Dimensional Analysis - University Of Iowa

2y ago
5 Views
3 Downloads
1.09 MB
40 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Rosemary Rios
Transcription

Dimensional Analysis11. 3. 2014Hyunse Yoon, Ph.D.Assistant Research ScientistIIHR-Hydroscience & Engineeringe-mail: hyun-se-yoon@uiowa.edu

Dimensions and Units Dimension: A measure of a physical quantity– 𝑀𝑀𝑀𝑀𝑀𝑀 system: Mass (𝑀𝑀), Length (𝐿𝐿), Time (𝑇𝑇)– 𝐹𝐹𝐹𝐹𝐹𝐹 system: Force (𝐹𝐹 𝑀𝑀𝑀𝑀𝑇𝑇 2 ), Length (L), Time (T) Unit: A way to assign a number to that 𝐿𝑇𝑇SI UnitBG Unitkg (kilogram)lb (pound)m (meter)ft (feet)s (second)s (second)2

The Principle of DimensionalHomogeneity (PDH) Every additive terms in an equation must have the same dimensionsEx) Displacement of a falling body1𝑧𝑧 𝑧𝑧0 𝑉𝑉0 𝑑𝑑 𝑔𝑔𝑑𝑑 22𝐿𝐿𝐿𝐿 𝐿𝐿 𝑇𝑇– 𝑧𝑧0 : Initial distance at 𝑑𝑑 0– 𝑉𝑉0 : Initial velocity𝐿𝐿𝑇𝑇 2𝑇𝑇𝑇𝑇 23

Nondimensionalization Nondimensionalization: Removal of units from physical quantities by asuitable substitution of variablesNondimensionalized equation: Each term in an equation is dimensionlessE.g.) Displacement of a falling bodyLet:𝑧𝑧𝐿𝐿𝑧𝑧 ̇𝑧𝑧0𝐿𝐿Substitute into the equation,Then, divide by 𝑧𝑧0 , 1𝑉𝑉𝑑𝑑𝐿𝐿𝑇𝑇𝑇𝑇0𝑑𝑑 ̇𝐿𝐿𝑧𝑧0 1𝑑𝑑𝑧𝑧𝑑𝑑𝑧𝑧00 𝑔𝑔𝑧𝑧 𝑧𝑧0 𝑧𝑧0 𝑉𝑉0𝑉𝑉02𝑉𝑉01 2𝑧𝑧 1 𝑑𝑑 𝑑𝑑 ,2𝛼𝛼 2𝑉𝑉02𝛼𝛼 𝑔𝑔𝑧𝑧04

Dimensional vs. Non-dimensional Equation Dimensional equationor1 2𝑧𝑧 𝑧𝑧0 𝑉𝑉0 𝑑𝑑 𝑔𝑔𝑑𝑑2𝐹𝐹 𝑧𝑧, 𝑧𝑧0 , 𝑉𝑉0 , 𝑔𝑔, 𝑑𝑑 0 5 variables Non-dimensional equationor1 2𝑧𝑧 1 𝑑𝑑 𝑑𝑑2𝛼𝛼 𝑓𝑓 𝑧𝑧 , 𝑑𝑑 , 𝛼𝛼 0 3 variables5

Advantages of NondimensionalizationDimensional: (a) 𝑉𝑉0 fixed at 4 m/s and(b) 𝑧𝑧0 fixed at 10 m𝑉𝑉02𝛼𝛼 𝑔𝑔𝑧𝑧0Non-dimensional: (a) and (b) arecombined into one plot6

Dimensional Analysis A process of formulating fluid mechanics problems in terms ofnon-dimensional variables and parameters1. Reduction in variables𝐹𝐹 𝐴𝐴1 , 𝐴𝐴2 , , 𝐴𝐴𝑛𝑛 0,𝐴𝐴𝑖𝑖 dimensional variables𝑓𝑓 Ξ 1 , Ξ 2 , , Ξ π‘Ÿπ‘Ÿ 𝑛𝑛 0, Π𝑖𝑖 non-dimensional parameters2. Helps in understanding physics3. Useful in data analysis and modeling4. Fundamental to concepts of similarity and modeltesting7

