Coordinated Proposal For 100GBASE-SR4, 100GBASE-UR4,

2y ago
15 Views
2 Downloads
1.42 MB
20 Pages
Last View : 15d ago
Last Download : 3m ago
Upload by : Aarya Seiber
Transcription

COORDINATED PROPOSAL FOR100GBASE-SR4, 100GBASE-UR4,CPPI-4 AND CAUI-4PIERS DAWESEPTEMBER 2012

IPTRONICS COPENHAGEN 2012Supporters Oren SelaJohn PetrillaMarc VerdiellKevin BurtJonathan KingSeptember 2012MellanoxAvago TechnologiesSamtecSamtecFinisarCoordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-42

IPTRONICS COPENHAGEN 2012Introduction Aim to be compatible with: QSFP 40GBASE-SR440GBASE-CR4100GBASE-CR4CEI-28G-VSR Allow retimed modules and active cables now, unretimedfor the future Leverage 100GBASE-CR4/KR4's 256b/257b FEC butcan do without it for lowest latency short linksSeptember 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-43

IPTRONICS COPENHAGEN 2012Names and options 1 Following Backplane Ethernet practice Same name whether FEC used or not 100GBASE-SR4 has CDR in module for optical transmitter Can use CPPI-4 or CAUI-4 on Tx side 100GBASE-UR4 does not need CDR in optical module Lower power but reduced reach: "SR-lite" 100GBASE-SR4 and 100GBASE-UR4 are interoperable Over 100GBASE-UR4 reach Specification reaches between 20 and 100 m, aligned toobjectives There may be an opportunity to stretch one of these, as we learnjust how much the latest lasers and 100GBASE-KR4 FEC help usSeptember 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-44

IPTRONICS COPENHAGEN 2012Names and options 2 Following Backplane Ethernet practice Same name whether FEC used or not Hosts that support 100GBASE-CR4 will have FEC in the host Could support traditional 64B/66B without FEC Adds additional complexity and latency for 20-lane deskew Not needed for 100GBASE-CR4 or 100GBASE-KR4 CFP modules can include FEC in the module PCS can easily tell FEC from non-FEC signals; PMD and PMAdon't need to know because line rate is the same 100GBASE-SR4 has CDR in module for optical transmitter 100GBASE-UR4 does not need CDR in optical module Lower power but reduced reach: "SR-lite"100GBASE-SR4 and 100GBASE-UR4 are interoperable Can use CPPI-4 or CAUI-4 on Tx sideOver 100GBASE-UR4 reachSpecification reaches between 20 and 100 m, aligned to objectives There may be an opportunity to stretch one of these, as we learn just how much the latestlasers and 100GBASE-KR4 FEC help us Reach also depends on fibre type. Base specs on 100 m of OM4,work out reach on OM3September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-45

IPTRONICS COPENHAGEN 2012Method Assume a host channel as for 100GBASE-CR4 (similar to CEI-28GVSR) Keep the module simple Use the host's Tx FFE and Rx equalizer Use same (256b/257b) FEC as 100GBASE-KR4/CR4 The worst crosstalk in the electrical link is expected to be at theQSFP connector, so make the eye at least partly open there Host uses knowledge of its own channel to set its Tx FFE Use a reference equalizer or similar technique for specificationwhere necessary, similar to CEI-28G-VSR But more restricted range of CTLE settings Leverage experience from InfiniBand FDR specification especiallyfor signal swings, mixed-mode reflections, testing with crosstalk Aim to keep transmitted optical powers same as 40GBASE-SR4September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-46

IPTRONICS COPENHAGEN 2012Uncertainties Optical specs may be challenging If so, increase Tx optical power: move all Tx powers, Rxoverload and budget in step Optical transmitter would need two setups May require higher supply voltage to stop laser driver andtransimpedance amplifier running out of headroom May require host to tell the module when to use 25G/lane modeand when to use 10G/lane mode Electrical specs may be challenging Longest/worst host traces may need module CDR(s) Other traces can reduce power by switching it off Mode partition noise A better understanding of mode partition noise might affect thelonger reaches by less than 10%September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-47

