Factoring F1 Greatest Common Factor And Factoring By .

2y ago
48 Views
2 Downloads
282.47 KB
10 Pages
Last View : 2m ago
Last Download : 2m ago
Upload by : Camille Dion
Transcription

section F1 214FactoringFactoring is the reverse process of multiplication. Factoring polynomials inalgebra has similar role as factoring numbers in arithmetic. Any number canbe expressed as a product of prime numbers. For example, 6 2 3.Similarly, any polynomial can be expressed as a product of primepolynomials, which are polynomials that cannot be factored any further. Forexample, π‘₯π‘₯ 2 5π‘₯π‘₯ 6 (π‘₯π‘₯ 2)(π‘₯π‘₯ 3). Just as factoring numbers helps insimplifying or adding fractions, factoring polynomials is very useful insimplifying or adding algebraic fractions. In addition, it helps identify zeros of polynomials, which in turn allowsfor solving higher degree polynomial equations.In this chapter, we will examine the most commonly used factoring strategies with particular attention to specialfactoring. Then, we will apply these strategies in solving polynomial equations.F.1Greatest Common Factor and Factoring by GroupingPrime FactorsWhen working with integers, we are often interested in their factors, particularly primefactors. Likewise, we might be interested in factors of polynomials.Definition 1.1To factor a polynomial means to write the polynomial as a product of β€˜simpler’polynomials. For example,5π‘₯π‘₯ 10 5(π‘₯π‘₯ 2), or π‘₯π‘₯ 2 9 (π‘₯π‘₯ 3)(π‘₯π‘₯ 3).In the above definition, β€˜simpler’ means polynomials of lower degrees or polynomials withcoefficients that do not contain common factors other than 1 or 1. If possible, we wouldlike to see the polynomial factors, other than monomials, having integral coefficients anda positive leading term.When is a polynomial factorization complete?In the case of natural numbers, the complete factorization means a factorization into primenumbers, which are numbers divisible only by their own selves and 1. We would expectthat similar situation is possible for polynomials. So, which polynomials should weconsider as prime?Observe that a polynomial such as 4π‘₯π‘₯ 12 can be written as a product in many differentways, for instance13 (4π‘₯π‘₯ 12), 2( 2π‘₯π‘₯ 6), 4( π‘₯π‘₯ 3), 4(π‘₯π‘₯ 3), 12 π‘₯π‘₯ 1 , etc.Since the terms of 4π‘₯π‘₯ 12 and 2π‘₯π‘₯ 6 still contain common factors different than 1 or 1, these polynomials are not considered to be factored completely, which means that theyshould not be called prime. The next two factorizations, 4( π‘₯π‘₯ 3) and 4(π‘₯π‘₯ 3) areboth complete, so both polynomials π‘₯π‘₯ 3 and π‘₯π‘₯ 3 should be considered as prime. But11what about the last factorization, 12 3 π‘₯π‘₯ 1 ? Since the remaining binomial 3 π‘₯π‘₯ 1does not have integral coefficients, such a factorization is not always desirable.Factoring

