 y4 )2YOU TRYSimplify and write your final answers in positive exponents. 24π‘₯ 5 𝑦 3 3π‘₯ 3 𝑦 2(3π‘Žπ‘3 ) π‘Žπ‘ 3a)b)6π‘₯ 5 𝑦 32π‘Ž 4 𝑏0259

Chapter 8EXERCISESimplify. Be sure to follow the simplifying rules and write answers with positive exponents.1)4 44 442)4 224)2π‘š4 𝑛2 4π‘›π‘š25)(33 )47)(2𝑒3 𝑣 2 )28)(2π‘Ž4 )410)π‘₯ 2 𝑦 4 π‘₯𝑦 211) (π‘₯𝑦)313)16)19)22)25)28)3214)3π‘₯ 2 𝑦44π‘₯𝑦(π‘₯ 3 𝑦 4 2π‘₯ 2 𝑦 3 )2(2π‘₯)3 2(π‘₯3)2π‘₯𝑦 5 2π‘₯ 2 𝑦 32π‘₯𝑦 4 𝑦 3π‘π‘Ž2 3π‘Ž3 𝑏431)2π‘Ž2 𝑏2 π‘Ž7(π‘π‘Ž4 )234)2π‘ž3 𝑝3 π‘Ÿ 4 2𝑝3(π‘žπ‘Ÿπ‘3 )237)6)(44 )212)3π‘›π‘š215)3𝑛454337334π‘₯ 3 𝑦 43π‘₯𝑦 317) 3π‘₯ 4π‘₯ 218)20) 2π‘₯(π‘₯ 4 𝑦 4 )421)3π‘₯ 3 𝑦 4π‘₯ 2 𝑦 3(32𝑦 1723)((2π‘₯ 2 𝑦 4)4 )24)26)2π‘₯ 2 𝑦 2 𝑧 6 2𝑧π‘₯ 2 𝑦2(π‘₯ 2 𝑧 3 )227)32)𝑛3 (𝑛4 )𝑒𝑣 130)38)33)2π‘šπ‘›(π‘Ž 12π‘₯ 7 𝑦 52π‘šπ‘›4 2π‘š4 𝑛4π‘šπ‘›43)2𝑦(π‘₯ 0 𝑦 2 )4𝑦π‘₯ 2 (𝑦 4 )2𝑦 4222π‘Ž2 𝑏3(𝑒2 𝑣 2 2𝑒4 )3235) 2π‘₯ 4 𝑦 2 (2π‘₯𝑦 3 )42𝑒0 𝑣 4 2𝑒𝑣3π‘š 4π‘šπ‘›9)2π‘Ž2 𝑏2 π‘Ž729)(π‘π‘Ž4 )22π‘π‘Ž7 2𝑏43)36)4)39)(2𝑦 3 π‘₯ 2 )2π‘₯ 2 𝑦 4 π‘₯ 22π‘₯ 3 𝑦 23π‘₯ 3 𝑦 3 3π‘₯ 02π‘₯𝑦 2 4π‘₯ 3 𝑦 44π‘₯ 4 𝑦 4 4π‘₯ 440)2𝑏4 𝑐 2 (2𝑏3 𝑐 2 )π‘Ž 2 𝑏4260

Chapter 8SECTION 8.2 SCIENTIFIC NOTATIONA. INTRODUCTION TO SCIENTIFIC NOTATIONOne application of exponent properties is scientific notation. Scientific notation is used to representreally large or really small numbers, like the numbers that are too large or small to display on thecalculator.For example, the distance light travels per year in miles is a very large number (5,879,000,000,000) andthe mass of a single hydrogen atom in grams is a very small number (0.00000000000000000000000167).Basic operations, such as multiplication and division, with these numbers, would be quite cumbersome.However, the exponent properties allow for simpler calculation.MEDIA LESSONIntroduction of scientific notation (Watch from 0:00 – 9:00)View the video lesson, take notes and complete the problems below.100 101 102 103 10100 Avogadro number: 602,200,000,000,000,000,000,000 MEDIA LESSONDefinition of scientific notation (Duration 4:59)View the video lesson, take notes and complete the problems below.Standard Form (Standard Notation):Scientific Notation:b:b positive:b negative:Example: Convert to Scientific Notationa) 48,100,000,000 b) 0.0000235 261