IPTRONICS COPENHAGEN 2012Not included Compliance board details Use a combination of Annex 86A, InfiniBand FDR, OIF, andproposals for 100GBASE-CR4 Detail of compliance board loss will affect e.g. transition times,reference CTLE settings Chip-to-chip CAUI-4 Chip-to-module CAUI-4 specs that rely on FECSeptember 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-48

IPTRONICS COPENHAGEN 2012Table xA-1 CPPI-4 host electrical output specifications at TP1anPPIMinParameter descriptionSingle ended output voltageAC common-mode output voltageTermination mismatch at 1 MHzDifferential output return lossCommon-mode output return lossCommon-mode to differential output return lossOutput transition time, 20% to 80%J2 Jitter outputJ9 Jitter outputData Dependent Pulse Width Shrinkage (DDPWS)Equalized J2 Jitter outputEqualized J9 Jitter outputEqualized DDPWSQsq for XLPPIQsq for CPPIMaxCPPI-4Units ConditionsMinMaxReferred tosignalV common–0.34mV Specification valuesEye mask coordinates: X1, X20.11, 0.31Y1, Y295, 350Crosstalk source VMA, each input lane700Crosstalk source transition times, 20% to 80%34Eqn. 86A-1 (in S-parameter form for comparison with other specs)Eqn. A-1Eqn. A-2—Eqn. A-3—Around 10 psUIUIUIV/VV/VUImVmVpsHit ratio 5 10–5At TP4At TP4Sddxx -12 2sqrt(f)0.01 f 4.11-6.3 13log10(f/5.5) 4.11 f 11.1Eqn. 86A-2 (in 802.3ba)Black: 40GBASE-SR4/nPPI specSccxx -7 1.6f 0.01 f 2.5 Blue: Proposed 100GBASE-SR4, 100GBASE-32.5 f 11.1 UR4, CPPI-4 specPurple: Proposed CAUI-4 ("chip to module") specYellow: Tentative numbersSeptember 2012—CAUI-4MinMax–0.3—420Not as important as we feared—Use Sdc22 spec which controlsskew-induced conversion as wellas R matching(n/a)Eqn. A-1CommentsEqn. A-2—Eqn. A-3—Around 10 Unwisely deleted from 802.32012Sdc22 (see equations for f ranges)With fixed CTLE or similarThese three items estimate the"unequalizable jitter"0.13, 0.330.24, 0.4595, 35095, 350470470Same as module outputAround 8 to 10 TBD Around 8 to 10 TBD DittoEqn. xA-1Sddxx -12 fn(f) TBD 0.05 f 25.79Eqn. xA-2Sccxx -20.2 f 5-1 -f/10 5 f 25.79Eqn. xA-3Sdcxx -15 0.5f or similar, 0.05 f 25.79Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-49