section F1 215Here are some examples of prime polynomials: 13any monomials such as 2π‘₯π‘₯ 2, πœ‹πœ‹π‘Ÿπ‘Ÿ 2 , or π‘₯π‘₯π‘₯π‘₯;any linear polynomials with integral coefficients that have no common factors otherthan 1 or 1, such as π‘₯π‘₯ 1 or 2π‘₯π‘₯ 5;some quadratic polynomials with integral coefficients that cannot be factored into anylower degree polynomials with integral coefficients, such as π‘₯π‘₯ 2 1 or π‘₯π‘₯ 2 π‘₯π‘₯ 1.For the purposes of this course, we will assume the following definition of a primepolynomial.Definition 1.2A polynomial with integral coefficients is called prime if one of the following conditionsis true- it is a monomial, or- the only common factors of its terms are 𝟏𝟏 or 𝟏𝟏 and it cannot be factored into anylower degree polynomials with integral coefficients.Definition 1.3A factorization of a polynomial with integral coefficients is complete if all of its factorsare prime.Here is an example of a polynomial factored completely: 6π‘₯π‘₯ 3 10π‘₯π‘₯ 2 4π‘₯π‘₯ 2π‘₯π‘₯(3π‘₯π‘₯ 1)(π‘₯π‘₯ 2)In the next few sections, we will study several factoring strategies that will be helpful infinding complete factorizations of various polynomials.Greatest Common FactorThe first strategy of factoring is to factor out the greatest common factor (GCF).Definition 1.4The greatest common factor (GCF) of two or more terms is the largest expression that isa factor of all these terms.In the above definition, the β€œlargest expression” refers to the expression with the mostfactors, disregarding their signs.To find the greatest common factor, we take the product of the least powers of each type ofcommon factor out of all the terms. For example, suppose we wish to find the GCF of theterms6π‘₯π‘₯ 2 𝑦𝑦 3, 18π‘₯π‘₯ 5 𝑦𝑦, and 24π‘₯π‘₯ 4 𝑦𝑦 2.First, we look for the GCF of 6, 18, and 24, which is 6. Then, we take the lowest powerout of π‘₯π‘₯ 2 , π‘₯π‘₯ 5 , and π‘₯π‘₯ 4 , which is π‘₯π‘₯ 2 . Finally, we take the lowest power out of 𝑦𝑦 3 , 𝑦𝑦, and 𝑦𝑦 2 ,which is 𝑦𝑦. Therefore,GCF(6π‘₯π‘₯ 2 𝑦𝑦 3 , 18π‘₯π‘₯ 5 𝑦𝑦, 24π‘₯π‘₯ 4 𝑦𝑦 2 ) 6π‘₯π‘₯ 2 𝑦𝑦This GCF can be used to factor the polynomial 6π‘₯π‘₯ 2 𝑦𝑦 3 18π‘₯π‘₯ 5 𝑦𝑦 24π‘₯π‘₯ 4 𝑦𝑦 2 by first seeingit as6π‘₯π‘₯ 2 𝑦𝑦 𝑦𝑦 2 6π‘₯π‘₯ 2 𝑦𝑦 3π‘₯π‘₯ 3 6π‘₯π‘₯ 2 𝑦𝑦 4π‘₯π‘₯ 2 𝑦𝑦,Greatest Common Factor and Factoring by Grouping

section F1 216and then, using the reverse distributing property, β€˜pulling’ the 6π‘₯π‘₯ 2 𝑦𝑦 out of the bracket toobtain6π‘₯π‘₯ 2 𝑦𝑦(𝑦𝑦 2 3π‘₯π‘₯ 3 4π‘₯π‘₯ 2 𝑦𝑦).Note 1: Notice that since 1 and 1 are factors of any expression, the GCF is defined upto the sign. Usually, we choose the positive GCF, but sometimes it may be convenient tochoose the negative GCF. For example, we can claim thatGCF( 2π‘₯π‘₯, 4𝑦𝑦) 2 or GCF( 2π‘₯π‘₯, 4𝑦𝑦) 2,depending on what expression we wish to leave after factoring the GCF out: 2π‘₯π‘₯ 4𝑦𝑦 ���𝑝𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺( π‘₯π‘₯ 2𝑦𝑦) or 2π‘₯π‘₯ 4𝑦𝑦 οΏ½οΏ½ 2 (π‘₯π‘₯ 2𝑦𝑦) ��𝑛𝑛𝑛 ��𝑑𝑑𝑑𝑑𝑑𝑑Note 2: If the GCF of the terms of a polynomial is equal to 1, we often say that these termsdo not have any common factors. What we actually mean is that the terms do not have acommon factor other than 1, as factoring 1 out does not help in breaking the originalpolynomial into a product of simpler polynomials. See Definition 1.1.Finding the Greatest Common FactorFind the Greatest Common Factor for the given expressions.a.c.Solutiona.6π‘₯π‘₯ 4 (π‘₯π‘₯ 1)3 , 3π‘₯π‘₯ 3 (π‘₯π‘₯ 1), 9π‘₯π‘₯(π‘₯π‘₯ 1)2π‘Žπ‘Žπ‘π‘ 2 , π‘Žπ‘Ž2 𝑏𝑏, 𝑏𝑏, π‘Žπ‘Žb.d.4πœ‹πœ‹(𝑦𝑦 π‘₯π‘₯), 8πœ‹πœ‹(π‘₯π‘₯ 𝑦𝑦)3π‘₯π‘₯ 1 𝑦𝑦 3 , π‘₯π‘₯ 2 𝑦𝑦 2 𝑧𝑧Since GCF(6, 3, 9) 3, the lowest power out of π‘₯π‘₯ 4 , π‘₯π‘₯ 3 , and π‘₯π‘₯ is π‘₯π‘₯, and the lowestpower out of (π‘₯π‘₯ 1)3 , (π‘₯π‘₯ 1), and (π‘₯π‘₯ 1)2 is (π‘₯π‘₯ 1), thenGCF(6π‘₯π‘₯ 4 (π‘₯π‘₯ 1)3 , 3π‘₯π‘₯ 3 (π‘₯π‘₯ 1), 9π‘₯π‘₯(π‘₯π‘₯ 1)2 ) πŸ‘πŸ‘πŸ‘πŸ‘(𝒙𝒙 𝟏𝟏)b.Since 𝑦𝑦 π‘₯π‘₯ is opposite to π‘₯π‘₯ 𝑦𝑦, then 𝑦𝑦 π‘₯π‘₯ can be written as (π‘₯π‘₯ 𝑦𝑦). So 4, πœ‹πœ‹, and(π‘₯π‘₯ 𝑦𝑦) is common for both expressions. Thus,GCF 4πœ‹πœ‹(𝑦𝑦 π‘₯π‘₯), 8πœ‹πœ‹(π‘₯π‘₯ 𝑦𝑦) πŸ’πŸ’π…π…(𝒙𝒙 π’šπ’š)Note: The Greatest Common Factor is unique up to the sign. Notice that in the aboveexample, we could write π‘₯π‘₯ 𝑦𝑦 as (𝑦𝑦 π‘₯π‘₯) and choose the GCF to be 4πœ‹πœ‹(𝑦𝑦 π‘₯π‘₯).c.The terms π‘Žπ‘Žπ‘π‘ 2 , π‘Žπ‘Ž2 𝑏𝑏, 𝑏𝑏, and π‘Žπ‘Ž have no common factor other than 1, soGCF(π‘Žπ‘Žπ‘π‘ 2 , π‘Žπ‘Ž2 𝑏𝑏, 𝑏𝑏, π‘Žπ‘Ž) 𝟏𝟏Factoring