Buckingham Pi Theorem IF a physical process satisfies the PDH and involves 𝒏𝒏 dimensionalvariables, it can be reduced to a relation between only 𝒓𝒓 dimensionlessvariables or Π’s.The reduction, π’Žπ’Ž 𝒏𝒏 𝒓𝒓, equals the maximum number of variables thatdo not form a pi among themselves and is always less than or equal to thenumber of dimensions describing the variables.𝑛𝑛 Number of dimensional variablesπ‘šπ‘š Minimum number of dimensions to describe the variablesπ‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š Number of non-dimensional variables8

Methods for determining Π’s1. Functional relationship methoda.b.c.Inspection (Intuition; Appendix A)Exponent method (Also called as the method of repeating variables)Step-by-step method (Appendix B)2. Non-dimensionalize governing differential equations (GDE’s)and initial (IC) and boundary (BC) conditions9

Exponent Method(or Method of Repeating Variables) Step 1: List all the variables that are involved in the problem.Step 2: Express each of the variables in terms of basic dimensions.Step 3: Determine the required number of pi terms.Step 4: Select a number of repeating variables, where the numberrequired is equal to the number of reference dimensions.Step 5: Form a pi term by multiplying one of the nonrepeating variables bythe product of the repeating variables, each raised to an exponent thatwill make the combination dimensionless.Step 6: Repeat Step 5 for each of the remaining nonrepeating variables.Step 7: Check all the resulting pi terms to make sure they aredimensionless.Step 8: Express the final form as a relationship among the pi terms, andthink about what it means.10

Example 111

Steps 1 through 3 Step 1: List all the variables that are involved in the problem.Δ𝑝𝑝 𝑓𝑓 𝐷𝐷, β„“, 𝑉𝑉, πœ‡πœ‡Step 2: Express each of the variables in terms of basic dimensions.VariableUnitDimension Ξ”π‘π‘π·π·β„“π‘‰π‘‰πœ‡πœ‡N/m2mmm/sN s/m2𝑀𝑀𝐿𝐿 1 𝑇𝑇 2𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 1𝑀𝑀𝐿𝐿 1 𝑇𝑇 1Step 3: Determine the required number of pi terms.𝑛𝑛 5 for π›₯π›₯π›₯π›₯, 𝐷𝐷, β„“, 𝑉𝑉, and πœ‡πœ‡π‘šπ‘š 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 π‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š 5 3 2 (i.e., 2 pi terms)12

Step 4 Select a number of repeating variables, where the number required isequal to the number of reference dimensions (for this example, π‘šπ‘š 3).All of the required reference dimensions must be included within thegroup of repeating variables, and each repeating variable must bedimensionally independent of the others (The repeating variables cannotthemselves be combined to form a dimensionless product).Do NOT choose the dependent variable as one of the repeating variables,since the repeating variables will generally appear in more than one piterm. (𝐷𝐷, 𝑉𝑉, πœ‡πœ‡) for (𝐿𝐿, 𝑇𝑇, 𝑀𝑀), respectively13

Step 5 Combine 𝐷𝐷, 𝑉𝑉, πœ‡πœ‡ with one additional variable (Δ𝑝𝑝 or β„“), in sequence, to find the two piproductsΞ 1 𝐷𝐷 π‘Žπ‘Ž 𝑉𝑉 𝑏𝑏 πœ‡πœ‡π‘π‘ Δ𝑝𝑝 𝐿𝐿Equate �𝑇):Solve for,Therefore, 𝑀𝑀𝑐𝑐 1π‘Žπ‘ŽπΏπΏπ‘‡π‘‡ 1𝑏𝑏𝑀𝑀𝐿𝐿 1 𝑇𝑇 1𝑐𝑐𝑀𝑀𝐿𝐿 1 𝑇𝑇 2𝐿𝐿 π‘Žπ‘Ž 𝑏𝑏 𝑐𝑐 1 𝑇𝑇 𝑏𝑏 𝑐𝑐 2 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0𝑐𝑐 1 0π‘Žπ‘Ž 𝑏𝑏 𝑐𝑐 1 0 𝑏𝑏 𝑐𝑐 2 0π‘Žπ‘Ž 1𝑏𝑏 1𝑐𝑐 1Ξ 1 𝐷𝐷𝑉𝑉 1 πœ‡πœ‡ 1 Δ𝑝𝑝 Ξ”π‘π‘π‘π‘πœ‡πœ‡πœ‡πœ‡14