IPTRONICS COPENHAGEN 2012Table xA–2 CPPI-4 module electrical input specifications at TP1 and TP1anPPITest point MinParameter descriptionSingle ended input voltage toleranceaAC common-mode input voltage toleranceTP1aTP1aDifferential input return lossCommon-mode input return lossTP1TP1Differential to common-mode input return lossJ2 Jitter toleranceJ9 Jitter toleranceData Dependent Pulse Width Shrinkage (DDPWS)toleranceTP1TP1aTP1aEye mask coordinates: X1, X2Y1, Y2TP1aTP1a–0.315See86A.4.1.1CPPI-4Max Units ConditionsMinReferred toTP1 signal4V common–0.3—mV s0.11, 0.3195, 350UI100.170.2910 MHz to11.1 GHz–0.320Eqn. A-1Eqn. �0.22—UI Hit ratio 5mV 10–50.13, 0.3395, signalSeptember 20124—MaxEqn. A-1Eqn. A-210 MHz to11.1 GHzCrosstalk calibration signal VMATP4850mVCrosstalk calibration signal transition times, 20% to80%TP434psa The single ended input voltage tolerance is the allowable range of the instantaneous input signals.b The crosstalk calibration signals are applied to the mated HCB-MCB at TP4a and measured at TP4following the same principles as the host electrical input calibration (see 86A.5.3.8.5). They areremoved before testing.MaxCAUI-4Min(seeequations forf ranges)50 MHz to26.79 GHze.g. J2 notyellowbecausemust besame asanother, inthis case inTable xA-10.24, 0.4595, 350Same asmoduleoutput470Around 8 to 10 TBD Around 8 to 10 TBD Dittoa [same]b [Add regular text to explain, replacefootnote b with reference to new text]Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-410

IPTRONICS COPENHAGEN 2012Table x-6 100GBASE–SR4 or 100GBASE–UR4 optical transmit characteristics40GBASE-SR4 or 100GBASE-SR10100GBASE–SR4DescriptionTypeValue Unit 100GBASE–UR4Center wavelengthRange 840 to 860 nm840 to 860aRMS spectral widthMax0.65nm0.650.6Average launch power, each laneMax2.4dBm2.4Average launch power, each laneMin–7.6dBm–7.6Optical Modulation Amplitude (OMA), each laneMax3dBm3bOptical Modulation Amplitude (OMA), each laneMin–5.6dBm–5.6bDifference in launch power between any two lanes (OMA) Max4dB4Peak power, each laneMax4dBm4Launch power in OMA minus TDP, each laneMin–6.5dBmTBDTBDTransmitter and dispersion penalty (TDP), each laneMax3.5dBTBDTBDExtinction ratioMin3dB3Optical return loss toleranceMax12dB12 86% at 19 μm, 86% at 30% at 4.5 μm19 μm,Encircled fluxc 30% at4.5 μmAroundAround SR contains Tx CDR,0.23, 0.34,0.25, 0.36, 0.21, 0.32, UR need notTransmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}Spec 0.43, 0.27,0.45, 0.27, 0.45, 0.27,Hit ratio 5 10–5 hits per samplevalues 0.35, 0.40.35, 0.4 0.35, 0.4Average launch power of OFF transmitter, each laneMax–30dBm–30a RMS spectral width is the standard deviation of the spectrum.a [same]b Even if the TDP TBD dB, the OMA (min)b Even if the TDP 0.9 dB, the OMA (min) must exceed this value.must exceed this value.c If measured into type A1a.2 or type A1a.3 50 μm fiber in accordance with IEC61280-1-4.c [same]September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-411

IPTRONICS COPENHAGEN 2012Table x–5—SIGNAL DETECT value definitionReceive conditionsFor any lane; Average optical power at TP3 –30 dBmSIGNAL DETECT valueFAILOKFor all lanes;[(Optical power at TP3 Minimum OMA, each lane, in Table x–z) and(compliant 100GBASE–SR4 or 100GBASE–UR4 signal input as appropriate)]UnspeciAll other conditionsfiedJust asClause 86Table x-7 Characteristics of signal within, and at the receiving endof, a compliant optical channel40GBASE-SR4 and 100GBASE-SR10DescriptionMinimum Maximum UnitMinimumMaximumFiber typeOM3 OM4100GBASE–UR4 100GBASE–SR4Total average power for 40GBASE–SR4–3.5 –3.1 8.4dBm-3.3-3.5 8.4Total average power for 100GBASE–SR10 0.5 0.9 12.4dBm(n/a)Average power, each lane–9.5 –9.1 2.4dBm-9.3-9.5 2.4Optical Modulation Amplitude (OMA), eachlane–7.5 –7.1 3dBm-7.3-7.5 3.0September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-412