Chapter 8DefinitionScientific notation is a notation for representing extremely large or small numbers in form ofπ‘Ž π‘₯ 10𝑏where 1 a 10 and b is number of decimal places from the right or left we moved to obtain a.A few notes regarding scientific notation: b is the way we convert between scientific and standard notation. b represents the number of times we multiply by 10. (Recall, multiplying by 10 moves the decimalpoint of a number one place value.) We decide which direction to move the decimal (left or right) by remembering that in standardnotation, positive exponents are numbers greater than ten and negative exponents are numbersless than one (but larger than zero).Case 1. If we move the decimal to the left with a number in standard notation, then b will be positive.Case 2. If we move the decimal to the right with a number in standard notation, then b will be negative.B. CONVERT NUMBERS TO SCIENTIFIC NOTATIONMEDIA LESSONConvert standard notation to scientific notation (Duration 1:40)View the video lesson, take notes and complete the problems below.Example: Convert to scientific notation8,150,000 0.00000245 YOU TRYConvert the following number to scientific notationa) 14,200b) 0.0042c) How long is a light-year?The light-year is a measure of distance, not time. It is the total distance of a beam of light that travelsin one year is almost 6 trillion (6,000,000,000,000) miles in a straight line. Express a light year inscientific notation. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k12/aerores.htm)C. CONVERT NUMBERS FROM SCIENTIFIC NOTATION TO STANDARD NOTATIONTo convert a number from scientific notation of the form𝒂 𝒙 πŸπŸŽπ’ƒto standard notation, we can follow these rules of thumb. If 𝒃 is positive, this means the original number was greater than 10, we move the decimal tothe right 𝒃 times. If 𝒃 is negative, this means the original number was less than 1 (but greater than zero), wemove the decimal to the left 𝒃 times.262

Chapter 8MEDIA LESSONConvert scientific notation to standard notation (Duration 2:22)View the video lesson, take notes and complete the problems below.Example: Rewrite in standard notation (decimal notation)a) 7.85 106b) 1.6 10 4YOU TRYCovert the following scientific notation to standard notationa) 3.21 105b) 7.4 10 3D. MULTIPLY AND DIVIDE NUMBERS IN SCIENTIFIC NOTATIONConverting numbers between standard notation and scientific notation is important in understandingscientific notation and its purpose. We multiply and divide numbers in scientific notation using theexponent properties. If the immediate result is not written in scientific notation, we will complete anadditional step in writing the answer in scientific notation.Steps for multiplying and dividing numbers in scientific notationStep 1. Rewrite the factors as multiplying or dividing a-values and then multiplying or dividing πŸπŸŽπ’ƒ values.Step 2. Multiply or divide the 𝒂 values and apply the product or quotient rule of exponents to add orsubtract the exponents, 𝒃, on the base 10s, respectively.Step 3. Be sure the result is in scientific notation. If not, then rewrite in scientific notation.MEDIA LESSONMultiply and divide scientific notation (Duration 2:47)View the video lesson, take notes and complete the problems below Multiply/ Divide theUse on the 10sExample:a) (3.4 105 )(2.7 10 2 )b)5.32 1041.9 10 3MEDIA LESSONMultiply scientific notations with simplifying final answer step (Duration 3:47)View the video lesson, take notes and complete the problems below.Example:a) (1.2 104 )(5.3 103 )b) (9 101 )(7 109 )263

Chapter 8MEDIA LESSONDivide scientific notations with simplifying final answer step (Duration 3:44)View the video lesson, take notes and complete the problems below.a)7 1012b)2 1072.4 1074.8 102YOU TRYMultiply or divide.a) (2.1 π‘₯ 10 7 )(3.7 π‘₯ 105 )c) (4.7 π‘₯ 10 3 )(6.1 π‘₯ 109 )e)8.4 1057 102b)4.96 π‘₯ 1043.1 π‘₯ 10 3d) (2 106 )(8.8 105 )f)2.014 π‘₯ 10 33.8 π‘₯ 10 7E. SCIENTIFIC NOTATION APPLICATIONSMEDIA LESSONScientific notation application example 1 (Duration 2:36)View the video lesson, take notes and complete the problems below.Example 1: There were approximately 50,000 finishers of the 2015 New York City Marathon. Eachfinisher ran a distance of 26.2 miles. If you add together the total number miles ran by all the runners,how many times around the earth would the marathon runners have run? Assume the circumference ofthe earth to be approximately 2.5 104 miles.Total distance 264

