Math 247A (Topics In Analysis, W 2009) Rough Path Theory

3y ago
49 Views
2 Downloads
996.47 KB
102 Pages
Last View : 2d ago
Last Download : 2m ago
Upload by : Ronan Garica
Transcription

Bruce K. DriverMath 247A (Topics in Analysis, W 2009) Rough Path TheoryMarch 11, 2009 File:rpaths.tex

ContentsPart I Rough Path Analysis1From Feynman Heuristics to Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 Construction and basic properties of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .562p–2.12.22.32.42.5Variations and Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Computing Vp (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Brownian Motion in the Rough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Bounded Variation Obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Banach Space Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .910131415183The Bounded Variation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Integration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Calculus Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.4 Bounded Variation Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5 Some Linear ODE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.1 Bone Yard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212123252728344Banach Space p – variation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.0.2 Proof of Theorem 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405Young’s Integration Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1 Additive (Almost) Rough Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.2 Young’s ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.3 An a priori – Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.4 Some p – Variation Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5 An Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .434851515354

4Contents5.6 Continuous dependence on the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.7 Towards Rougher Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576Rough Paths with 2 p 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.1 Tensor Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2 Algebraic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.3 The Geometric Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.4 Characterizations of Algebraic Multiplicative Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59596061647Homogeneous Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.1 Lie group p – variation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.2 Homogeneous Metrics on G (V ) and Ggeo (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.3 Carnot Caratheodory Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .696970738Rough Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1 Almost Multiplicative Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.2 Path Integration along Rough Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.3 Spaces of Integrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.4 Appendix on Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77777983889Rough ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919.1 Local Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919.2 A priori-Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9410 Some Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9711 Remarks from Terry Lyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ar-2009/12:03

Part IRough Path Analysis

Here are a few suggested references for this course, [12,15,1]. The latter tworeferences are downloadable if you are logging into MathSci net through yourUCSD account. For a proof that all p – variation paths have some extensionto a rough path see, [14] and also see [6, Theorem 9.12 and Remark 9.13]. Forother perspectives on the the theory, see [3] and also see Gubinelli [7, 8] Alsosee, [9, 4, 7] look interesting. A recent paper which deals with global existenceissues for non-bounded vector fields is Lejay [11].

1From Feynman Heuristics to Brownian Motion1ZtIn the physics literature one often finds the following informal expression,dµT (ω) “RT 0211e 2 0 ω (τ ) dτ DT ω” for ω WT ,Z (T )(1.1)where WT is the set of continuous paths, ω : [0, T ] R (or Rd ), such thatω (0) 0,YDT ω “m (dω (t)) ” (m is Lebesgue measure here)Z C (s, t)Zτ s(ω (t) ω (s)) and γ (τ ) : ω (τ ) σ (τ ) ,t sω(t) ω(s),t s0Z0σ (τ ) · γ (τ ) dτ s 1 Es (ω)Z Z 1 y ω(s) 2C (s, t)e 2F ω [0,s] , y e 2 t s dyDω[0,s]ZtZ (s)Rd Z Z21 y ω(s) C (s, t) F (ω, y) e 2 t s dy dµs (ω) .ZtWsRdtσ 0 (τ ) · γ 0 (τ ) dτTaking F 1 in this equation then implies, Z Z21 y ω(s) C (s, t)1 e 2 t s dy dµs (ω)ZtWRdZ shiC (s, t)C (s, t)d/2d/2 (2π (t s))dµs (ω) (2π (t s)) .ZtZtWsω (t) ω (s)· (γ (t) γ (s)) 0.t sThus it follows thatE[s,t] (ω) E[s,t] (σ) E[s,t] (γ) ω (t) ω (s)t s2(t s) E[s,t] (γ)2 ω (t) ω (s) E[s,t] (γ) .t s Thus if f (ω) F ω [0,s] , ω (t) , we will have, e 12 Es (ω) 1 ω(t) ω(s) 2t sF ω [0,s] , ω (t)e 2.Z (s) s D(s,t) γWtγ (s) γ (t) 0, and hencet ω(t) ω(s) 2 E[s,t] (γ)Es (ω) t sMultiplying this equation by Z1t Dω[0,s] · dω (t) and integrating the result thenimplies,Z F ω [0,s] , ω (t) dµt (ω)If we decompose ω (τ ) as σ (τ ) γ (τ ) wherethen we have, σ0 (τ ) 21F ω [0,s] , ω (t) eZsσ (τ ) : ω (s) 1F ω [0,s] , ω (t) e 2 Et (ω) Dt ωWtZ 11F ω [0,s] , ω (t) e 2 [Es (ω) E[s,t] (ω)] Dt ω Z t Wtand now fixing ω [0,s] and ω (t) and then doing the integral over ω (s,t) implies,Z 1F ω [0,s] , ω (t) e 2 [Es (ω) E[s,t] (ω)] D(s,t) ω0 t Tand Z (T ) is a normalization constant such that µT (WT ) 1.We begin by giving meaning to this expression. For 0 s t T, letZ t2E[s,t] (ω) : ω 0 (τ ) dτ.Z(1.2)Thus the heuristic expression in Eq. (1.1) leads to the following Markov property for µt , namely.Proposi

