Biophysical Chemistry 1, Fall 2010 Web Assignment: Http .

2y ago
31 Views
2 Downloads
3.99 MB
47 Pages
Last View : 23d ago
Last Download : 3m ago
Upload by : Javier Atchley
Transcription

Principles of nucleic acid structureBiophysical Chemistry 1, Fall 2010Reading assignment: Chap. 3Web assignment: http://w3dna.rutgers.edu

Nucleic acids:phosphates,sugars,3 -oxygenof nucleotidei is joinedto basesthe 5 -oxygen of nucleo(i)(I 1)

The sugar-phosphate backboneζ O3’Oβ P—O5’—C5’—C4’O5’βnucleotide unitα �3’O3’εBase Chaindirectionχ1’2’O3’OP1OP2PResidue i-1Residue iO5’C5’γ O5’—C5’—C4’-C3’δ C5’—C4’—C3’—C2’ε C4’—C3’—O3’—Pi 1ζ C3’—O3’—Pi 1-O3’i 1PC3’Basics of Nucleic Acid Structure

Sugar puckeringBasics of Nucleic Acid Structure 6323’2’C5’2’C5’C5’BT33’3’ O4’C5’ O4’ 2’3EO4’ 2’3’ O4’2BC5’BEB3T22’BC5’ 3’ O4’BE3E22’3’C5’S conformationsBBC5’N conformationsFIGURE 3.5 Various sugar ring puckering conformations. Those on the left are denoted S (forsouth); those on the right, N (for north). The C3′-endo conformation is seen at the top right, andthe C2′-endo conformation at the top left. The notation of E and T conformations is also given.Superscript numbers preceding E or T refer to carbon atoms on the same side of the referenceplane (horizontal line) as C5′. Subscripts following E or T denote atoms on the opposite side of

Sugar puckering4 A Textbook of Structural BiologyNC2’-exo324 C1’-endo11 2E2T0 C3’-endo36 332TE34TE288 4E04T10TO4’-exoC4’-endoE01T4EC4’-endo72 00E40T252 C4’-exo43T223E 3T E216 C3’-exo180 S21T108 1EC1’-exo144 C2’-endo

ation. Conformational angles of P are divided into two categories, north (N) and sopurines and ne36ON21NHOCytosineE 3.8 The most common bases found in nucleic acids: the top row is purinm row pyrimidines. The atom-numbering scheme of purines and pyrimidines is giv

The glycosidic torsion parameterBasics of Nucleic Acid Structure 65

Watson-Crick base pairingA Textbook of Structural Biologymajor grooveONRNmajor grooveHHNHHOHNNNNNHNNNRRNHONHNNORminor grooveminor grooveGuanineCytosineAdenineThymineFIGURE 3.13 The Watson–Crick base pairs. The sugar moieties are represented by R. Noticethat the GC base pair on the left interacts via three hydrogen bonds, whereas the AT base pairon the right has only two. This makes the GC base pair and thus GC-rich DNA morestable than the AT base pair and AT-rich DNA.phosphodiester linkages between adjacent nucleotides. In the sugar-phosphatepart the phosphate groups connect to the 3′ carbon of one deoxyribose moietyand the 5′ carbon of the next moiety, thereby linking successive deoxyribosestogether. The two ends of a chain differ; the end where the 5′ carbon is not con-

A and B-form helicesThe A.B transition: first known change of DNA double-helical state. H2O.- salt and/or alcohol11 bp/turnA-DNA10 bp/turnB-DNAA-DNA base pairs inclined with respect to helical axis and untwisted cf. B DNA.A-DNA minor groovewider and moreshallow, major groovenarrower and moredeep cf. B!DNABase pairs displaced from A-DNA helical axis.

10 bases per turn. One full turn measures 3.4 nm in the axial direction. TA and B-form helices

Base stackingThe overlap of successive base pairs depends on duplex form.

Concentrate on the basepair structuresBasics of Nucleic Acid Structure yxyShearyzzzTwist5'xIICoordinate frame

Getting DNA to bendCombined B.A and B.C deformations tighten the bending of DNA: ACGlobal bend:360 /75 bpleft-handed superhelixCombined B.A and B.C deformations tighten the bending of DNA:

The nucleosome core particleA Textbook of Structural BiologyFIGURE 3.21 Left: A dimer of histone proteins H3 (blue) and H4 (light blue). Right: Nucleosomestructure. The octameric complex of histone proteins forms the center and the DNA is woundaround. The color scheme of the histone subunits in the core particle is the same as in Fig. 3.20(PDB: 1KX3).