Step 6 Repeat Step 5 for each of the remaining nonrepeating variables.Ξ 2 π·π·π‘Žπ‘Ž 𝑉𝑉 𝑏𝑏 πœ‡πœ‡π‘π‘ β„“ 𝐿𝐿Equate �𝑇):Solve for,Therefore,π‘Žπ‘ŽπΏπΏπ‘‡π‘‡ 1𝑏𝑏𝑀𝑀𝐿𝐿 1 𝑇𝑇 1 𝑀𝑀𝑐𝑐 πΏπΏπ‘Žπ‘Ž 𝑏𝑏 𝑐𝑐 1 𝑇𝑇 𝑏𝑏 𝑐𝑐 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0𝑐𝑐𝐿𝐿𝑐𝑐 0π‘Žπ‘Ž 𝑏𝑏 𝑐𝑐 1 0 𝑏𝑏 𝑐𝑐 0π‘Žπ‘Ž 1𝑏𝑏 0𝑐𝑐 0Ξ 2 𝐷𝐷 1 𝑉𝑉 0 πœ‡πœ‡0 β„“ ℓ𝐷𝐷15

Step 7 Check all the resulting pi terms.One good way to do this is to express the variables in terms of 𝐹𝐹, 𝐿𝐿, 𝑇𝑇 ifthe basic dimensions 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 were used initially, or vice οΏ½UnitN/m2mmm/sN s/m2Dimension𝐹𝐹𝐿𝐿 2𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 1𝐹𝐹𝐹𝐹𝐿𝐿 2Δ𝑝𝑝𝑝𝑝𝐹𝐹𝐿𝐿 2 𝐿𝐿0 0 0Ξ 1 Μ‡ ̇𝐹𝐹𝐿𝐿 π‘‡π‘‡πœ‡πœ‡πœ‡πœ‡πΉπΉπΉπΉπΏπΏ 2 𝐿𝐿𝑇𝑇 1ℓ𝐿𝐿 Μ‡ 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0Ξ 2 ̇𝐷𝐷𝐿𝐿16

Step 8 Express the final form as a relationship among the pi terms.Ξ 1 𝑓𝑓 Ξ 2or Think about what it means.Since Δ𝑝𝑝 β„“,where 𝐢𝐢 is a constant. Thus,Δ𝑝𝑝𝑝𝑝ℓ β„“ 𝐢𝐢 πœ‡πœ‡πœ‡πœ‡π·π·Ξ”π‘π‘ 1𝐷𝐷217

Problems with One Pi Term The functional relationship that must exist for one pi term iswhere 𝐢𝐢 is a constant.Π 𝐢𝐢 In other words, if only one pi term is involved in a problem, itmust be equal to a constant.18

Example 2πœ”πœ” 𝑓𝑓 𝐷𝐷, π‘šπ‘š, 𝛾𝛾19

Steps 1 through gN/m3Dimension𝑇𝑇 1𝐿𝐿𝑀𝑀𝑀𝑀𝐿𝐿 2 𝑇𝑇 2𝑛𝑛 4 for πœ”πœ”, 𝐷𝐷, π‘šπ‘š, and π›Ύπ›Ύπ‘šπ‘š 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 π‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š 4 3 1 (i.e., 1 pi term)π‘šπ‘š repeating variables 𝐷𝐷, π‘šπ‘š, 𝛾𝛾20