Chapter 8MEDIA LESSONScientific notation application example 2 (Duration 3:24)View the video lesson, take notes and complete the problems below.Example 2: If a computer can conduct 400 trillion operations per second, how long would it take thecomputer to perform 500 million operations?400 trillion 500 million Number of Operations:Rate of Operations:YOU TRYa) It takes approximately 3.7 104 hour for thelight on Proxima Centauri, the next closet starto our sun, to reach us from there. The speedof light is 6.71 108 miles per hour. What isthe distance from there to earth? Givenπ‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘Ÿπ‘Žπ‘‘π‘’ π‘‘π‘–π‘šπ‘’. Express youranswer in scientific notationBy ESO/Pale Red Dot http://www.eso.org/public/images/ann16002a/, CC BY d 46463949a) If the North Pole and the South Pole ice were to melt, the north polar ice would make essentially nocontribution since it is float ice. However, the south polar ice would make a considerable contributionsince it overlays the Antarctic land mass and is not float ice. If Antarctic ice melted, it would becomeapproximately 1.5 109 gallons of water. If it takes roughly, 6 π‘₯ 106 gallons of water to fill 1 foot ofthe earth, estimate how many feet the earth’s oceans would rise? Express your answer in the standardform. (Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)265

Chapter 8EXERCISESWrite each number in scientific notation.1) 8852) 0.0813) 0.0000394) 0.0007445) 1.096) 15,000Write each number in standard notation.7) 8.7 1058) 9 10 49) 2 10010) 2.56 10211) 5 10412) 6 10 5Simplify. Write each answer in scientific notation.13) (7 101 )(2 103 )14) (5.26 105 )(3.16 102 )15) (2.6 10 2 )(6 10 2 )16) (3.6 100 )(6.1 10 3 )17) (6.66 10 4 )(4.23 101 )18) (3.15 103 )(8.8 10 5 )19)22)25)4.81 1069.62 1029 1043 10 25.8 1035.8 10 320)23)26)5.33 1062 1033.22 10 37 10 65 1062.5 10221)24)27)4.08 10 65.1 10 41.3 10 66.5 1008.4 1057 10 2Scientific Notation Applications(Source: NASA Glenn Educational Programs Office https://www.grc.nasa.gov/www/k-12/aerores.htm)28) The mass of the sun is 1.98 1033 grams. If a single proton has a mass of 1.6 10 24 grams, howmany protons are in the sun?29) Pluto is located at a distance of 5.9 1014 centimeters from Earth. At the speed of light,2.99 1010 π‘π‘š/𝑠𝑒𝑐, approximately how many hours does it take a light signal (or radio message)to travel to Pluto and return? Write your answer standard form.30) The planet Osiris was discovered by astronomers in 1999 and is at a distance of 150 light-years (1light-year 9.2 1012 kilometers).a) How many kilometers is Osiris from earth? Express your answer in scientific notation.b) If an interstellar probe were sent to investigate this world up close, traveling at a maximum speedof 700 km/sec or 7 102 km/sec, how many seconds would it take to reach Osiris?c) There is about 3.15 106 seconds in a year. How many years would it take to reach Osiris?266

Chapter 8SECTION 8.3: POLYNOMIALSA. INTRODUCTION TO POLYNOMIALSMEDIA LESSONAlgebraic Expression Vocabulary (Duration 5:52)View the video lesson, take notes and complete the problems below.DefinitionsTerms: Parts of an algebraic expression separated by addition or subtraction ( or ) symbols.Constant Term: A number with no variable factors. A term whose value never changes.Factors: Numbers or variable that are multiplied togetherCoefficient: The number that multiplies the variable.Example 1: Consider the algebraic expression 4π‘₯ 5 3π‘₯ 4 22π‘₯ 2 π‘₯ 17a. List the terms:b. Identify the constant term.Example 2: Complete the table below 4π‘š1π‘β„Ž2 π‘₯2π‘Ÿ5List of FactorsIdentify the Coefficient𝑦Example 3: Consider the algebraic expression 5𝑦 4 8𝑦 3 𝑦 2 4 7a. How many terms are there?b. Identify the constant term.c. What is the coefficient of the first term?d. What is the coefficient of the second terme. What is the coefficient of the third term?f.List the factors of the fourth term.YOU TRYConsider the algebraic expression 3π‘₯ 5 4π‘₯ 4 2π‘₯ 8a) How many terms are there?b) Identify the constant term.c) What is the coefficient of the first term?d) What is the coefficient of the second terme) What is the coefficient of the third term?f)List the factors of the third term.267