section F1 d.217The lowest power out of π‘₯π‘₯ 1 and π‘₯π‘₯ 2 is π‘₯π‘₯ 2 , and the lowest power out of 𝑦𝑦 3 and𝑦𝑦 2 is 𝑦𝑦 3 . Therefore,GCF(3π‘₯π‘₯ 1 𝑦𝑦 3 , π‘₯π‘₯ 2 𝑦𝑦 2 𝑧𝑧) 𝒙𝒙 𝟐𝟐 π’šπ’š πŸ‘πŸ‘Factoring out the Greatest Common FactorFactor each expression by taking the greatest common factor out. Simplify the factors, ifpossible.a.c.Solutiona.54π‘₯π‘₯ 2 𝑦𝑦 2 60π‘₯π‘₯𝑦𝑦 3b. π‘₯π‘₯(π‘₯π‘₯ 5) π‘₯π‘₯ 2 (5 π‘₯π‘₯) (π‘₯π‘₯ 5)2d.π‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Ž2 𝑏𝑏(π‘Žπ‘Ž 1)π‘₯π‘₯ 1 2π‘₯π‘₯ 2 π‘₯π‘₯ 3To find the greatest common factor of 54 and 60, we can use the method of dividingby any common factor, as presented below.all commonfactors are listedin this column2 54, 603 27, 309, 10no morecommon factorsfor 9 and 10So, GCF(54, 60) 2 3 6.Since GCF(54π‘₯π‘₯ 2 𝑦𝑦 2 , 60π‘₯π‘₯𝑦𝑦 3 ) 6π‘₯π‘₯𝑦𝑦 2 , we factor the 6π‘₯π‘₯𝑦𝑦 2 out by dividing each termof the polynomial 54π‘₯π‘₯ 2 𝑦𝑦 2 60π‘₯π‘₯𝑦𝑦 3 by 6π‘₯π‘₯𝑦𝑦 2 , as below.54π‘₯π‘₯ 2 𝑦𝑦 2 60π‘₯π‘₯𝑦𝑦 3 πŸ”πŸ”πŸ”πŸ”π’šπ’šπŸπŸ (πŸ—πŸ—πŸ—πŸ— 𝟏𝟏𝟏𝟏𝟏𝟏)54π‘₯π‘₯ 2 𝑦𝑦 2 9π‘₯π‘₯6π‘₯π‘₯𝑦𝑦 260π‘₯π‘₯𝑦𝑦 3 10𝑦𝑦6π‘₯π‘₯𝑦𝑦 2Note: Since factoring is the reverse process of multiplication, it can be checked byfinding the product of the factors. If the product gives us the original polynomial, thefactorization is correct.b.First, notice that the polynomial has two terms, π‘Žπ‘Žπ‘Žπ‘Ž and π‘Žπ‘Ž2 𝑏𝑏(π‘Žπ‘Ž 1). The greatestcommon factor for these two terms is π‘Žπ‘Žπ‘Žπ‘Ž, so we haveπ‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Ž2 𝑏𝑏(π‘Žπ‘Ž 1) π‘Žπ‘Žπ‘Žπ‘Ž 𝟏𝟏 π‘Žπ‘Ž(π‘Žπ‘Ž 1) π‘Žπ‘Žπ‘Žπ‘Ž(1 π‘Žπ‘Ž2 π‘Žπ‘Ž)2 π‘Žπ‘Žπ‘Žπ‘Ž( π‘Žπ‘Ž π‘Žπ‘Ž 1) 𝒂𝒂𝒂𝒂 π’‚π’‚πŸπŸ 𝒂𝒂 𝟏𝟏 remember to leave 1for the first termsimplify and arrangein decreasing powerstake the β€œ β€œ outGreatest Common Factor and Factoring by Grouping