Step 5 (and 6)Ξ  𝐷𝐷 π‘Žπ‘Ž π‘šπ‘šπ‘π‘ 𝛾𝛾 𝑐𝑐 πœ”πœ” 𝐿𝐿Equate �𝑇): 𝑀𝑀𝑏𝑏 π‘π‘π‘Žπ‘Žπ‘€π‘€π‘π‘π‘€π‘€πΏπΏ 2 𝑇𝑇 2𝑐𝑐𝐿𝐿 π‘Žπ‘Ž 2𝑐𝑐 𝑇𝑇 2𝑐𝑐 1 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0𝑇𝑇 1𝑏𝑏 𝑐𝑐 0π‘Žπ‘Ž 2𝑐𝑐 0 2𝑐𝑐 1 0or,π‘Žπ‘Ž 1𝑏𝑏 1121𝑐𝑐 Ξ  𝐷𝐷 1 π‘šπ‘š2 𝛾𝛾 2 πœ”πœ” 12πœ”πœ” π‘šπ‘šπ·π· 𝛾𝛾21

Steps 7 through 8Ξ  πœ”πœ” π‘šπ‘šπ·π·π›Ύπ›Ύ Μ‡The dimensionless function iswhere 𝐢𝐢 is a constant. Thus,𝑇𝑇 1𝐿𝐿𝐹𝐹𝐿𝐿 1 𝑇𝑇 2𝐹𝐹𝐿𝐿 3 Μ‡ 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0πœ”πœ” π‘šπ‘š 𝐢𝐢𝐷𝐷 π›Ύπ›Ύπœ”πœ” 𝐢𝐢 𝐷𝐷Therefore, if π‘šπ‘š is increased πœ”πœ” will decrease.π›Ύπ›Ύπ‘šπ‘š22

Example 3Δ𝑝𝑝 𝑓𝑓 𝑅𝑅, 𝜎𝜎23

Example 3 ��𝜎N/m2mN/m𝑀𝑀𝐿𝐿 1 𝑇𝑇 2𝐿𝐿𝑀𝑀𝑇𝑇 2π‘šπ‘š 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 π‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š 3 3 0 No pi term?24

Example 3 –Contd. Since the repeating variables form a pi among them:Δ𝑝𝑝𝑝𝑝𝑀𝑀𝐿𝐿 1 𝑇𝑇 2 𝐿𝐿0 0 0 Μ‡ ̇𝑀𝑀𝐿𝐿 π‘‡π‘‡πœŽπœŽπ‘€π‘€π‘‡π‘‡ 2π‘šπ‘š should be reduced to 2 for 𝑀𝑀𝑇𝑇 2 and 𝐿𝐿.25

Example 3 –Contd.Select 𝑅𝑅 and 𝜎𝜎 as the repeating variables:Thus,or,Hence,Ξ  π‘…π‘…π‘Žπ‘Ž 𝜎𝜎 𝑏𝑏 Δ𝑝𝑝 �𝑇𝑇 2𝑏𝑏𝑏𝑏 1 0π‘Žπ‘Ž 1 0 2𝑏𝑏 2 0𝑀𝑀𝐿𝐿 1 𝑇𝑇 2 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0π‘Žπ‘Ž 1 and 𝑏𝑏 1Ξ  Ξ”π‘π‘π‘π‘πœŽπœŽ26

Example 3 –Contd. Alternatively, by using the 𝐹𝐹𝐹𝐹𝐹𝐹 /mDimension𝐹𝐹𝐿𝐿 2𝐿𝐿𝐹𝐹𝐿𝐿 1𝑛𝑛 3 for Δ𝑝𝑝, 𝑅𝑅, and πœŽπœŽπ‘šπ‘š 2 for 𝐹𝐹 and 𝐿𝐿 π‘Ÿπ‘Ÿ 3 2 1 1 pi term27