Chapter 8MEDIA LESSONIntroduction to polynomials (Duration 7:12)View the video lesson, take notes and complete the problems below.Minute 2:31Definitions12π‘₯ 5 2π‘₯ 2 π‘₯ 7Polynomial: An algebraic expression composed of the sum of terms containing a single variable raisedto a non-negative integer exponent.Monomial: A polynomial consisting of one term, example:Binomial: A polynomial consisting of two terms, example:Trinomial: A polynomial consisting of three terms, example:Leading Term: The term that contains the highest power of the variable in a polynomial,example:Leading Coefficient: The coefficient of the leading term, example:Constant Term: A number with no variable factors. A term whose value never changes.Example:Degree: The highest exponent in a polynomial, example:Example 1: Complete the table below.PolynomialNameLeadingCoefficientConstant TermDegree24π‘Ž6 π‘Ž2 52π‘š3 π‘š2 2π‘š 85π‘₯ 2 π‘₯ 3 7 2π‘₯ 44π‘₯ 3YOU TRYComplete the table below.PolynomialNameLeadingCoefficientConstant TermDegree𝑛2 2𝑛 87𝑦 26π‘₯ 7268

Chapter 8MEDIA LESSONIntroduction to polynomials 2 (Duration 2:58)View the video lesson, take notes and complete the problems below.Given: 9𝑦 7𝑦 3 5 4𝑦 21st term:2nd term:3rd term:4th icient:Coefficient:Coefficient:Leading coefficient:Degree of leading term:Degree of polynomial:Write the polynomial in descending order:(Or write the polynomial in the standard form)Standard form of a polynomialThe standard form of a polynomial is where the polynomial is written with descending exponents.For example: Rewrite the polynomial in standard form and identify the coefficients, variable terms, anddegree of the polynomial 12π‘₯ 2 π‘₯ 3 π‘₯ 2The standard form of the above polynomial is π‘₯ 3 12π‘₯ 2 π‘₯ 2.The coefficients are 1; 12; 1, and 2; the variable terms are π‘₯ 3 , 12π‘₯ 2 , π‘₯. The degree of the polynomialis 3 because that is the highest degree of all terms.YOU TRYWrite the following polynomials in the descending order or in standard form:a) 3π‘₯ 9π‘₯ 3 2π‘₯ 6 7π‘₯ 2 3 π‘₯ 4b) 5π‘š2 5π‘š4 3 4π‘š3 2π‘š7B. EVALUATING POLYNOMIAL EXPRESSIONSMEDIA LESSONEvaluating algebraic expressions (Duration 7:48)View the video lesson, take notes and complete the problems below.To evaluate an algebraic or variable expression, the value of the variables into theexpression. Then evaluate using the order of operations.Example 1: If we are given 5π‘₯ 12 and π‘₯ 17we can evaluate.Example 2: Let π‘₯ 3, 𝑦 7, 𝑧 2Evaluate π‘₯ 3𝑦 75π‘₯ 12 5 ( ) – 12 Evaluate 2π‘₯ 2 5𝑦 𝑧 3269

Chapter 8Example 3: Let 2 . Evaluate9𝑦 8𝑦 2 .Example 5: Let 2 .Evaluate 3π‘₯ 2 π‘₯ 2 2π‘₯ 9 .Example 4: Let π‘₯ 3, 𝑦 5. Evaluate 4π‘₯ 3𝑦 2π‘₯ 2𝑦2Example 6: Let π‘₯ 2, 𝑦 3. Evaluate 2π‘₯ 2𝑦 3YOU TRYa) Evaluate 2π‘₯ 2 4π‘₯ 6 when π‘₯ 4 .b) Evaluate π‘₯ 2 2π‘₯ 6 when 3 .C. ADD AND SUBTRACT POLYNOMIALSCombining like terms reviewMEDIA LESSONCombine like terms 1 (Duration 4:36)View the video lesson, take notes and complete the problems below.DefinitionLike terms: Two or more terms are like terms if they have the same variable or variables with the sameexponents.Which of these terms are like terms? 2π‘₯ 3 , 2π‘₯, 2𝑦, 7π‘₯ 3 , 4y, 6π‘₯ 2 , 𝑦 2Like terms:Like terms:To combine like terms, we . The variable factors.Example: Simplify each polynomials, if possible.a) 4π‘₯ 3 7π‘₯ 3b) 2𝑦 2 4𝑦 𝑦 2 2 9𝑦 5 2𝑦270