IPTRONICS COPENHAGEN 2012Table x–8 100GBASE–SR4 or 100GBASE–UR4 optical receiver characteristics40GBASE-SR4 or t 100GBASE–UR4Center wavelength, each laneRange 840 to 860 nm840 to 860aDamage thresholdMin3.4dBm3.4Average power at receiver input, each laneMax2.4dBm2.4Min–9.5dBm-9.3-9.5Receiver reflectanceMax–12dB–12Optical Modulation Amplitude (OMA), each laneMax3dBm3bStressed receiver sensitivity in OMA, each laneMax–5.4dBm-5.4–5.4Peak power, each laneMax4dBm4Conditions of stressed receiver sensitivity test:Vertical eye closure penalty (VECP)c, each lane—1.9dB2.72.7 Assumingperformance with FECStressed eye J2 Jitterc, each lane—0.3UI0.340.34will follow non-FECStressed eye J9 Jitterc, each lane—0.47UI0.60.6(Hope that we don't needOMA of each aggressor lane—–0.4dBm–0.4with-FEC Rx specs if we haveReceiver jitter tolerance in OMA, each lanedMax–5.4dBmAs SRS As SRSnon-FEC specs)Conditions of receiver jitter tolerance test:Jitter frequency and peak-to-peak amplitude—(75, 5) (kHz, UI)(187.5, 5)Jitter frequency and peak-to-peak amplitude—(375, 1) (kHz, UI)(937.5, 1)OMA of each aggressor lane—–0.4dBm–0.4a The receiver shall be able to tolerate, without damage, continuous exposure to amodulated optical input signal having this power level on one lane. The receiverdoes not have to operate correctly at this input power.a [same]b Measured with conformance test signal at TP3 (see86.8.4.7).b Measured with conformance test signalat TP3 (see x.y.z).c Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiversensitivity. They are not characteristics of the receiver. The apparent discrepancy between VECP and TDP isbecause VECP is defined at eye center while TDP is defined with 0.15 UI offsets of the sampling instant.d This is a test of the optical receiver’s ability to track low-frequency jitter and isinappropriate for any subsystem that does not include a CRU.d [same]September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-4c [same]13

IPTRONICS COPENHAGEN 2012Table x-9 100GBASE–SR4 and 100GBASE–UR4 illustrative linkpower budgetsTable x-13 Fiber optic cabling (channel) characteristics at 850 nm40GBASE-SR4 or 100GBASE-SR10 100GBASE–UR4100GBASE–SR4OM3OM4UnitOM3OM3OM4No FEC With FEC No FEC With FEC No FEC With FEC20004700MHz km2000200047008.3dB8.0?9.5?8.0?9.5?8.0?9.5?0.5 to 100 0.5 to 150m0.5 to 20 0.5 to 50? 0.5 to 30? 0.5 to 75? 0.5 to 40? 0.5 to .47.6d00.3dB00.200.1000dB0ParameterEffective modal bandwidth at 850 nmaPower budget (for maximum TDP)Operating distanceChannel insertion lossbAllocation for penalties (for maximum TDP)cUnallocated marginAdditional insertion loss alloweda Per IEC 60793-2-10.b The channel insertion loss is calculated using the maximum distances specified in Table 86–2 and cabled optical fiberattenuation of 3.5 dB/km at 850 nm plus an allocation for connection and splice loss given in x.y.z.c Link penalties are used for link budget calculations. They are not requirements and are not meant to betested.d This unallocated margin is not available for use.40GBASE-SR4 or 100GBASE-SR10 100GBASE–UR4100GBASE–SR4DescriptionType OM3 OM4 Unit OM3OM4OM3OM4No FEC With FEC No FEC With FEC No FEC With FECOperating distanceMax 100 150m2050?30?75?40?100The reaches inCabling SkewMax79ns79Cabling Skew VariationaMax2.5ns2.5yellow are justChannel insertion lossMin0dB0placeholders atpresentSeptember 2012Channel insertion lossbMax 1.9c 1.5d dB1.61.71.61.81.61.9a An additional 300 ps of Skew Variation could be caused by wavelength changes, which are attributable to thetransmitter not the channel.b These channel insertion loss values include cable, connectors, and splices.c 1.5 dB allocated for connection and splice loss.Use notes a, b onlyd 1 dB allocated for connection and splice loss.Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-414