DNA binding to the histone core proteins

Comparison to elastic rod modelsBending rigidity: A M (2πνn )2;LPn4Twisting rigidity: C Stretching rigidity: Y a A/(kB T )I (2Lνn )2n2ML(2νn )2n2Lord Rayleigh, The Theory of Sound, 1894

Bending rigidity for linear duplex DNABending motionsn 1n 2n 3d(GACT) 60 base pairsn123 19A 2.44 10GB frequencies0.1140.1160.2940.2950.5220.532erg.cm 2.26 10Analytical frequencies0.1000.2750.539 19erg.cm a 594 Å 550 Å

Stretching rigidity for linear duplex DNAStretching motionsn 1n 2n 3d(GACT) 60 base pairsn123GB frequencies0.6641.2891.807Y 1502 pNAnalytical frequencies0.6191.2371.846 1000 1500 pN

Salt dependence of bending and stretching are not the sameExp: Baumann, Smith, Bloomfield, Bustamante, PNAS 94, 6185 (1997)Theory: Bomble & Case, Biopolymers 89, 722 (2008)

750700500d(G AC T )d(G C )d(AT )dG .dCdA.dTd(C T G )d(C G G 20r21r22r23r24r25r26r27r28r29r30P ersi stence length (Å)Sequence dependence of bending rigidity800dA.dTdG.dC650600550450d(CGG)S equence (60 bp)

Now consider circular DNAνn f (Ω, R , Tw , n, ρ)R is the circle radius Tw is the excess twistΩ C /Aρ is the mass densityMatsumoto, Tobias, Olson,JCTC 1, 117 (2005)

In-plane and out-of-plane modes for circular DNAIn plane bending motionsn 3n 2n234Relaxed minicircle with 94 base pairsGB frequenciesAnalytical 40.697Overtwisted minicircle with 94 base pairsGB frequenciesAnalytical 80.734Out of plane bending motionsn 3n 2n234Relaxed minicircle with 94 base pairsGB frequenciesAnalytical 10.864Overtwisted minicircle with 94 base pairsGB frequenciesAnalytical 10.958

Moving on to RNA80 A Textbook of Structural �3’BaseOPC3’-endoC2’-endoFIGURE 3.23 The two types of sugar pucker most commonly found in nucleic acids. TheC3′-endo pucker is prevalent in RNA and A-form DNA, whereas the C2′-endo pucker ischaracteristic of B-form DNA. It is seen that the C3′-endo pucker produces a significantlyshorter phosphate-phosphate distance in the backbone, resulting in a more compact helicalconformation.10 nucleotides per turn, RNA prefers the A-form with 11–12 nucleotides per turn.In DNA, the base pairs are centered over the helix axis. In an RNA double helix,the base pairs slide 5 Å away from the helix center. All these factors contributeto the tighter packing of the RNA double helix.The surface of an RNA helix is also quite different from the DNA double helix.The major groove of RNA is very narrow and deep, accentuated by the fact thatRNA does not have the thymine methyl group, which resides in the major groove.In contrast, the minor groove is wide and shallow. For this reason, the major and

tions, manifested in the degeneracy of the genetic code (Chap. 8). Figure 3.27 showsRNAmorebase-pairingthehasGU wobblebasepair, which is one possibilitiesof the most common alternative base pairing patterns, and the GU reverse wobble, where the uracil group is simply flippedONRNHNHNHRHNNNORONHNNHONRNNNHNHHNHGC Watson-CrickGC reverseFIGURE 3.25 Left: Canonical Watson–Crick GC base pair (cis). Right: GC reverse Watson–Crickbase pair (trans).HNNNNHHRNNOAU HoogsteenHHORAU reverse HoogsteenHORNNNRONNHNNRRNNHNNNNONHNOAU reverse base pairFIGURE 3.26 Left: AU Hoogsteen base pair. Center: AU reverse Hoogsteen base pair.

RNAhasbase-pairingpossibilities Left: CanonicalFIGURE3.25 moreWatson–Crick GCbase pair (cis). Right: GC reverse Watson–Crickbase pair (trans).HNNNNHHRNNOAU HoogsteenHHORAU reverse HoogsteenHORNNNRONNHNNRRNNHNNNNONHNOAU reverse base pairFIGURE 3.26 Left: AU Hoogsteen base pair. Center: AU reverse Hoogsteen base pair.Right: AU reverse Watson–Crick base pair. The blue dashed line shows the line of symmetryused to define the cis/trans conformation of the base pair. The AU Hoogsteen base pair is thuscis-H/WC, and the AU reverse Hoogsteen is trans H/WC.