section F1 218Note: Both factorizations, π‘Žπ‘Žπ‘Žπ‘Ž( π‘Žπ‘Ž2 π‘Žπ‘Ž 1) and π‘Žπ‘Žπ‘Žπ‘Ž(π‘Žπ‘Ž2 π‘Žπ‘Ž 1) are correct.However, we customarily leave the polynomial in the bracket with a positive leadingcoefficient.c.Observe that if we write the middle term π‘₯π‘₯ 2 (5 π‘₯π‘₯) as π‘₯π‘₯ 2 (π‘₯π‘₯ 5) by factoring thenegative out of the (5 π‘₯π‘₯), then (5 π‘₯π‘₯) is the common factor of all the terms of theequivalent polynomial π‘₯π‘₯(π‘₯π‘₯ 5) π‘₯π‘₯ 2 (π‘₯π‘₯ 5) (π‘₯π‘₯ 5)2 .Then notice that if we take (π‘₯π‘₯ 5) as the GCF, then the leading term of theremaining polynomial will be positive. So, we factor π‘₯π‘₯(π‘₯π‘₯ 5) π‘₯π‘₯ 2 (5 π‘₯π‘₯) (π‘₯π‘₯ 5)2 π‘₯π‘₯(π‘₯π‘₯ 5) π‘₯π‘₯ 2 (π‘₯π‘₯ 5) (π‘₯π‘₯ 5)2 (π‘₯π‘₯ 5) π‘₯π‘₯ π‘₯π‘₯ 2 (π‘₯π‘₯ 5) simplify and arrangein decreasing powers (𝒙𝒙 πŸ“πŸ“) π’™π’™πŸπŸ 𝟐𝟐𝟐𝟐 πŸ“πŸ“ d.The GCF(π‘₯π‘₯ 1 , 2π‘₯π‘₯ 2 , π‘₯π‘₯ 3 ) π‘₯π‘₯ 3, as 3 is the lowest exponent of the commonfactor π‘₯π‘₯. So, we factor out π‘₯π‘₯ 3 as below.π‘₯π‘₯ 1 2π‘₯π‘₯ 2 π‘₯π‘₯ 3 𝒙𝒙 πŸ‘πŸ‘ π’™π’™πŸπŸ 𝟐𝟐𝟐𝟐 𝟏𝟏 the exponent 2 is found bysubtracting 3 from 1the exponent 1 is found bysubtracting 3 from 2To check if the factorization is correct, we multiplyadd exponentsπ‘₯π‘₯ 3 (π‘₯π‘₯ 2 2π‘₯π‘₯ 1) π‘₯π‘₯ 3 π‘₯π‘₯ 2 2π‘₯π‘₯ 3 π‘₯π‘₯ 1π‘₯π‘₯ 3 π‘₯π‘₯ 1 2π‘₯π‘₯ 2 π‘₯π‘₯ 3Since the product gives us the original polynomial, the factorization is correct.Factoring by GroupingWhen referring to acommon factor, wehave in mind acommon factor otherthan 1.Consider the polynomial π‘₯π‘₯ 2 π‘₯π‘₯ π‘₯π‘₯π‘₯π‘₯ 𝑦𝑦. It consists of four terms that do not have anycommon factors. Yet, it can still be factored if we group the first two and the last two terms.The first group of two terms contains the common factor of π‘₯π‘₯ and the second group of twoterms contains the common factor of 𝑦𝑦. Observe what happens when we factor each group.2π‘₯π‘₯ π‘₯π‘₯ π‘₯π‘₯π‘₯π‘₯ 𝑦𝑦 π‘₯π‘₯(π‘₯π‘₯ 1) 𝑦𝑦(π‘₯π‘₯ 1)Factoring (π‘₯π‘₯ 1)(π‘₯π‘₯ 𝑦𝑦)now (π‘₯π‘₯ 1) is thecommon factor of theentire polynomial