IPTRONICS COPENHAGEN 2012Table x-14 Optical fiber and cable characteristicsDescriptionNominal core diameterNominal fiber specification wavelengthEffective modal bandwidth (min)cCabled optical fiber attenuation (max)Zero dispersion wavelength (λ0)OM3aOM4b50850200047003.51295 λ0 1340UnitµmnmMHz kmdB/kmnmJust asClause 860.105 for 1295 λ0 1310 and0.000375 (1590 – λ0) for 1310 λ0 1340 ps/nm2 kmChromatic dispersion slope (max) (S0)a IEC 60793-2-10 type A1a.2b IEC 60793-2-10 type A1a.3c When measured with the launch conditions specified in Table x-6.September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-415

IPTRONICS COPENHAGEN 2012Table xA–3 CPPI-4 module electrical output specifications at TP4nPPIMinParameter descriptionSingle ended output voltage toleranceAC common-mode output voltage(RMS)Termination mismatch at 1 MHz–0.3Max Units ConditionsReferredto signal4V common——SeeDifferential output return loss86A.4.2.1SeeCommon-mode output return loss86A.4.2.2Common-mode to differential output return loss7.55Output transition time, 20% to 80%J2 Jitter outputJ9 Jitter output—0.420.6528————Equalized J2 Jitter output (when used without FEC)Equalized J9 Jitter output (when used without FEC)Equalized J2 Jitter output (when used with FEC)Equalized J5 Jitter output (when used with FEC)SpecificationvaluesEye mask coordinates: X1, X20.29, 0.5Y1, Y2150, 425Crosstalk source VMA, each lane700Crosstalk source transition times, 20%to 80%37September 2012mV%CPPI-4MinMax–0.34—17.5————ps At TP1aMax–0.317.5(n/a)—Eqn. A-1———Eqn. A-2Eqn. A-3Around 8to .7Comments4—(n/a)10 MHz todB 11.1 GHz Eqn. A-110 MHz todB 11.1 GHz Eqn. A-2Eqn. A-3Around 8to 10psTBDUI—UI(n/a)UI Hit ratio mV 5 10–5mV At TP1aCAUI-4Min(n/a)(n/a)Not as important as we feared,matches CEI-28G-VSRUse Sdc22 spec which controls skewinduced conversion as well as RmatchingUnwisely deleted from 802.3-2012With adjustable CTLE orsimilarDittoDittoDittoAround 0.45, 0.5 Around 0.22, 0.4340, 25050, 250660660Same as host outputAround 10 TBDAround 10 TBDCoordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-4Ditto16