RNA has more base-pairing possibilitiesTextbook of Structural BiologyOORNONRHNNNNHNNH2GU wobbleOONRRNNHHNONNH2GU reverse wobbleFIGURE 3.27 Left: GU wobble. Right: GU reverse wobble.around the axis of the amine hydrogen bond. The GU wobble base pairing resultsin the loss of a hydrogen bond from the guanine, but the vacant amino group oftenforms hydrogen bonds to other bases nearby, perhaps in concert with the neighboring imino group. The GU wobble base pairings can be viewed as a canonicalWatson–Crick pattern, with a shift of the pyrimidine partner.

If lysidine is absent, the tRNA will instead be recognized and mischarged by theRNAuses chemically-modifiedCAT-recognizingmethionyl tRNA ligase. Sobasesa single posttranslational modificationis responsible for both the codon and amino acid specificity of this tRNA.OSHHNOHNHHOHdihydrouracil (D)NH2ONHNH2NNORR4-thiouracil (S4U)3-methylcytosine (m3C)ONNNHNNRR5-methylcytosine (m5C)Inosine (I)H COOC3NH2NHORHNONNHpseudouridine (Ψ)FIGURE 3.32for ribose. NRN6-methyladenine (m6A)ONNN N NH3NHROlysidine (L)ONNRNHNNNNH2COOCH3Nwyosine (Y)Examples of modified bases in RNA. Modifications are marked in red. R stands

Tetraloopsare tetraloopsa particularly common motif in RNA structures. An especiallyRNAmotifs:well-known case of this hairpin loop is the GNRAa loop motif, which closes theFIGURE 3.36 Three-dimensional structures of various tetraloop folds. Left : GNRA loop from 5SrRNA (PDB: 1JJ2). The first G in the loop stabilizes the loop by hydrogen bonding to the fourthmember. Middle: ANYA loop from MS2-RNA complex (PDB: 1DZS). Bases one and two form astacking interaction, while bases of three and four of the loop are looped out and poised to interact with other species. Right: UNCG tetraloop from 16S rRNA (PDB: 1BYJ). The first U and thelast G in the tetraloop interact via hydrogen bonds, while bases of one and two in the loop forma stacking interaction. The third base in the loop is available for interaction with other species.aR stands for puRine; N stands for aNy; Y stands for pYrimidine.

the ribosomal RNAs after the normal Watson–Crick base pair.Stems, bulges, loops, internal loops3’G100A GC C U C UGGG ACGCCA120 CCGCCG110CAA C CC G GU UC G GAGGUC AU AGGGGCCUUGU807090Loop DHelix 4Loop EHelix 55’UUAG Helix 1GCGG 10CC AG30CU G20A40GC CCC UGC GGUGGGCG U A C C C A UCGCG C CA CCC GGGCACA AG CCA UAAGA AA6050Loop AHelix 2Loop BHelix 3Loop C

efficiency.Theseuntranslatedregions (UTRs) are present before the start codonEvenmRNAhasstructure(5′ UTRs) and after the stop codon (3′ UTRs). They contain areas of well-definedAAAAAAAAAAAAAAAAAAAAAAAAm7G cap5’UTR3’ UTRpoly(A) tailFIGURE 3.50 Schematic representation of eukaryotic mRNA showing the 5′ cap, the codingregion (red), and the 5′ and 3′ UTRs.