Example 3 –Contd.With the 𝐹𝐹𝐹𝐹𝐹𝐹 system:Thus,or,Hence,Ξ 1 π‘…π‘…π‘Žπ‘Ž 𝜎𝜎 𝑏𝑏 Δ𝑝𝑝 𝐿𝐿𝐹𝐹:𝐿𝐿:π‘Žπ‘ŽπΉπΉπΏπΏ 11 𝑏𝑏 0 2 π‘Žπ‘Ž 𝑏𝑏 0𝑏𝑏𝐹𝐹𝐿𝐿 2 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0π‘Žπ‘Ž 1 and 𝑏𝑏 1Ξ  Ξ”π‘π‘π‘π‘πœŽπœŽ28

Common Dimensionless Parametersfor Fluid Flow Problems Most common physical quantities of importance in fluid flowproblems are (without heat οΏ½π‘‰πœŒπœŒπΏπΏπ‘‡π‘‡ 1𝑀𝑀𝐿𝐿 3Viscosity Gravityπœ‡πœ‡π‘€π‘€πΏπΏ 1 𝑇𝑇 1𝑔𝑔𝐿𝐿𝑇𝑇 ��𝐾𝐾Δ𝑝𝑝𝑀𝑀𝑇𝑇 2𝑀𝑀𝐿𝐿 1 𝑇𝑇 2𝑀𝑀𝐿𝐿 2 𝑇𝑇 2𝑛𝑛 8 variablesπ‘šπ‘š 3 dimension π‘Ÿπ‘Ÿ 𝑛𝑛 - π‘šπ‘š 5 pi terms (𝑅𝑅𝑅𝑅, 𝐹𝐹𝐹𝐹, π‘Šπ‘Šπ‘Šπ‘Š, 𝑀𝑀𝑀𝑀, 𝐢𝐢𝑝𝑝 )29

1) Reynolds number πœŒπœŒπœŒπœŒπœŒπœŒπ‘…π‘…π‘…π‘… πœ‡πœ‡Generally of importance in all types of fluid dynamics problemsA measure of the ratio of the inertia force to the viscous forceInertia force π‘šπ‘šπ‘šπ‘š Viscous force 𝜏𝜏𝜏𝜏 ���𝐿 πœŒπœŒπœŒπœŒπœŒπœŒπœ‡πœ‡πΏπΏ2𝑉𝑉 – If 𝑅𝑅𝑅𝑅 1 (referred to as β€œcreeping flow”), fluid density is less important– If 𝑅𝑅𝑅𝑅 is large, may neglect the effect of ���𝑐 distinguishes among flow regions: laminar or turbulent value variesdepending upon flow situation30

2) Froude number𝐹𝐹𝐹𝐹 𝑉𝑉𝑔𝑔𝑔𝑔Important in problems involving flows with free surfacesA measure of the ratio of the inertia force to the gravity force (i.e., theweight of fluid)Inertia force π‘šπ‘šπ‘šπ‘š Gravity force 𝛾𝛾𝑉𝑉𝑉𝑉2𝐿𝐿 π‘‰π‘‰πœŒπœŒπœŒπœŒ 𝐿𝐿3π‘”π‘”π‘”π‘”πœŒπœŒπΏπΏ3𝑉𝑉 31

3) Weber number πœŒπœŒπ‘‰π‘‰ 2 πΏπΏπ‘Šπ‘Šπ‘Šπ‘Š 𝜎𝜎Problems in which there is an interface between two fluids where surfacetension is importantAn index of the inertial force to the surface tension forceπ‘šπ‘šπ‘šπ‘šInertia force Surface tension force 𝜎𝜎𝜎𝜎𝜌𝜌𝐿𝐿3𝑉𝑉 πœŽπœŽπœŽπœŽπ‘‰π‘‰2𝐿𝐿 πœŒπœŒπ‘‰π‘‰ 𝐿𝐿𝜎𝜎Important parameter at gas-liquid or liquid-liquid interfaces and whenthese surfaces are in contact with a boundary32