IPTRONICS COPENHAGEN 2012Table xA–4 CPPI-4 hostat TP4 and TP4anPPIelectrical input specificationsCPPI-4CAUI-4Parameter descriptionTest pointMinMaxSingle ended input voltageaAC common-mode input voltage toleranceTP4TP4–0.37.54—Differential input return lossCommon-mode input return lossTP4aTP4a86A.4.2.1—Units Conditions MinReferredto signalVcommon –0.3mVRMS17.5dBEqn. A-1Eqn. A-210 MHz to11.1 GHzMaxMinMax4—–0.317.54———Eqn. A-1Eqn. A-2——Comments(seeequations forf ranges)50 MHz to26.79 GHzDifferential to common-mode input return loss TP4a10—dB10—10—Host input signal tolerance, interface BER limit(when used without FEC)—10–12——10–12—10–12Host input signal tolerance, interface BER (when used with FEC)— 6.7x10–5(n/a)Conditions of host electrical receiver signaltolerance test:bSpecificationWithSpecificationvaluesNo FEC FECvaluesEye mask coordinates: X1, X20.29, 0.5UI Hit ratio Around 0.45, 0.5 Around 0.22, 0.43Y1, Y2TP4150, 425mV 5 10–540, 25050, 250Transition time, 20% to 80%TP434psAround 17Around 17J2 JitterTP40.42UI0.60.42J9 JitterTP40.65UI(n/a)0.6Data Dependent Pulse Width Shrinkage(DDPWS)TP40.34UI0.450.4Equalized J2 JitterTP40.50.50.28Equalized J5 JitterTP40.7—(n/a)Could define CAUI-4Equalized J9 JitterTP4—0.70.5with & w/o FECVMA of aggressor lanesTP4850mV470470Same as host inputCrosstalk calibration signal VMATP1a700mV660660Same as host outputCrosstalk calibration signal transition times,20% to 80%TP1a37psAround 10 TBDAround 10 TBDDittoa The host is required to tolerate (work correctly with) input signals with instantaneous voltages anywhere in the specified range.b The specification values are test conditions for measuring signal tolerance and are not characteristics of the host (see 86A.5.3.8).b The specification values are test conditions for measuring signal tolerance and are not characteristics of the host (see xA.y.z).September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-417

IPTRONICS COPENHAGEN 2012xA.6 Recommended electrical channelbetween the PMA IC (TP0 or TP5) and TP1a or TP4aSdd21 -0.50.01 f 0.11-0.114 - 0.8914sqrt(f) - 0.846f 0.11 f 735.91 - 6. 3 291f7 f 8-14.728 f 11.1Sdd21 0.22 -0.46f 0.01 f 737 f 11.1Sdd21 -0.50.01 f 0.?-? - ?sqrt(f) - ?f 0.? f 13? -?f13 f 25.79Ratio of about 2.5Sdd21 0.22 -?f 0.01 f 25.79to 3, as for nPPIAdd: recommended max ILDrms (might be tighter for CPPI-4 than for CAUI-4)The recommended maximum loss of the host PCB only (without connector or HCB) at 5.15625 GHz is 4.4 dB.The recommended maximum loss of the host PCB only (without connector or HCB) at 12.890625 GHz is 6.8? dB.September 2012Coordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-418

IPTRONICS COPENHAGEN 2012Comparison with CEI-28G-VSRHost-to-Module Electrical Specifications at TP1a (hostoutput)ParameterMinDifferential Voltage pk-pkCommon Mode Noise rmsDifferential Termination MismatchDifferential Return LossCommon to Differential Mode Conversion(SDC22)-Host to moduleMax90017.510Eqn. 1-2UnitsmVmV%dBEqn 1-3dBTransition Time: 20/80%Common Mode VoltageEye width at 10-15 probability (EW15)110-0.30.462.8-psVUIEye height at 10-15 probability (EH15)1100-mVHost-to-Module Electrical Specifications at TP1 (moduleinput)ParameterMinOverload Differential Voltage pk-pk900Differential Termination MismatchDifferential Return Loss-Max10Eqn 1-2Common to Differential Mode Conversion (SDC11)Eqn 1-3Stressed Receiver TestSee 1.3.10.2.1UnitsmV%dBdBCPPI-4MinMax—700—20See Sdc22 specEqn. A-1Eqn. A-3Eqn. A-3Around 10AroundTBD10 TBDSingle ended voltage spec -0.3 to 4—EJ9 0.22—EJ9 0.52?CPPI-4MinMax—700See Sdc22 specEqn. A-110Yes—Crosstalk parameters for Host Output test and Module input test calibration atTP4ParameterCrosstalk Amplitude differential voltage pk-pkCrosstalk transition time 20-80%September 2012Used in testHost Output test and modulestressed receiver test calibrationHost Output test and modulestressed receiver test calibration—?—CAUI-4MinMax—700See Sdc22 specEqn. e Sdc22 specEqn. A-1—CAUI-4unitsSpec value Spec value900mV9.5psVMA 470 VMA 470Around 8 Around 8to 10 TBD to 10 TBDCoordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-419

