PHYS 2310 Engineering Physics I Formula Sheets

3y ago
19 Views
2 Downloads
1,005.70 KB
13 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Mollie Blount
Transcription

PHYS 2310 Engineering Physics I Formula SheetsChapters 1-18Chapter 1/Important NumbersChapter 2VelocityQuantityUnits for SI Base QuantitiesUnit NameUnit SymbolLengthMeterMTimeSecondsMass (not weight)Kilogramkg1 kg or 1 m1m1m1 second1mCommon Conversions1000 g or m1m100 cm1 inch1000 mm1 day1000 milliseconds 1 hour3.281 ft360 Average VelocityAverage Speed1 106 𝜇𝑚2.54 cm86400 seconds3600 seconds2𝜋 radImportant Constants/MeasurementsMass of Earth5.98 1024 kgRadius of Earth6.38 106 m1 u (Atomic Mass Unit)1.661 10 27 kgDensity of water1 𝑔/𝑐𝑚3 or 1000 𝑘𝑔/𝑚3g (on earth)9.8 m/s 2CircumferenceSurface area(sphere)DensityCommon geometric FormulasArea circle𝐶 2𝜋𝑟𝑆𝐴 4𝜋𝑟 2Volume (rectangular solid)Instantaneous Velocity𝑉𝑎𝑣𝑔 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑥 𝑡𝑖𝑚𝑒 𝑡𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑖𝑚𝑒̅ 𝑑𝑥 𝑥𝑣 lim 𝑡 0 𝑡𝑑𝑡𝑠𝑎𝑣𝑔 Average Acceleration 𝑣 𝑡𝑑𝑣 𝑑2 𝑥𝑎 𝑑𝑡 𝑑𝑡 2𝑎𝑎𝑣𝑔 Motion of a particle with constant acceleration𝐴 𝜋𝑟4Volume (sphere)𝑉 𝜋𝑟 33𝑉 𝑙 𝑤 ℎ𝑉 𝑎𝑟𝑒𝑎 ionInstantaneousAcceleration22.2𝑣 𝑣0 𝑎𝑡1 𝑥 (𝑣0 𝑣)𝑡21 𝑥 𝑣0 𝑡 𝑎𝑡 22𝑣 2 𝑣02 2𝑎 𝑥2.112.172.152.162.72.82.9

Chapter 3Adding VectorsGeometricallyAdding VectorsGeometrically(Associative Law)Chapter 4𝑎⃗ 𝑏⃗⃗ 𝑏⃗⃗ 𝑎⃗3.2(𝑎⃗ 𝑏⃗⃗) 𝑐⃗ 𝑎⃗ (𝑏⃗⃗ 𝑐⃗)3.33.5Magnitude of vector 𝑎 𝑎 𝑎𝑥2 𝑎𝑦23.6Angle between x axisand vector𝑎𝑦𝑡𝑎𝑛𝜃 𝑎𝑥3.6Unit vector notation𝑎⃗ 𝑎𝑥 𝑖̂ 𝑎𝑦 𝑗̂ 𝑎𝑧 𝑘̂3.7𝑟𝑥 𝑎𝑥 𝑏𝑥𝑟𝑦 𝑎𝑦 𝑏𝑦𝑟𝑧 𝑎𝑧 𝑏𝑧3.103.113.12𝑎⃗ 𝑏⃗⃗ 𝑎𝑏𝑐𝑜𝑠𝜃3.20Adding vectors inComponent FormScalar (dot product)Scalar (dot product)Projection of 𝑎⃗ 𝑜𝑛 𝑏⃗⃗ orcomponent of 𝑎⃗ 𝑜𝑛 𝑏⃗⃗Vector (cross) productmagnitude𝑎⃗ 𝑏⃗⃗ (𝑎𝑥 𝑖̂ 𝑎𝑦 𝑗̂ 𝑎𝑧 𝑘̂) (𝑏𝑥 𝑖̂ 𝑏𝑦 𝑗̂ 𝑏𝑧 𝑘̂ )𝑎⃗ 𝑏⃗⃗ 𝑎𝑥 𝑏𝑥 𝑎𝑦 𝑏𝑦 𝑎𝑧 𝑏𝑧displacementAverage AccelerationInstantaneousAcceleration4.4 𝑥 𝑡4.8𝑑𝑟⃗ 𝑣𝑥 𝑖̂ 𝑣𝑦 𝑗̂ 𝑣𝑧 𝑘̂𝑑𝑡 𝑣⃗𝑎⃗𝑎𝑣𝑔 𝑡𝑑𝑣⃗𝑎⃗ 𝑑𝑡𝑎⃗ 𝑎𝑥 𝑖̂ 𝑎𝑦 𝑗̂ 𝑎𝑧 𝑘̂𝑣⃗ Projectile Motion𝑣𝑦 𝑣0 𝑠𝑖𝑛𝜃0 𝑔𝑡3.241 𝑦 𝑣0 𝑠𝑖𝑛𝜃𝑡 𝑔𝑡 2222𝑣𝑦 (𝑣0 𝑠𝑖𝑛𝜃0 ) 2𝑔 y𝑘̂𝑎𝑧 ��𝑎𝑦𝑏𝑦4.154.21𝑣𝑦 𝑣0 𝑠𝑖𝑛𝜃0 𝑔𝑡𝑐 𝑎𝑏𝑠𝑖𝑛𝜙4.104.114.231 𝑥 𝑣0 𝑐𝑜𝑠𝜃𝑡 𝑎𝑥 𝑡 22or 𝑥 𝑣0 𝑐𝑜𝑠𝜃𝑡 if 𝑎𝑥 0𝑎⃗ 𝑏⃗⃗ 𝑏 or𝑖̂⃗⃗𝑎⃗𝑥𝑏 𝑑𝑒𝑡 𝑎𝑥𝑏𝑥 𝑟⃗ 𝑥𝑖̂ 𝑦𝑗̂ 𝑧𝑘̂⃗⃗𝑎𝑣𝑔 𝑉Instantaneous Velocity3.22𝑎⃗𝑥𝑏⃗⃗ (𝑎𝑥 𝑖̂ 𝑎𝑦 𝑗̂ 𝑎𝑧 𝑘̂)𝑥(𝑏𝑥 𝑖̂ 𝑏𝑦 𝑗̂ 𝑏𝑧 𝑘̂ ) (𝑎𝑦 𝑏𝑧 𝑏𝑦 𝑎𝑧 )𝑖̂ (𝑎𝑧 𝑏𝑥 𝑏𝑧 𝑎𝑥 )𝑗̂ (𝑎𝑥 𝑏𝑦 𝑏𝑥 𝑎𝑦 )𝑘̂Vector (cross product)4.4Average Velocity𝑎𝑥 𝑎𝑐𝑜𝑠𝜃𝑎𝑦 𝑎𝑠𝑖𝑛𝜃Components of Vectors𝑟⃗ 𝑥𝑖̂ 𝑦𝑗̂ 𝑧𝑘̂Position vectorRelative MotionUniform CircularMotion𝑦 (𝑡𝑎𝑛𝜃0 )𝑥 𝑅 𝑔𝑥2(𝑣0 𝑐𝑜𝑠𝜃0 )2𝑣02sin(2𝜃0 )𝑔⃗⃗⃗⃗⃗⃗⃗𝑣𝐴𝐶 ⃗⃗⃗⃗⃗⃗⃗𝑣𝐴𝐵 ⃗⃗⃗⃗⃗⃗⃗𝑣𝐵𝐶𝑎𝐴𝐵 ���𝐴𝑎 𝑣2𝑟𝑇 2𝜋𝑟𝑣4.254.264.444.454.344.35

