Supercritical Carbon Dioxide Power Cycle Development

2y ago
31 Views
2 Downloads
3.16 MB
25 Pages
Last View : 2d ago
Last Download : 1m ago
Upload by : Nixon Dill
Transcription

Bechtel Marine Propulsion CorporationKnolls Atom ic Pow er LaboratorySchenectady, N YBettis Atom ic Pow er LaboratoryW est M ifflin, PASupercritical Carbon Dioxide Power CycleDevelopment OverviewKJ KimballBechtel Marine Propulsion CorporationSeptember 10, 2014Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 1

BMPC Development Program Overview:– S-CO2 Brayton Cycle Integrated Systems Test (IST) Turbo-machinery (turbine, compressor, bearings, seals) Control system (startup, power control) Heat exchangers (shell and tube) Practical considerations (mass control, instrumentation,system leakage)– Compact Heat Exchanger Development High pressure, compact, fatigue resistant, affordable– MW scale development vision Based on kW development Scale-up issues Transition from experimental to demonstration stageSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 2

Bechtel Marine Propulsion CorporationKnolls Atom ic Pow er LaboratorySchenectady, N YBettis Atom ic Pow er LaboratoryW est M ifflin, PAS-CO2 Integrated System TestingSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 3

IST Physical LayoutTurbo-GeneratorTurbo-Compressor (notvisible)RecuperatorPrecoolerSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 4

IST TurbomachineryTurbo-GeneratorThrust tical CO2 Power Cycles SymposiumSeptember 9-10, 2014TurbinePage 5

Maximum Power OperationNovember 2013 – 40kWe**40 kW on poweranalyzerSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 6

System Up-PowerPower (kW) or Effieciency (%)504030TG PowerTC Power20Brayton PowerBrayton Efficiency100Speed (rpm)-10600005500050000TC 0Time (seconds)Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 7

Compressor MapModel Prediction forDesign Operating ConditionsTest DataSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 8

Power Increase Transient Initial Conditions: Hot Idle (540 F/37,500 rpm)TG speed increasedTC speed increased in stepsCompressor recirculation valve decreased in stepsWater flow automatically controlled to maintain compressor inlet TTurbine-Generator SpeedTurbine-Compressor SpeedSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Recirculation Valve PositionPage 9

Power Increase Transient:Heat Exchanger Heat DutiesIntermediate HxSupercritical CO2 Power Cycles SymposiumRecuperatorSeptember 9-10, 2014PrecoolerPage 10

IHX Heat Transfer600HTRI w/REFPROPHTRI w/VMGThermoMeasured Heat Transfer (kW)500Dittus-BoelterMeasured Predicted40030020010000100200300Predicted Heat Transfer (kW)Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014400500600Page 11

Precooler Heat TransferSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 12

Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 13

IST with Recompression Cycle Control FeaturesBaseline recompressorrecirculationThis loop design shows how recompression control features could be placed in the IST, allowing loophydraulic control for startup, heatup and low power operation.Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 14

IST Up-Power Maneuver in Recompression ConfigurationUsing end states that have been optimized for adequate surge margin this up-power transient showsgood performance, with minimal under/over shoot.Up-power rates 1%/s would be possible for a well designed recompression loop.Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 15

Bechtel Marine Propulsion CorporationKnolls Atom ic Pow er LaboratorySchenectady, N YBettis Atom ic Pow er LaboratoryW est M ifflin, PAS-CO2 Heat Exchanger DevelopmentSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 16

RiverWaterCoolingHeat Exchanger Testing2” graylocx to 1.5 “Swagelok adapterTesting Conditions:Heat Input/Rejection 20-90 kWtPressure: 1,200-1,500 psiTemperature: 300-500 FFlow rate: 2-3 lbm/second(2) Instrumentation PortsDP 2(2) 10x2 ReducerT2Recuperator vesselT1(2) 3” graylocx to 2 “Swagelok adapter2” graylocx to 1.5 “Swagelok adapterFlowMeterWaterheatSource 1T4CO2 PUMPDP1P1DP32468 psigHP-9T3HP-8Heat Exchanger1ANSI FlangeGrayloc FlangeventWaterheatSource 2Temp Conn 1½ or less Tubing with Swagelokfittings1” Tubing with Swagelok fittingsHP-2Heat Exchanger21.5” Tubing with Swagelok fittings2” Tubing with Swagelok fittings2” to 10” sched 160 Pipe (316 SS)Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 17

Recuperator Designs Testedβ 7,000-8,000 m2/m3β 3,300-4,500 m2/m3Supercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 18

Folded Wavy-Fin ResultsHeat Trnasfer Rate(kW)350Measured Thermal PerformancePressure Drop(psid)8300Measured Hydraulic PerformanceHigh Pressure Side71.0 ṁ 1.32501.3 ṁ 1.71.7 ṁ 2.22001502.2 ṁ 2.7Design Point3ε 0.950501001502002503001.0 ṁ 1.354ε 1.010061.3 ṁ 1.71.7 ṁ 2.22.2 ṁ 2.7Design Point2ε 0.81( ṁ - lbm/sec)0350( ṁ- lbm/sec)00.5Maximum Possible Heat Transfer Rate (kW)11.522.53Mass Flow Rate (lbm/second)Pressure Drop(psid)8Measured Hydraulic PerformanceLow Pressure Side761.0 ṁ 1.351.3 ṁ 1.71.7 ṁ 2.242.2 ṁ 2.73Design Point2Prototype demonstrated thermalhydraulic performance.Supercritical CO2 Power Cycles Symposium( ṁ - lbm/sec)1000.511.522.53Mass Flow Rate (lbm/second)September 9-10, 2014Page 19