section F1 219This method is called factoring by grouping, in particular, two-by-two grouping.Warning: After factoring each group, make sure to write the β€œ ” or β€œ β€œ between the terms.Failing to write these signs leads to the false impression that the polynomial is alreadyfactored. For example, if in the second line of the above calculations we would fail to writethe middle β€œ ”, the expression would look like a product π‘₯π‘₯(π‘₯π‘₯ 1) 𝑦𝑦(π‘₯π‘₯ 1), which is notthe case. Also, since the expression π‘₯π‘₯(π‘₯π‘₯ 1) 𝑦𝑦(π‘₯π‘₯ 1) is a sum, not a product, we shouldnot stop at this step. We need to factor out the common bracket (π‘₯π‘₯ 1) to leave it as aproduct.A two-by-two grouping leads to a factorization only if the binomials, after factoring outthe common factors in each group, are the same. Sometimes a rearrangement of terms isnecessary to achieve this goal.For example, the attempt to factor π‘₯π‘₯ 3 15 5π‘₯π‘₯ 2 3π‘₯π‘₯ by grouping the first and the lasttwo terms,2π‘₯π‘₯ 3 15 5π‘₯π‘₯ 3π‘₯π‘₯ (π‘₯π‘₯ 3 15) π‘₯π‘₯(5π‘₯π‘₯ 3)does not lead us to a common binomial that could be factored out.However, rearranging terms allows us to factor the original polynomial in the followingways:π‘₯π‘₯ 3 15 5π‘₯π‘₯ 2 3π‘₯π‘₯ π‘₯π‘₯ 3 5π‘₯π‘₯ 2 3π‘₯π‘₯ 15 π‘₯π‘₯ 2 (π‘₯π‘₯ 5) 3(π‘₯π‘₯ 5) (π‘₯π‘₯ 5)(π‘₯π‘₯ 2 3)orπ‘₯π‘₯ 3 15 5π‘₯π‘₯ 2 3π‘₯π‘₯2 π‘₯π‘₯ 3 3π‘₯π‘₯ 5π‘₯π‘₯ 15 π‘₯π‘₯(π‘₯π‘₯ 2 3) 5(π‘₯π‘₯ 2 3) (π‘₯π‘₯ 2 3)(π‘₯π‘₯ 5)Factoring by grouping applies to polynomials with more than three terms. However, not allsuch polynomials can be factored by grouping. For example, if we attempt to factor π‘₯π‘₯ 3 π‘₯π‘₯ 2 2π‘₯π‘₯ 2 by grouping, we obtain3 π‘₯π‘₯ 2 2π‘₯π‘₯ 2π‘₯π‘₯ π‘₯π‘₯ 2 (π‘₯π‘₯ 1) 2(π‘₯π‘₯ 1).Unfortunately, the expressions π‘₯π‘₯ 1 and π‘₯π‘₯ 1 are not the same, so there is no commonfactor to factor out. One can also check that no other rearrangments of terms allows us forfactoring out a common binomial. So, this polynomial cannot be factored by grouping.Factoring by GroupingFactor each polynomial by grouping, if possible. Remember to check for the GCF first.Greatest Common Factor and Factoring by Grouping

section F1 220a.c.Solutiona.2π‘₯π‘₯ 3 6π‘₯π‘₯ 2 π‘₯π‘₯ 32π‘₯π‘₯ 2 𝑦𝑦 8 2π‘₯π‘₯ 2 8𝑦𝑦b.d.5π‘₯π‘₯ 5𝑦𝑦 π‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Žπ‘Žπ‘Žπ‘₯π‘₯ 2 π‘₯π‘₯ 𝑦𝑦 1Since there is no common factor for all four terms, we will attempt the two-by-twogrouping method.32π‘₯π‘₯ 6π‘₯π‘₯ 2 π‘₯π‘₯ 3 2π‘₯π‘₯ 2 (π‘₯π‘₯ 3) 1(π‘₯π‘₯ 3)𝟐𝟐 (𝒙𝒙 πŸ‘πŸ‘) πŸπŸπ’™π’™ 𝟏𝟏 b.write the 1 forthe second termAs before, there is no common factor for all four terms. The two-by-two groupingmethod works only if the remaining binomials after factoring each group are exactlythe same. We can achieve this goal by factoring – π‘Žπ‘Ž , rather than π‘Žπ‘Ž, out of the last twoterms. So,5π‘₯π‘₯ 5𝑦𝑦 π‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Žπ‘Žπ‘Ž 5(π‘₯π‘₯ 𝑦𝑦) π‘Žπ‘Ž(π‘₯π‘₯ 𝑦𝑦)reverse signs whenβ€˜pulling’ a β€œ β€œ out (𝒙𝒙 πŸ‘πŸ‘) πŸπŸπ’™π’™πŸπŸ 𝟏𝟏 c.Notice that 2 is the GCF of all terms, so we factor it out first.2π‘₯π‘₯ 2 𝑦𝑦 8 2π‘₯π‘₯ 2 8𝑦𝑦 2(π‘₯π‘₯ 2 𝑦𝑦 4 π‘₯π‘₯ 2 4𝑦𝑦)Then, observe that grouping the first and last two terms of the remaining polynomialdoes not help, as the two groups do not have any common factors. However,exchanging for example the second with the fourth term will help, as shown below.the square bracket isessential here becauseof the factor of 222 2(π‘₯π‘₯𝑦𝑦 4𝑦𝑦 π‘₯π‘₯ ) 4 2 2[𝑦𝑦(π‘₯π‘₯ 4) (π‘₯π‘₯ 2 𝟐𝟐 π’™π’™πŸπŸ πŸ’πŸ’ (π’šπ’š 𝟏𝟏)d. 4)]reverse signs whenβ€˜pulling’ a β€œ ” outnow, there is no need for the squarebracket as multiplication is associativeThe polynomial π‘₯π‘₯ 2 π‘₯π‘₯ 𝑦𝑦 1 does not have any common factors for all four terms.Also, only the first two terms have a common factor. Unfortunately, when attemptingto factor using the two-by-two grouping method, we obtainπ‘₯π‘₯ 2 π‘₯π‘₯ 𝑦𝑦 1 π‘₯π‘₯(π‘₯π‘₯ 1) (𝑦𝑦 1),which cannot be factored, as the expressions π‘₯π‘₯ 1 and 𝑦𝑦 1 are different.One can also check that no other arrangement of terms allows for factoring of thispolynomial by grouping. So, this polynomial cannot be factored by grouping.Factoring