IPTRONICS COPENHAGEN 2012Comparison with CEI-28G-VSRModule to hostModule-to-Host Electrical Specifications at TP4 (module output)ParameterMinMaxDifferential Voltage, pk-pk900Common Mode Noise, rms17.5Differential Termination Mismatch10Differential Return LossEqn 1-2Common Mode to Differential ConversionReturn LossEqn 1-3Transition Time: 20/80%Vertical Eye Closure (VEC)Eye width at 10-15 probability (EW15)Eye height at 10-15 probability (EH15)9.50.57240Module-to-Host Electrical Specifications at TP4a (host input)ParameterMinOverload Differential Voltage pk-pk900Differential Termination MismatchDifferential Return LossCommon Mode to differential conversion LossEqn 1-3Stressed Receiver TestCommon Mode Voltagecommon mode voltage is generated by 10Eqn 1-2-UnitsmV%dBdB2.8VEqn. A-3Around 8to 10 TBD——?CPPI-4MinMax—500See Scd22 specEqn. A-1—See Scd22 specYesCAUI-4MinMax—500—17.5See Sdc22 specEqn. A-1——Eqn. A-3Around 8to 10 TBD?—EJ9 0.7——?—?EJ9 0.5—CAUI-4MinMax—500See Scd22 specEqn. A-1—See Scd22 specYesSingle ended voltage spec -0.3 to 4Crosstalk parameters for Module Output and Host stressed receiver test calibration at TP1aTargetParameterUsed in testvalueModule Output test and hostCrosstalk Amplitude differential voltage pk-pkstressed receiver test calibration900ModuleOutputtestandhostCrosstalk transition time 20%-80%stressed receiver test calibration10September 2012CPPI-4MinMax—500—17.5See Sdc22 specEqn. A-1—CPPI-4CAUI-4unitsSpec value Spec valuemVVMA 660 VMA 660Around 10 Around 10TBDTBDpsCoordinated proposal for 100GBASE-SR4, 100GBASE-UR4, CPPI-4 and CAUI-420

transimpedance amplifier running out of headroom . Differential output return loss as R matching See 86A.4.1.1 — dB Eqn. A-1 — Eqn. A-1 — Common-mode output return loss See 86A.4.1.2 — dB Eqn. A-2 — Eqn. A-2 — Unwisely deleted from 802.3- 2012 Common-mode to

Related Documents:

R 1.5K,C 100p F 2000 V CFP2 100GBASE-LR4 1310NM 10KM TRANSCEIVER MODULE Description FS's CFP2-100G-LR4 transceivers are designed for use in 100 Gigabit Ethernet links over 10km single module fiber, and it compliant to the CFP MSA CFP2 HW Specification and IEEE 802.3ba 100GBASE-LR4. Digital diagnostics are available via MDIO as specified in the CFP

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

Introduction This describes a possible baseline proposal for a new 4-lane interleaved 100G FEC sublayer for P802.3ck This new FEC sublayer could be used along with existing Clause 82 PCS and revised Clause 135 PMA to support the objectives for the 100GBASE-KR1 and 100GBASE-CR1 channels The intent of the presentation is not to propose the use of interleaved FEC for

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

The new CS-LSA is based on a number of ASTM standards at a specified revision as documented in Subpart A of CS-LSA. The structure of the ASTM standard F2245 at revision 09 is used as the basis for this CS-LSA, including the numbering system. 7. The differences between the initial issue of CS-LSA and the current ASTM standard can be summarised as follow: The scope is extended to aeroplanes with .