More on RNA secondary structureSecondary Structure: small subunit ribosomal RNAA AUAUUAGA U A UGUAUAAGA UUAAC AUAAAAUUAAAUCAA AUGAUUUUUUAAU AA CGA CCUCCAAUUAUAACUU GU GUAUAAAAAAAUUA UA UA AAA G GUG UA CAUAUGCC CUAUUAUAAUAAUGAAUCAUAUAUAA UAAUU AGUGGCGUUGCUAUUAAUAUUAA UGUAGUGAUU U CGAAGCUAAUUUGCCGAAAC AUUUUAUUAUAAUUUCU A UAUAAAAU GAAGCUAUAUUAAUU AAUUGUUU A GUAAUGUAAAUA GU UAU A U UUAGAAAAAUUAGAUAUUGA AUAAAAUAUAUCAUAUUAAUU G CUUUCUGUC U UACUAAUAAUCGAGAAAUUUAGAGUUAUUUGA A UA CA AAAAUCAAUAGU C GAAAAACUAAGUUCUUA UGA AA UAAUUUUUGUAA CAACCU AAU AAAUCAUGCAAGAUGAAGUUCUAU AGCGUAAGUAUUUUGCUCGAACAUCAUUAUAA AAUGUCAUA U AAAUGCAAAUAGAUAUCGUAA A G A G UA CG U U A GUAUGCAACUAUA UACAUGAUGA UGA UA UA UA A A A A UA UUUUA UUUUUAAUAUAGAUCUCAUAAU AUA UUUA GUUCCGGGGCCCGGCCA CGUAGAU AAU A UUAAUAAGUAGA A CCGGA CCCGA A A GGA GA A A UA G UAA U A G A C G U U A C A G A CUUAAGUA A UA UA UA UA UA UA A A UUGA UUA AUUUCGCGG AAAAUAAAAUCCAUAAAUAAUUAAAAUUA U U G U U GUCGCACUAGUA A UGA UA UUA A UUA CCA UA UA UA UGAUCCGCUUUGUCAGUAAAUAAAAA AUUUA UA UGGA UA UA UA UA UUA A UA AUCUUUA GAU U GGAGAUAUAUG CGUAAUAUUAAUUUAUUAUUAUUAAUAAAA AAUGGGCUAUAUAUUUUAACAAAAACUGA CUAACGA UUAA AUAUGUAUACUAUUCUAA AUAUGUAUAAU A A G GAGA CUUUUGUGCUAAUCAA AAUUA CCGUA GG GAAUAAU UG UGGAUAUUA GA UUG A UCC AGU UUAAAAUGCGGUGGCGUCC AA AGACACAAAGGUUGAA GG UAG CUA GUA UU AGCCCAACGUAUACGUUAGUAGCUA AUAGGUGACGAGAAUUGUAUCAAG5’GUUAAAUUAAAACGAAACUA A C A GAAUAUGCCGUUAAUACUAUAUUAUUAAGUGUC A CG UUUA UUA UU GAAUCAAUAUAUAAUAG U C UC A GAUGG UGU A A A UA A UA G A AUUAUAAUAAGUU GAUAGGUAA AUACAGUACGUAUAUAAAU CAGCGUUUC A AUAA GCCGAUAUCUGAAUUUUUAAAACCUUACU AAUUUAAG AC G AUUUUGAUAUU3’AU UAUCUUUAUACAAAGCGGAUUGCGUUAAUCGU UUUUAAUAUAUAUCGUUUAUUAA U A A GCU AAAA AUAUAUAUUUAUUAAA UA UA UA UA GGUUA UUCA UAAAAUAAAAUAUAAUAA U U AAUAUAAUAAAGU A GA AAUAA U GIIIIIISaccharomyces , a lot of interestingRNA is shorter than this, or canbe thought of in terms ofdomainspredicting secondarystructure from sequencethe inverse folding problem:finding sequences that arecompatible with structuremaking the 2D 3DtransitionEucarya Phyla: Fungi, AscomycotaApril 1994(V00704)AUAAUAUAUUUAAUUAUUAUAUAAAAAforce field simulations ofnucleic acids

Nearest-neighbor energy functionThermodynamics of stems and loopsSerra & Turner, Meth. Enzymol. 259, 242 (1995)Lu, Turner & Mathews, NAR 34, 4912 (2006)A AHairpin:UGUAC-GG-CG-C G loop G loop(6) G( G stem G(GCG) G( ) 2. 9 kcal/molAGAGGGC) G() 6. 3 kcal/molCCCG G hairpin G loop G stemSimilar calculations for H , S , and T melt

pairing in both strands, and a multibranch loop (helical junction) is a loop fA slightlymorecomplexstructure:the XRNAprogram,availablefrom the Santa Cruz RNA Center at http://rn-2.1 -2.5-3.4‘5G C GAG‘3G C G CG A-1.7 -2.4 -0.2AGGUC CG CCGA AaacetatTh-3.3 5.4 G -1.7 - 3.4 - 2.4 - 0.2 - 2.1 - 3.3 - 2.5 5.4 -10.2 kcal/molFig. 2 Sample nearest neighbor calculation. The free energy incrementsof each motif are indicated and the total stability is the sum of each3Fsm