section F1 221Factoring in Solving FormulasSolutionSolve π‘Žπ‘Žπ‘Žπ‘Ž 3π‘Žπ‘Ž 5 for π‘Žπ‘Ž.First, we move the terms containing the variable π‘Žπ‘Ž to one side of the equation,and then factor π‘Žπ‘Ž outπ‘Žπ‘Žπ‘Žπ‘Ž 3π‘Žπ‘Ž 5π‘Žπ‘Žπ‘Žπ‘Ž 3π‘Žπ‘Ž 5,π‘Žπ‘Ž(𝑏𝑏 3) 5.So, after dividing by 𝑏𝑏 3, we obtain𝒂𝒂 πŸ“πŸ“.𝒃𝒃 πŸ‘πŸ‘F.1 ExercisesVocabulary CheckComplete each blank with the most appropriate term or phrase from the given list:common factor, distributive, grouping, prime, product.1.To factor a polynomial means to write it as a of simpler polynomials.2.The greatest of two or more terms is the product of the least powers ofeach type of common factor out of all the terms.3.To factor out the GCF, we reverse the property of multiplication.4.A polynomial with four terms having no common factors can be still factored by its terms.5.A polynomial, other than a monomial, cannot be factored into two polynomials, both differentthat 1 or 1.Concept Check True or false.6.7.8.The polynomial 6π‘₯π‘₯ 8𝑦𝑦 is prime.123414The factorization π‘₯π‘₯ 𝑦𝑦 (2π‘₯π‘₯ 3𝑦𝑦) is essential to be complete.The GCF of the terms of the polynomial 3(π‘₯π‘₯ 2) π‘₯π‘₯(2 π‘₯π‘₯) is (π‘₯π‘₯ 2)(2 π‘₯π‘₯).Concept Check Find the GCF with a positive coefficient for the given expressions.9.8π‘₯π‘₯π‘₯π‘₯, 10π‘₯π‘₯π‘₯π‘₯, 14π‘₯π‘₯π‘₯π‘₯11. 4π‘₯π‘₯(π‘₯π‘₯ 1), 3π‘₯π‘₯ 2 (π‘₯π‘₯ 1)13. 9(π‘Žπ‘Ž 5), 12(5 π‘Žπ‘Ž)10. 21π‘Žπ‘Ž3 𝑏𝑏6 , 35π‘Žπ‘Ž7 𝑏𝑏5 , 28π‘Žπ‘Ž5 𝑏𝑏 812. π‘₯π‘₯(π‘₯π‘₯ 3)2 , π‘₯π‘₯ 2 (π‘₯π‘₯ 3)(π‘₯π‘₯ 2)14. (π‘₯π‘₯ 2𝑦𝑦)(π‘₯π‘₯ 1), (2𝑦𝑦 π‘₯π‘₯)(π‘₯π‘₯ 1)Greatest Common Factor and Factoring by Grouping