Chapter 8MEDIA LESSONCombine like terms 2 (Duration 2:15)View the video lesson, take notes and complete the problems belowCombine like terms.a) π‘₯ 2 𝑦 3π‘₯𝑦 2 4π‘₯ 2 𝑦b) 7π‘š 4 2π‘š 9YOU TRYCombine like terms.a) 5π‘₯ 2 2π‘₯ 5π‘₯ 2 3π‘₯ 1b) 3π‘₯𝑦 2 2π‘₯ 2 6 3𝑦 5π‘₯𝑦 2 3c) 3π‘₯ 2 𝑦𝑧 9π‘₯ 2 5π‘₯𝑦 2 𝑧 3𝑦 2 5π‘₯ 2d) 3π‘₯ 2 3π‘₯ 5𝑦 2 π‘Žπ‘₯ 2 7 π‘₯ 10𝑦 2Add and subtract polynomialsMEDIA LESSONAdd and subtract polynomials (Duration 3:53)View the video lesson, take notes and complete the problems below.To add polynomials:To subtract polynomials:a) (5π‘₯ 2 7π‘₯ 9) (2π‘₯ 2 5π‘₯ 14)b) (3π‘₯ 3 4π‘₯ 7) (8π‘₯ 3 9π‘₯ 2)MEDIA LESSONAdd and subtract polynomials (Duration 5:04)View the video lesson, take notes and complete the problems belowc) (2π‘₯ 5 6π‘₯ 3 12π‘₯ 2 4) ( 11π‘₯ 5 8π‘₯ 2π‘₯ 2 6)d) ( 9𝑦 3 6𝑦 2 11π‘₯ 2) ( 9𝑦 4 8𝑦 3 4π‘₯ 2 2π‘₯)271

Chapter 8YOU TRYPerform the operation below.a) (4π‘₯ 3 2π‘₯ 8) (3π‘₯ 3 9π‘₯ 2 11)b) (5π‘₯ 2 2π‘₯ 7) (3π‘₯ 2 6π‘₯ 4)c) (2π‘₯ 2 4π‘₯ 3) (5π‘₯ 2 6π‘₯ 1) (π‘₯ 2 9π‘₯ 8)D. MULTIPLY POLYNOMIAL EXPRESSIONS1. Distributive property reviewMEDIA LESSONDistribute property review (Duration 6:08)View the video lesson, take notes and complete the problems below.Distributive Property π‘Ž(𝑏 𝑐) π‘Žπ‘ π‘Žπ‘π‘Ž 2𝑏 3𝑐 4Example: Use the distributive property to expand each of the following expressionsa) 5(2π‘₯ 4)b) 3(π‘₯ 2 2π‘₯ 7)c) (5π‘₯ 4 8)d)2 π‘₯15 43( )YOU TRYUse the distributive property to expand each of the following expressions.a) 4( 5π‘₯ 2 9π‘₯ 3)b) 7( 2π‘š2 π‘š 2)2. Multiply a polynomial by a monomialMEDIA LESSONMultiply a polynomial by a monomial (Duration 2:46)View the video lesson, take notes and complete the problems below.To multiply a monomial by a polynomial:Example 1: 5π‘₯ 2 (6π‘₯ 2 2π‘₯ 5)Example 2: 3π‘₯ 4 (6π‘₯ 3 2π‘₯ 7)YOU TRY272

Chapter 8Multiply.a) 4π‘₯ 3 (5π‘₯ 2 2π‘₯ 5)b) 2π‘Ž3 𝑏(3π‘Žπ‘ 2 4π‘Ž)3. Multiplying with binomialsMEDIA LESSONMultiply binomials (Duration 4:27)View the video lesson, take notes and complete the problems below.To multiply a binomial by a binomial:This process is often called , which stands forExample:a) (4π‘₯ 2)(5π‘₯ 1)b) (3π‘₯ 7)(2π‘₯ 8)YOU TRYMultiply.a) (3π‘₯ 5)(π‘₯ 13)b) (4π‘₯ 7𝑦)(3π‘₯ 2𝑦)4. Multiply with trinomialsMEDIA LESSONMultiply with trinomials (Duration 5:00)View the video lesson, take notes and complete the problems below.Multiplying trinomials is just like , we just have .Example:a) (2π‘₯ 4)(3π‘₯ 2 5π‘₯ 1)b) (2π‘₯ 2 6π‘₯ 1)(4π‘₯ 2 2π‘₯ 6)273