From sequence to secondary structure:1A very nice folding program (Windows only) is cture.html123sequence editing, secondary structure predictiondynalign, for multiple sequence alignmentpartition function analysis, gives much improved confidence levelsfor the predictions2Prediction of secondary structure as a web service:http://www.bioinfo.rpi.edu/ zukerm/ (classical approach) or athttp://sfold.wadsworth.org/ (statistical sampling of the Boltzmanndistribution)3Reviews: D.H. Mathews, Theor. Chem. Acc. 116, 160 (2006); J.Mol. Biol. 359, 526 (2006)

RNAmotif: scanninggenomesforlookingsecondarymotifsA simpleexample:for structuretetraloopsdesch5 (minlen 4, maxlen 6) ss (seq "ˆuucg " 00.0000.0000.0000.0000.0000.0000.0000 1035 12 tccc0 180 14 ggagc0 181 12 gagc0 181 12 gagc039 12 cccc0 175 12 gccc1 1321 12 tacc0 227 12 cacc139 12 agcg140 14 ctccgctcgctcgggggggcggtaggtgcgctcgctgh3

Motif for an artifically generated DNA enzyme

Looking for a analogue of an artificial DNA enzymeparmswc gu;descrh5( tag ’h1’, len 5, mispair 1 )ss( len 1, seq "r" )h5( tag ’h2’, minlen 5, maxlen 8, seq " y", mispair 1 )ss( minlen 4, maxlen 200 )h3( tag ’h2’, seq "r " )ss( tag ’ggct’, len 15, mismatch 1, seq " ggctagcnacaacrrh3( tag ’h1’ )Results:Arabidopsis thaliana chr II sect 146/255:AC0047471.000 1 15537 171 ttgtt a tccgc ttt.(135).tgggtggaggctaTccacaacaa ggtgg

How can we generate descriptors?search with strict2o struct descriptorchoose seq withlow T.E. and lookfor conserved ntinclude conserved ntin descriptor, searchwith looser 2o structconstraintsThis general procedurecan often be used to findconserved nucleotides infamiles of structures, andto search for specifictypes of RNA in genomicdatabases.

Anticodon stem06 A Textbook of Structural BiologyExample: the tRNA motifUm5C 40ΨAA30 GACmYUAC 75CACGC 70UUAA 65conservedpartly conservedGCGGAUUAcceptor stemUAG ADC U C m2 GG A C A C10m5 G U G U G15D-loopD50A35(a)Anticodon60C UmAT ΨCCU55m7 GA G 45 Variable loopGGUm5C 40ΨAG A G CG A20AG TΨC-loopGGGm225 m2 GCCAnticodon stem A30 GACmYUGmAA35(a)AnticodonFIGURE 3.52 (a) Secondary structure of tRNAPhe from yeast. (b) Schematic represethree-dimensional folding of the tRNA molecule, using the same color scheme as

Looking for tRNA’s

Generating an initial tRNA descriptor for E. coli1. Descriptor with no sequence requirement. GU’s are allowed, and nomispairs are allowed.Result: 26 tRNAs not found, 5 false positives,all with higher Turner energies than true tRNAs.lgth 7NNlgth 5lgth 4-22lgth 8-11NNNNlgth 3-4 Nlgth 5N NNNN NN2. Analyze sequenceconservation for 50 hits withlowest Turner energies.Found 11 nucleotides thatare 100% conserved.lgth 7UNlgth 75’Nlgth 5NNN 3’3. Include conserved nucleotides in descriptor,but allow a mispair in each helix.Result: 2 tRNAs not found, no false positives.lgth 4-22lgth 8-11Nlgth 3-4NGCUlgth 5lgth 75’NCCA 3’U UCNN NA

Generating an optimized tRNA descriptor for E. ColiOptimized tRNA descriptor for E. colilgth 7helixsingle strandNNlgth 5lgth 4 22lgth 8 11NNNUCNlgth 3 4NNlgth 5NNNNlgth 75’NCCA 3’(GU basepairs not allowed; one mispair per helix; no sequence mismatches)Performance for K12 and O157:H7: no false positives,one missing tRNA for K-12,one previously unidentified tRNA located

A more general bacterial tRNA descriptorlgth 7Uhelixsingle strandNOne mispairper helix isalloweda.c. armlgth 5V looplgth 4 22lgth 8 11D arm Nlgth 3 4NGUlgth 5UClgth 75’lgth 43’CN NAT arma.a. stemUGU pairsgenerally notallowedNOnesequencemismatch isallowed

Results for bacteria using this descriptorOrganism E.Coli K 12E.Coli O157:H7B. SubtilisAquifex aeolicusH. influenzaeMyc. pneumoniaetotal# tRNA 869587435636falseneg. 101001falsepos. 152018476(We show below how to eliminate false positives.)False positives can be further distinguished from true tRNAsusing Turner energies.