section F1 22215. 3π‘₯π‘₯ 2 𝑦𝑦 3 , 6π‘₯π‘₯ 3 𝑦𝑦 516. π‘₯π‘₯ 2 (π‘₯π‘₯ 2) 2 , π‘₯π‘₯ 4 (π‘₯π‘₯ 2) 1Factor out the greatest common factor. Leave the remaining polynomial with a positive leading coeficient.Simplify the factors, if possible.17. 9π‘₯π‘₯ 2 81π‘₯π‘₯20. 6π‘Žπ‘Ž3 36π‘Žπ‘Ž4 18π‘Žπ‘Ž223. π‘Žπ‘Ž(π‘₯π‘₯ 2) 𝑏𝑏(π‘₯π‘₯ 2)18. 8π‘˜π‘˜ 3 24π‘˜π‘˜21. 10π‘Ÿπ‘Ÿ 2 𝑠𝑠 2 15π‘Ÿπ‘Ÿ 4 𝑠𝑠 226. (𝑛𝑛 2)(𝑛𝑛 3) (𝑛𝑛 2)(𝑛𝑛 3)28. (4π‘₯π‘₯ 𝑦𝑦) 4π‘₯π‘₯(𝑦𝑦 4π‘₯π‘₯)27. 𝑦𝑦(π‘₯π‘₯ 1) 5(1 π‘₯π‘₯)29. 4(3 π‘₯π‘₯)2 (3 π‘₯π‘₯)3 3(3 π‘₯π‘₯)Factor out the least power of each variable.34. 3𝑝𝑝 5 𝑝𝑝 3 2𝑝𝑝 222. 5π‘₯π‘₯ 2 𝑦𝑦 3 10π‘₯π‘₯ 3 𝑦𝑦 224. π‘Žπ‘Ž(𝑦𝑦 2 3) 2(𝑦𝑦 2 3)25. (π‘₯π‘₯ 2)(π‘₯π‘₯ 3) (π‘₯π‘₯ 2)(π‘₯π‘₯ 5)31. 3π‘₯π‘₯ 3 π‘₯π‘₯ 219. 6𝑝𝑝3 3𝑝𝑝2 9𝑝𝑝430. 2(𝑝𝑝 3) 4(𝑝𝑝 3)2 (𝑝𝑝 3)332. π‘˜π‘˜ 2 2π‘˜π‘˜ 433. π‘₯π‘₯ 4 2π‘₯π‘₯ 3 7π‘₯π‘₯ 2Factor by grouping, if possible.35. 3π‘₯π‘₯ 3 𝑦𝑦 π‘₯π‘₯ 2 𝑦𝑦 236. 5π‘₯π‘₯ 2 𝑦𝑦 3 2π‘₯π‘₯ 1 𝑦𝑦 237. 20 5π‘₯π‘₯ 12𝑦𝑦 3π‘₯π‘₯π‘₯π‘₯38. 2π‘Žπ‘Ž3 π‘Žπ‘Ž2 14π‘Žπ‘Ž 739. π‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Žπ‘Žπ‘Ž 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏43. 3𝑝𝑝2 9𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝 3π‘žπ‘ž 244. 3π‘₯π‘₯ 2 π‘₯π‘₯ 2 𝑦𝑦 𝑦𝑦𝑧𝑧 2 3𝑧𝑧 245. 2π‘₯π‘₯ 3 π‘₯π‘₯ 2 4π‘₯π‘₯ 240. 2π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯ 2 𝑦𝑦 6 3π‘₯π‘₯46. π‘₯π‘₯ 2 𝑦𝑦 2 π‘Žπ‘Žπ‘Žπ‘Ž π‘Žπ‘Žπ‘¦π‘¦ 2 𝑏𝑏π‘₯π‘₯ 249. π‘₯π‘₯π‘₯π‘₯ 6𝑦𝑦 3π‘₯π‘₯ 1841. 3π‘₯π‘₯ 2 4π‘₯π‘₯π‘₯π‘₯ 6π‘₯π‘₯π‘₯π‘₯ 8𝑦𝑦 242. π‘₯π‘₯ 3 π‘₯π‘₯π‘₯π‘₯ 𝑦𝑦 2 π‘₯π‘₯ 2 𝑦𝑦48. π‘₯π‘₯ 2 𝑦𝑦 π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯ 𝑦𝑦47. π‘₯π‘₯π‘₯π‘₯ π‘Žπ‘Žπ‘Žπ‘Ž 𝑏𝑏𝑏𝑏 π‘Žπ‘Žπ‘Žπ‘Ž50. π‘₯π‘₯ 𝑛𝑛 𝑦𝑦 3π‘₯π‘₯ 𝑛𝑛 𝑦𝑦 551. π‘Žπ‘Žπ‘›π‘› π‘₯π‘₯ 𝑛𝑛 2π‘Žπ‘Žπ‘›π‘› π‘₯π‘₯ 𝑛𝑛 2Factor completely. Remember to check for the GCF first.52. 5π‘₯π‘₯ 5π‘Žπ‘Žπ‘Žπ‘Ž 5π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 5𝑏𝑏𝑏𝑏54. π‘₯π‘₯ 4 (π‘₯π‘₯ 1) π‘₯π‘₯ 3 (π‘₯π‘₯ 1) π‘₯π‘₯ 2 π‘₯π‘₯Discussion Point53. 6π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ 14𝑠𝑠 6π‘Ÿπ‘Ÿ 1455. π‘₯π‘₯ 3 (π‘₯π‘₯ 2)2 2π‘₯π‘₯ 2 (π‘₯π‘₯ 2) (π‘₯π‘₯ 2)(π‘₯π‘₯ 2)56. One of possible factorizations of the polynomial 4π‘₯π‘₯ 2 𝑦𝑦 5 8π‘₯π‘₯𝑦𝑦 3 is 2π‘₯π‘₯𝑦𝑦 3 (2π‘₯π‘₯𝑦𝑦 2 4). Is this a completefactorization?Use factoring the GCF strategy to solve each formula for the indicated variable.57. 𝐴𝐴 𝑷𝑷 π‘·π‘·π‘Ÿπ‘Ÿ, for 𝑷𝑷59. 2𝒕𝒕 𝑐𝑐 π‘˜π‘˜π’•π’•, for 𝒕𝒕Factoring121258. 𝑀𝑀 π’‘π’‘π‘žπ‘ž π’‘π’‘π‘Ÿπ‘Ÿ, for 𝒑𝒑60. π‘€π‘€π’šπ’š 3π’šπ’š π‘₯π‘₯, for π’šπ’š