Chapter 8YOU TRYMultiply.a) (2π‘₯ 5)(4π‘₯ 2 7π‘₯ 3)b) (5π‘₯ 2 π‘₯ 10)(3π‘₯ 2 10π‘₯ 6)E. SPECIAL PRODUCTSThere are a few shortcuts that we can take when multiplying polynomials. If we can recognize when touse them, we should so that we can obtain the results even quicker. In future chapters, we will need tobe efficient in these techniques since multiplying polynomials will only be one of the steps in the problem.These two formulas are important to commit to memory. The more familiar we are with them, the nexttwo chapters will be so much easier.1. Difference of two squaresMEDIA LESSONDifference of two squares (Duration 2:33)View the video lesson, take notes and complete the problems below.Sum and difference(π‘Ž 𝑏)(π‘Ž 𝑏) Sum and difference shortcut:(π‘Ž 𝑏)(π‘Ž 𝑏) Example:a) (π‘₯ 5)(π‘₯ 5)b) (6π‘₯ 2)(6π‘₯ 2)YOU TRYSimplify:a) (3π‘₯ 7)(3π‘₯ 7)b) (8 π‘₯ 2 )(8 π‘₯ 2 )274

Chapter 82. Perfect square trinomialsAnother shortcut used to multiply binomials is called perfect square trinomials. These are easy torecognize because this product is the square of a binomial. Let’s take a look at an example.MEDIA LESSONPerfect Square (Duration 3:40)View the video lesson, take notes and complete the problems below.Perfect square(π‘Ž 𝑏)2 Perfect square shortcut:(π‘Ž 𝑏)2 Example:a) (π‘₯ 4)2b) (2π‘₯ 7)2YOU TRYSimplify:a) (π‘₯ 5)2b) (2π‘₯ 9)2c) (3π‘₯ 7𝑦)2d) (6 2π‘š)2F. POLYNOMIAL DIVISIONDividing polynomials is a process very similar to long division of whole numbers. Before we look at longdivision with polynomials, we will first master dividing a polynomial by a monomial.1. Polynomial division with monomialsMEDIA LESSONDividing polynomials by monomials - Separated fractions method (Duration 8:14)View the video lesson, take notes and complete the problems below.We divide a polynomial by a monomial by rewriting the expression as separated fractions rather than onefraction. We use the fact:π‘Ž π‘π‘π‘Žπ‘π‘π‘ Example:a) 6w830𝑀 3b)3π‘₯ 62275

Chapter 8c)6π‘₯ 3 2π‘₯ 2 4d)4π‘₯20π‘Ž2 35π‘Ž 4 5π‘Ž2YOU TRYSimplify.a)9π‘₯ 5 6π‘₯ 4 18π‘₯ 3 24π‘₯ 2b)3π‘₯ 28π‘₯ 3 4π‘₯ 2 2π‘₯ 64π‘₯ 2MEDIA LESSONLong division review (Duration 3:55)View the video lesson, take notes and complete the problems below.Long division review5 2632Long division steps:1.2.3.4.5.This method may seem elementary, but it isn’t the arithmetic we want to review, it is the method. Weuse the same method as we did in arithmetic, but now with polynomials.MEDIA LESSONDividing polynomials by monomials – Long division method (Duration 5:00)View the video lesson, take notes and complete the problems below.Example:a)3π‘₯ 5 18π‘₯ 9π‘₯ 33π‘₯ 2276

Chapter 815π‘Ž6 25π‘Ž5 5π‘Ž4b)5π‘Ž4YOU TRYDivide using the long division method.a)b)c)8π‘₯ 6 20π‘₯ 4 4π‘₯ 34π‘₯ 3𝑛4 𝑛3 𝑛2𝑛12π‘₯ 4 24π‘₯ 3 3π‘₯ 26π‘₯277

Chapter 82. Polynomial division with polynomialsMEDIA LESSONDivide a polynomial by a polynomial (Duration 5:00)View the video lesson, take notes and complete the problems below.Polynomial division with polynomialsOn division step, only focus on theExample 1: DivideExample 2: Divideπ‘₯3 2π‘₯2 15π‘₯ 30π‘₯ 44π‘₯ 3 6π‘₯ 12π‘₯ 82π‘₯ 1.YOU TRYa)b)π‘₯ 2 8π‘₯ 12π‘₯ 1 3π‘₯ 3 5π‘₯ 2 32π‘₯ 7π‘₯ 4 278