Analysis using nearest-neighbor energies200testE. coli (K 12)E. coli (O157:H7)Bacillus subtilisAquifex aeolicusHaemophilus influenzaeMycoplasma pneumoniaeTurner Energies 20200 20200 20 40true tRNAfalse pos.true tRNAfalse pos.

Moving to eukaryotesWhat about eukaryotes?organismS. pombeS. cerevisiaearabidopsisdrosophilaC. eleganshuman tRNAs153273620284584496tRNAs with introns395983153428S. cerevisiae:tRNAscan-SE found 275 tRNAs, 59 with intronswe modified our descriptor to allow an 8-60 base insertafter the sixth postion of the anticodon looprnamotif then found all but 3 of the tRNA’sidentified by tRNAscan-SErnamotif also found 1301 false positives,but all had high Turner energies

“Solving” the inverse folding problem (yeast):tRNA folding energies for S. cerevisiaeTurner Energy3020100 10 20 30true tRNA 27512801285129012951300false pos

C4 -exo C4 -endo C1 -exo C3 -exo C2 -endo C4 -endo O4 -exo C1 -endo C2 -exo C3 -endo S N T 3E 3T 4 4 E 0 4 0E 0T 1 1E 2T 2T 2E 1 3 3E 4T 3 4E 4T 0 0E 1T 0 1 1 2 2E T 3 2 FIGURE 3.7 Diagram showing the correlation between the phase angle Pand the ribose con-formation. Conformational angles of Pare divided into two categories, north (N) and south .

Related Documents:

the following aims: (1) determine whether biophysical processes could be used to predict and map landscape fuel hazard; (2) assess the predictive capability of biophysical models and (3) compare biophysical models of fuel hazard to current operational methods. 2. Materials and Methods 2.1.

Chemistry ORU CH 210 Organic Chemistry I CHE 211 1,3 Chemistry OSU-OKC CH 210 Organic Chemistry I CHEM 2055 1,3,5 Chemistry OU CH 210 Organic Chemistry I CHEM 3064 1 Chemistry RCC CH 210 Organic Chemistry I CHEM 2115 1,3,5 Chemistry RSC CH 210 Organic Chemistry I CHEM 2103 1,3 Chemistry RSC CH 210 Organic Chemistry I CHEM 2112 1,3

Physical chemistry: Equilibria Physical chemistry: Reaction kinetics Inorganic chemistry: The Periodic Table: chemical periodicity Inorganic chemistry: Group 2 Inorganic chemistry: Group 17 Inorganic chemistry: An introduction to the chemistry of transition elements Inorganic chemistry: Nitrogen and sulfur Organic chemistry: Introductory topics

Jan 17, 2018 · Biology: The Dynamics of Life, Glencoe Biology/Biophysical Science 2005 Modern Biology, Holt, Reinhart, and Winston Biology/Biophysical Science 2002 Biology, Prentice Hall Biology/Biophysical Science 2004 BSCS Biology: A Molecular Approach, 8th

it means that a measurement or model prediction at any point in space can be considered representative of the entire plant . utilize state-of-the-art biophysical models with high complexity . Bailey Helios Biophysical Modelling Framework Frontiers in Plant Science www.frontiersin.org 3 October 2019 Volume 10 Article 1185

Biophysical modelling can help estimate future conditions, services and capacity It supports scenario analysis Many biophysical models are spatial and combine data from many sources Geographic Information Systems (GIS) and pre-defined modelling packages have methods and formulas included Some models may be better than others, depending on purpose

Accelerated Chemistry I and Accelerated Chemistry Lab I and Accelerated Chemistry II and Accelerated Chemistry Lab II (preferred sequence) CHEM 102 & CHEM 103 & CHEM 104 & CHEM 105 General Chemistry I and General Chemistry Lab I and General Chemistry II and General Chemistry Lab II (with advisor approval) Organic chemistry, select from: 9-10

CHEM 0350 Organic Chemistry 1 CHEM 0360 Organic Chemistry 1 CHEM 0500 Inorganic Chemistry 1 CHEM 1140 Physical Chemistry: Quantum Chemistry 1 1 . Chemistry at Brown equivalent or greater in scope and scale to work the studen