section F1 Analytic Skills61.4π‘₯π‘₯Write the area of each shaded region in factored οΏ½οΏ½οΏ½π‘Ÿπ‘Ÿπ‘ŸGreatest Common Factor and Factoring by Grouping

Factoring . Factoring. Factoring is the reverse process of multiplication. Factoring polynomials in algebra has similar role as factoring numbers in arithmetic. Any number can be expressed as a product of prime numbers. For example, 2 3. 6 Similarly, any

Related Documents:

method for factoring trinomials (polynomials with three terms). In order to completely discuss trinomials, I will first talk about the greatest common factor and factoring by grouping. Greatest Common Factor (GCF) – Every pair of numbers, or terms of a polynomial, has what is referred to as the greatest common factor. The GCF is the largest .

Factoring Polynomials Martin-Gay, Developmental Mathematics 2 13.1 – The Greatest Common Factor 13.2 – Factoring Trinomials of the Form x2 bx c 13.3 – Factoring Trinomials of the Form ax 2 bx c 13.4 – Factoring Trinomials of the Form x2 bx c by Grouping 13.5 – Factoring Perfect Square Trinomials and Difference of Two Squares

The greatest common factor (GCF) of two or more numbers is the greatest number that is a factor of all of the numbers. You can also refer to the greatest common factor of two or more numbers as the greatest common divisor (GCD). Finding the Greatest Common Factor Using Listing Method Simila

Grouping & Case II Factoring Factoring by Grouping: A new type of factoring is factoring by grouping. This type of factoring requires us to see structure in expressions. We usually factor by grouping when we have a polynomial that has four or more terms. Example Steps x3 2x2 3x 6 1. _ terms together that have

The first step in factoring a polynomial is to find and factor out the GCF (Greatest Common Factor). Finding the Greatest Common Factor (GCF) Step 1: Factor. Write each term in prime factored form. Step 2: List common factors. List each prime factor that is common in every term in the list. Step 3: Choose least exponent.

Section P.5 Factoring Polynomials 49 1 Factor out the greatest common factor of a polynomial. 2 Factor by grouping. Factoring is the process of writing a polynomial as the product of two or more polynomials.The factors of are and In this section, we will be factoring over the set of integers,meaning that the coefficients in the factors are integers.

241 Algebraic equations can be used to solve a large variety of problems involving geometric relationships. 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring Trinomials of the Form x2 bx c 5.4 Factoring Trinomials of the Form ax2 bx c 5.5 Factoring, Solving Equations, and Problem Solving

Courses Taught: Financial Accounting and Management BOOK PUBLICATIONS Using Financial Statements: Analyzing, Forecasting, and Decision-Making, 2nd Edition, Business Expert Press, forthcoming 2018 (available in both hardcopy and digital formats). Financial Accounting, 17th Edition, (with Professors Williams & Carcello), McGraw-Hill/Irwin, 2017,