Chapter 8c)6π‘₯ 3 8π‘₯ 2 10π‘₯ 1032π‘₯ 4 MEDIA LESSONDivide a polynomial by a polynomial - rewriting the remainder as an expression (Duration 5:10)View the video lesson, take notes and complete the problems below.Example: Divideπ‘₯3 8π‘₯2 17π‘₯ 15π‘₯ 3.YOU TRYDivide the polynomials and write the remainder as an expression.a)b)π‘₯ 2 5π‘₯ 7π‘₯ 2 π‘₯ 3 4π‘₯ 2 6π‘₯ 4π‘₯ 1 279

Chapter 83. Polynomial division with missing termsSometimes when dividing with polynomials, there may be a missing term in the dividend. We do notignore the term, we just write in 0 as the coefficient.MEDIA LESSONPolynomial division with missing terms (Duration 5:00)View the video lesson, take notes and complete the problems below.Divide polynomials – Missing termsThe exponents must .If one is missing, we will add .Example 1:3π‘₯3 50π‘₯ 4π‘₯ 4Example 2:2π‘₯3 4π‘₯2 9π‘₯ 3YOU TRYa)b)2π‘₯ 3 4π‘₯ 42π‘₯ 33π‘₯ 3 3π‘₯ 2 4π‘₯ 3 280

Chapter 8EXERCISESEvaluate the expression for the given value. Show your work.1) π‘Ž3 π‘Ž2 6π‘Ž 21 when π‘Ž 42) 𝑛2 3𝑛 11 when 𝑛 63) 𝑛3 7𝑛2 15𝑛 20 when 𝑛 24) 𝑛3 9𝑛2 23𝑛 21 when 𝑛 55) 5𝑛4 11𝑛3 9𝑛2 𝑛 5 when 𝑛 26) π‘₯ 4 5π‘₯ 3 π‘₯ 13 when π‘₯ 17) π‘₯ 2 9π‘₯ 23 when π‘₯ 38) π‘₯ 3 π‘₯ 2 π‘₯ 11 when π‘₯ 69) π‘₯ 4 6π‘₯ 3 π‘₯ 2 24 when π‘₯ 110) π‘š4 π‘š3 2π‘š2 13π‘š 5 when π‘š 3Simplify. Write the answer in standard form. Show your work.11) (5𝑝 5𝑝4 ) (8𝑝 8𝑝4 )12) (3𝑛2 𝑛3 ) (2𝑛3 7𝑛2 )13) (8𝑛 𝑛4 ) (3𝑛 4𝑛4 )14) (1 5𝑝3 ) (1 8𝑝3 )15) (5𝑛4 6𝑛3 ) (8 3𝑛3 5𝑛4 )16) (3 𝑏 4 ) (7 2𝑏 𝑏 4 )17) (8π‘₯ 3 1) (5π‘₯ 4 6π‘₯ 3 2)18) (2π‘Ž 2π‘Ž4 ) (3π‘Ž2 6π‘Ž 3)19) (4𝑝2 3 2𝑝) (3𝑝2 6𝑝 3)20) (4𝑏 3 7𝑏 2 3) (8 5𝑏 2 𝑏 3 )21) (3 2𝑛2 4𝑛4 ) (𝑛3 7𝑛2 4𝑛4 )22) (𝑛 5𝑛4 7) (𝑛2 7𝑛4 𝑛)23) (8π‘Ÿ 4 5π‘Ÿ 3 5π‘Ÿ 2 ) (2π‘Ÿ 2 2π‘Ÿ 3 7π‘Ÿ 4 1)24) (6π‘₯ 5π‘₯ 4 4π‘₯ 2 ) (2π‘₯ 7π‘₯ 2 4π‘₯ 4 8) (8 6π‘₯ 2 4π‘₯ 4 )Multiply and simplify. Show your work.25) 6(𝑝 7)26) 5π‘š4 (4π‘š 4)27) (8𝑏 3)(7𝑏 5)28) (3𝑣 4)(5𝑣 2)29) (5π‘₯ 𝑦)(6π‘₯ 4𝑦)30) (7π‘₯ 5𝑦)(8π‘₯ 3𝑦)31) (6𝑛 4)(2𝑛2 2𝑛 5)32) (8𝑛2 4𝑛 6)(6𝑛2 5𝑛 6)33) 3(3π‘₯ 4)(2π‘₯ 1)34) 7(π‘₯ 5)(π‘₯ 2)35) (6π‘₯ 3)(6π‘₯ 2 7π‘₯ 4)36) (5π‘˜ 2 3π‘˜ 3)(3π‘˜ 2 3π‘˜ 6)37) (2π‘Ž2 6π‘Ž 3)(7π‘Ž2 6π‘Ž 1)38) 3𝑛2 (6𝑛 7)39) (7𝑒2 2𝑒 3)(𝑒2 4)40) 3π‘₯ 2 (2π‘₯ 3)(6π‘₯ 9)Find each product by applying the special products formulas. Show your work.41) (π‘₯ 8)(π‘₯ 8)42) (1 3𝑝)(1 3𝑝)43) (1 7𝑛)(1 7𝑛)44) (5𝑛 8)(5𝑛 8)45) (4π‘₯ 8)(4π‘₯ 8)46) (4𝑦 π‘₯)(4𝑦 π‘₯)47) (4π‘š 2𝑛)(4π‘š 2𝑛)48) (6π‘₯ 2𝑦)(6π‘₯ 2𝑦)49) (π‘Ž 5)250) (π‘₯ 8)251) (𝑝 7)252) (7 5𝑛)2281