Bechtel Marine Propulsion CorporationKnolls Atom ic Pow er LaboratorySchenectady, N YBettis Atom ic Pow er LaboratoryW est M ifflin, PASummary of Progress to DateSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 20

S-CO2 Integrated System Testing IST demonstrating controllability of a two shaftsimple S-CO2 Brayton cycle Normal power operation over range of powerlevels up to 50 kWe has commenced TRACE transient modeling:– Validation has commenced– Approaching real time execution– Demonstrates controllability of re-compression cycleSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 21

S-CO2 Heat ExchangerDevelopment IST heat exchangers meeting expectations andvalidating performance models More compact/fatigue resistant heat exchangersbeing designed, fabricated and tested indedicated 300kW test facilitySupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 22

Bechtel Marine Propulsion CorporationKnolls Atom ic Pow er LaboratorySchenectady, N YBettis Atom ic Pow er LaboratoryW est M ifflin, PAMW Scale DevelopmentSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 23

S-CO2 Power Cycle Development ApproachFundamental TestingConceptDevelopmentEXPANSION JOINTSSmall Scale System andComponent TestsLarge Scale SystemTestLarge ER SECTIONFluid BehaviorHEATER SECTIONCAPSTONE UNITCAPSTONE CONTOLLEROperational TestIntegrated System TestSafety ImplicationsTechnologyAssessmentSandia ClosedBrayton LoopsHeat ExchangerPerformanceMaterial BehaviorCorrosion in 825F S-CO2 at 2800 psig0.51000-1700 hours500-1000 hours0-500 hours0.40.30.20.1i200Plant ConceptDevelopmentSmall eneani41Tit310SSshotpeeT91041Approximate Oxide Thickness (mils)Validated DesignToolsHX Development & TestComponent and System Modeling DevelopmentSupercritical CO2 Power Cycles SymposiumSeptember 9-10, 2014Page 24

Path to S-CO2 Power Cycle Commercial ImplementationComponent DevelopmentBMPCkW scaleSNLSTEP PilotPlant 10 MWeFY16PreCommercialDemo 30-50 MWeFY20SunShotMW scaleEchogenGEApplications:Waste HeatIndustryFY?Applications:Oxy-Fuel /Clean CoalConcentrated Solar PowerHigh Temperature NuclearGeothermal energyNavy Nuclear PropulsionFY?TechnologyDevelopmentMaterials DevelopmentEngineering Design - Analysis Codes - Component SpecificationsBearings & SealsTurbomachineryThermal CoatingsControlsHeat ExchangersChemistry ControlTest loop component development - heaterCurrentSupercritical CO2 Power Cycles SymposiumInternal coolingTimeSeptember 9-10, 2014Page 25

Sep 10, 2014 · ANSI Flange. Grayloc Flange. 1” Tubing with Swagelok fittings. Water heat Source 2 (2) 10x2 Reducer. HP-2. Temp Conn 1. T2. River Water Cooling (2) 3” graylocx to 2 “ Swagelok adapter. Flow-Meter (2) Instrumentation Ports. 2” Tubing with Swagelok fittings. 2” graylocx to 1.5 “ Swagelok adapter. 2” graylocx to 1.5 “ Swagelok .

Related Documents:

The 5th International Symposium - Supercritical CO2 Power Cycles March 28-31, 2016, San Antonio, Texas . Ceramic, Microchannel Heat Exchangers for Supercritical Carbon Dioxide Power Cycles . C.A Lewinsohn, J. Fellows - Ceramatec, Inc.

express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately . Supercritical carbon dioxide (S-CO. 2) operated in

A Low Carbon Supercritical CO 2 Power Cycle / Pulverized Coal Power Plant Integrated with Energy Storage: Compact, Efficient and Flexible Coal Power Contract No. 89243319CFE000022 Recipient Organization: Echogen Power Systems (DE), Inc. . have partnered to design an advanced coal-fired power plant, integrating innovative technologies to .

carbon equivalent per year (Song et al. 2002). Carbon dioxide emissions from these fossil fuel industries are from combustion gases and byproduct carbon dioxide, mainly from synthesis gas but also from other sources. There is an excess of 120 million tons per year of high-purity carbon dioxide from the exponential

The Carbon Cycle and Atmospheric Carbon Dioxide 185 Executive Summary CO 2 concentration trends and budgets Before the Industrial Era, circa 1750, atmospheric carbon dioxide (CO 2) concentration was 280 10 ppm for several thousand years. It has

Carbon Cycle Page 1 The Carbon Cycle Overview of the Carbon Cycle The movement of carbon from one area to another is the basis for the carbon cycle. Carbon is important for all life on Earth. All living t

Pure & Appl. Chern., Vol. 61, No. 6, pp. 1065-1074, 1989. Printed in Great Britain. . FIRST FREEZING POINT METHOD FOR MULTIPHASE COEXISTENCE . binary systems naphthalene-carbon dioxide, biphenyl-carbon dioxide and phenanthrene-carbon dioxide; and the ternary systems naphthalene-biph

There is, however, considerable evidence that gentle warming and increased carbon dioxide are beneficial to plants. Also, more people die in winter than in summer. The present level of carbon dioxide is about 390 ppm (parts per million). All plants need carbon dioxide; that is what plants use to grow: The more carbon dioxide the faster they grow.