4) Mach number𝑀𝑀𝑀𝑀 π‘‰π‘‰π‘˜π‘˜ 𝜌𝜌 π‘‰π‘‰π‘Žπ‘Žπ‘Žπ‘Ž: speed of sound in a fluid (a symbol 𝑐𝑐 is also used)Problems in which the compressibility of the fluid is importantAn index of the ratio of inertial forces to compressibility forcesπ‘‰π‘‰πœŒπœŒπΏπΏ3 𝑉𝑉 Inertia forceπ‘šπ‘šπ‘šπ‘šπ‘‰π‘‰ 2𝐿𝐿 2Compressibility force πœŒπœŒπ‘π‘ 2 𝐿𝐿2πœŒπœŒπ‘π‘ 2 𝐿𝐿2𝑐𝑐 (Note: Cauchy number, 𝐢𝐢𝐢𝐢 𝑉𝑉 2 𝑐𝑐 2 π‘€π‘€π‘Žπ‘Ž2 )Paramount importance in high speed flow (𝑉𝑉 𝑐𝑐)If 𝑀𝑀𝑀𝑀 0.3, flow can be considered as incompressible33

5) Pressure Coefficient𝐢𝐢𝑝𝑝 Ξ”π‘π‘πœŒπœŒπ‘‰π‘‰ 2Problems in which pressure differences, or pressure, are of interestA measure of the ratio of pressure forces to inertial forcesPressure force Δ𝑝𝑝𝐿𝐿2Δ𝑝𝑝𝐿𝐿2Δ𝑝𝑝 𝑉𝑉Inertia forceπ‘šπ‘šπ‘šπ‘šπœŒπœŒπ‘‰π‘‰ 2𝜌𝜌𝐿𝐿3 𝑉𝑉 𝐿𝐿 Euler number: Cavitation number:𝑝𝑝𝐸𝐸𝐸𝐸 πœŒπœŒπ‘‰π‘‰ 2𝐢𝐢𝐢𝐢 𝑝𝑝 𝑝𝑝𝑣𝑣1πœŒπœŒπ‘‰π‘‰ 2234

Appendix A: Inspection Method Steps 1 through 3 of the exponent method are the same:Δ𝑝𝑝ℓ 𝑓𝑓 𝐷𝐷, 𝜌𝜌, πœ‡πœ‡, 𝑉𝑉Δ𝑝𝑝ℓ𝐹𝐹𝐿𝐿 3𝐷𝐷𝐿𝐿𝜌𝜌𝐹𝐹𝐿𝐿 4 𝑇𝑇 2πœ‡πœ‡πΉπΉπΏπΏ 2 𝑇𝑇𝑉𝑉𝐿𝐿𝑇𝑇 1π‘Ÿπ‘Ÿ 𝑛𝑛 π‘šπ‘š 5 3 235

Appendix A: Inspection Method – Contd. Let Ξ 1 contain the dependent variable (Δ𝑝𝑝ℓ in this example)Then, combine it with other variables so that a non-dimensional product will result:To cancel 𝐹𝐹,To cancel 𝑇𝑇,Then, to cancel 𝐿𝐿,𝐹𝐹𝐿𝐿 3𝐿𝐿Δ𝑝𝑝ℓ Μ‡ Μ‡ 2π‘‡π‘‡πœŒπœŒπΉπΉπΏπΏ 4 𝑇𝑇 2Δ𝑝𝑝ℓ 1𝐿𝐿 ̇𝑇𝑇 2𝜌𝜌 𝑉𝑉 2Δ𝑝𝑝ℓ1𝐷𝐷 Μ‡πΏπΏπœŒπœŒπ‘‰π‘‰ 2 Ξ 1 1𝐿𝐿𝑇𝑇 12 ̇𝐿𝐿 Μ‡ 𝐿𝐿01𝐿𝐿Δ𝑝𝑝ℓ π·π·πœŒπœŒπ‘‰π‘‰ 236