Chapter 853) (5π‘š 3)254) (5π‘₯ 7𝑦)255) (2π‘₯ 2𝑦)256) (5 2π‘Ÿ)257) (2 5π‘₯)258) (4𝑣 7)(4𝑣 7)59) (𝑛 5)(𝑛 5)60) (4π‘˜ 2)261) (π‘Ž 4)(π‘Ž 4)62) (π‘₯ 3)(π‘₯ 3)63) (8π‘š 5)(8π‘š 5)64) (2π‘Ÿ 3)(2π‘Ÿ 3)65) (𝑏 7)(𝑏 7)66) (7π‘Ž 7𝑏)(7π‘Ž 7𝑏)67) (3𝑦 3π‘₯)(3𝑦 3π‘₯)68) (1 5𝑛)269) (𝑣 4)270) (1 6𝑛)271) (7π‘˜ 7)272) (4π‘₯ 5)273) (3π‘Ž 3𝑏)274) (4π‘š 𝑛)275) (8π‘₯ 5𝑦)276) (π‘š 7)277) (8𝑛 7)(8𝑛 7)78) (𝑏 4)(𝑏 4)79) (7π‘₯ 7)2Divide: Show your work.80)83)20π‘₯ 4 π‘₯ 3 2π‘₯ 24π‘₯ 35π‘₯ 5 18π‘₯ 3 4π‘₯ 99π‘₯81)84)5𝑛4 𝑛3 40𝑛25𝑛3π‘˜ 4 4π‘˜ 2 28π‘˜ 282)85)12π‘₯ 4 24π‘₯ 3 3π‘₯ 26π‘₯10𝑛4 5𝑛3 2𝑛2𝑛2Divide and write your remainder as an expression. Show your

scientific notation and its purpose. We multiply and divide numbers in scientific notation using the exponent properties. If the immediate result is not written in scientific notation, we will complete an additional step in writing the answer in scientific notation. Steps for multiplying and dividing numbers in scientific notation Step 1.

Related Documents:

Add polynomials. Find the opposite of a polynomial. Subtract polynomials. Topic 3: Multiplying Polynomials Learning Objectives Multiply monomials. Multiply monomials times polynomials. Multiply two binomials. Multiply any two polynomials. Topic 4: Multiplying

Section 3.5: Multiplying Polynomials Objective: Multiply polynomials. Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials; then we will multiply monomials by polynomials; and finish with multiplying polynomials by polynomials.

Super Teacher Worksheets - www.superteacherworksheets.com Exponents Exponents Exponents Exponents 1. 3. 4. 2. Write the expression as an exponent. 9 x 9 x 9 x 9 2 3 63 44 32 Compare. Use , , or . Write the exponent in standard form. Write the exponent as a repeated multiplication fac

Part One: Heir of Ash Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26 Chapter 27 Chapter 28 Chapter 29 Chapter 30 .

Exponents and Scientific Notation * OpenStax OpenStax Algebra and Trigonometry This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract In this section students will: Use the product rule of exponents. Use the quotient rule of exponents. Use the power rule of exponents.

Lesson 5: Negative Exponents and the Laws of Exponents Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain negative exponents. Lesson Notes We are now ready to extend the existing la

The Matlab program prints and plots the Lyapunov exponents as function of time. Also, the programs to obtain Lyapunov exponents as function of the bifur-cation parameter and as function of the fractional order are described. The Matlab program for Lyapunov exponents is developed from an existing Matlab program for Lyapunov exponents of integer .

Extend the properties of exponents to rational exponents. NVACS HSN.RN.A.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 5 1/3