Here are a few suggested references for this course, [12,15,1]. The latter two references are downloadable if you are logging into MathSci net through your UCSD account. For a proof that all p{ variation paths have some extension to a rough path see, [14] and also see [6, Theorem 9.12 and Remark 9.13]. For other perspectives on the the theory, see [3] and also see Gubinelli [7,8] Also see, [9 .

Related Documents:

Math 5/4, Math 6/5, Math 7/6, Math 8/7, and Algebra 1/2 Math 5/4, Math 6/5, Math 7/6, Math 8/7, and Algebra ½ form a series of courses to move students from primary grades to algebra. Each course contains a series of daily lessons covering all areas of general math. Each lesson

MATH 110 College Algebra MATH 100 prepares students for MATH 103, and MATH 103 prepares students for MATH 110. To fulfil undergraduate General Education Core requirements, students must successfully complete either MATH 103 or the higher level MATH 110. Some academic programs, such as the BS in Business Administration, require MATH 110.

math-drills.com math-drills.com math-drills.com math-drills.com math-drills.com math-drills.com math-drills.com math-drills.com math-drills.com Making Number Patterns (C) I

2016 MCAS Results September 29, 2016 Page 4 8 Year Math CPI Results For State, District, and Schools Ranked by 2016 CPI School el 2009 Math MCAS 2010 Math MCAS 2011 Math MCAS 2012 Math MCAS 2013 Math MCAS 2014 Math MCAS 2015 Math MCAS 2016 Math PARCC Sewell-Anderson 1 80.0 78.7 76.7 84.2 88.3 89.0 89.3 92.5

Environmental Science in Civil Engineering 3 MATH 281 Linear Algebra 3 MATH112 MATH 282 Calculus 3 MATH111 MATH 283 Differential Equations 3 MATH 281, 282 MATH 284 Numerical Analysis 3 MATH 283 MATH 381 Probability & Statistics 3 MATH 282 PHYS 281 Electricity & Magnetism 3 PHYS120 PHYS 282 Materials Properties & Heat 3

Math Course Progression 7th Grade Math 6th Grade Math 5th Grade Math 8th Grade Math Algebra I ELEMENTARY 6th Grade Year 7th Grade Year 8th Grade Year Algebra I 9 th Grade Year Honors 7th Grade Adv. Math 6th Grade Adv. Math 5th Grade Math 6th Grade Year 7th Grade Year 8th Grade Year th Grade Year ELEMENTARY Geome

SOC 120 American Diversity 3 SPAN 101 Elementary Spanish I 3 PROGRAM REQUIREMENTS GENERAL EDUCATION Mathematics 3 Hours MATH 114 College Algebra 3 MATH 116 Finite Math 3 MATH 117 Contemporary Mathematics 3 MATH 120 Trigonometry 3 MATH 122 Precalculus Math 5 MATH 1

avanzados de Alfredo López Austin, Leonardo López Lujan, Guilhem Olivier, Carlos Felipe Barrera y Elsa Argelia Guerrero con la intención de mostrar si existió ó no el sacrificio humano entre los aztecas y si los hubo con qué frecuencia y crueldad. Por otra parte, he de mencionar que la elaboración de este trabajo ha sido una ardua tarea de síntesis de diferentes fuentes sobre la .