Appendix A: Inspection Method – Contd. Select the variable that was not used in Ξ 1 , which in this case πœ‡πœ‡, and repeat theprocess:To cancel 𝐹𝐹,To cancel 𝑇𝑇,Then, to cancel 𝐿𝐿,πœ‡πœ‡πΉπΉπΏπΏ 2 𝑇𝑇𝐿𝐿2 Μ‡ Μ‡πœŒπœŒπΉπΉπΏπΏ 4 𝑇𝑇 2π‘‡π‘‡πœ‡πœ‡ 1𝐿𝐿2 Μ‡π‘‡π‘‡πœŒπœŒ π‘‰π‘‰πœ‡πœ‡ 1 Μ‡ πΏπΏπœŒπœŒπ‘‰π‘‰ 𝐷𝐷 Ξ 2 1 Μ‡ 𝐿𝐿𝐿𝐿𝑇𝑇 11 Μ‡ 7

Appendix B: Step-by-step Method**by Ipsen (1960). The pi theorem and Ipsen method are quite different. Both are useful and interesting.38

Appendix B: Step-by-step Method – Contd.39

Appendix B: Step-by-step Method – Contd.40

Nov 03, 2014Β Β· Dimensional Analysis 11. 3. 2014 . Hyunse Yoon, Ph.D. Assistant Research Scientist . IIHR-Hydros

Related Documents:

Iowa Chapter, American Academy of Pediatrics Iowa Dental Association Iowa Department of Public Health Iowa Health Care Association Iowa Hospital Association Iowa Medical Society Iowa Nurses Association Iowa Pharmacy Association Iowa Veterinary Medical Association Iowaβ€˜s Statewide Epidemiology Education and Consultation Program State Hygienic .

Agricultural Biotechnology Stewardship Technical Committee (ABSTC), Iowa Corn Growers Association (ICGA), the Iowa Chapter of the American Society of Farm Managers and Rural Appraisers (ASFMRA), Iowa Farm Bureau Federation (IFBF), Iowa Independent Crop Consultants Association, Iowa Institute for Cooperatives (IIC), Iowa Soybean Association (ISA),

UPPER IOWA IS A University That is Committed To Bringing Higher Education to The Student Fayette Upper Iowa University was founded in Fayette, Iowa, in 1857 by Elizabeth Alexander as a co-ed college with a mission of providing access to reasonably priced, quality education. Today Upper Iowa University is the second largest private university in

AERLP Description Created by Iowa legislature in May 1996 1997 Iowa Code, Section 476.46 Amendment to the 1990 Iowa Energy Efficiency Act Funded via Iowa’s investor-owned utilities Competitive application process Eligibility All individuals and groups except Iowa’s gas and electric utilities that are not required to be rate regulated

c. Commitment to Iowa Trauma System and EMS activities, for example Iowa Trauma Coordinators, American College of Surgeons (ACS), Iowa Chapter Committee on Trauma, Iowa Chapter of American College of Emergency Physicians (ACEP), Iowa Emergency Medical Service Association (IEMSA),Trauma System Advisory Council (TSAC), System Evaluation Quality

Iowa Department of Public Health Text4baby Iowa State Contact 515-778-2212 Kelly.Schulte@idph.iowa.gov Let’s work together to promote this terrific resource to pregnant women and new mothers in Iowa! Approximately 1.8% of estimated pregnant women and new moms in Iowa have enrolled in Text4baby since its launch.

Lenox Neighborhood Center Lions Clubβ€”Iowa Falls, Iowa Loaves and Fishesβ€”Story City, Iowa Lords Cupboardβ€”Fort Dodge, Iowa Lords Cupboardβ€”Jewell, Iowa . St. Joseph’s Community Schools, New

Noncredit Career and Technical Education (CTE) Programs IOWA COMMUNITY COLLEGES SEPTEMBER 2018 . i i i iii Iowa Department of Education . Director, Iowa Department. of Education 515-281-3436. ryan.wise@iowa.gov Jeremy Varner. Administrator, Division of Community Colleges and . Workforce Preparation 515-281-8260. jeremy.varner@iowa.gov Barbara .