GeneralComponent formChapter 5Chapter 6Newton’s Second LawFriction𝐹⃗𝑛𝑒𝑡 𝑚𝑎⃗𝐹𝑛𝑒𝑡,𝑥 𝑚𝑎𝑥𝐹𝑛𝑒𝑡,𝑦 𝑚𝑎𝑦𝐹𝑛𝑒𝑡,𝑧 𝑚𝑎𝑦5.1Kinetic FrictionalWeight𝐹𝑔 𝑚𝑔𝑊 𝑚𝑔𝑓⃗𝑠,𝑚𝑎𝑥 𝜇𝑠 𝐹𝑁6.1𝑓⃗𝑘 𝜇𝑘 𝐹𝑁6.25.2Drag ForceGravitational ForceGravitational ForceStatic Friction(maximum)Terminal velocity1𝐷 𝐶𝜌𝐴𝑣 222𝐹𝑔𝑣𝑡 Centripetal Force𝑣2𝑎 𝑅𝐹 𝑚𝑣 2𝑅6.176.18

Chapter 7Work- Kinetic EnergyTheorem7.1𝑊 𝐹𝑑𝑐𝑜𝑠𝜃 𝐹⃗ 𝑑⃗7.77.8Spring Force (Hooke’slaw)Work done by springWork done by VariableForceAverage Power(rate at which thatforce does work on anobject)Instantaneous ��� Mechanical Energy𝐸𝑚𝑒𝑐 𝐾 𝑈8.127.15Principle ofconservation ofmechanical energy𝐾1 𝑈1 𝐾2 𝑈2𝐸𝑚𝑒𝑐 𝐾 𝑈 08.188.177.207.21Force acting on particle𝑧𝑓𝑃 7.36𝑧𝑖𝑊 𝑡𝑑𝑊 𝐹𝑉𝑐𝑜𝑠𝜃 𝐹⃗ 𝑣⃗𝑑𝑡8.78.117.25𝑊 𝐹𝑥 𝑑𝑥 𝐹𝑦 𝑑𝑦 𝐹𝑧 𝑑𝑧 𝑈 𝑚𝑔 𝑦1 2𝑘𝑥27.12 𝐾 𝑊𝑎 𝑊𝑔𝑊𝑎 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝐹𝑜𝑟𝑐𝑒𝐹⃗𝑠 𝑘𝑑⃗𝐹𝑥 𝑘𝑥 (along x-axis)Gravitational PotentialEnergy8.18.6𝑈(𝑥) 𝑊𝑔 𝑚𝑔𝑑𝑐𝑜𝑠𝜙1 2 1 2𝑘𝑥 𝑘𝑥2 𝑖 2 𝑓 𝑈 𝑊 𝐹(𝑥)𝑑𝑥Elastic Potential Energy7.10𝑊𝑠 Potential Energy𝑥𝑖 𝐾 𝐾𝑓 𝐾0 𝑊Work done by gravityWork done bylifting/lowering object𝑥𝑓1𝐾 𝑚𝑣 22Kinetic EnergyWork done by constantForceChapter 87.427.437.47Work on System byexternal forceWith no frictionWork on System byexternal forceWith frictionChange in thermalenergyConservation of Energy*if isolated W 0𝐹(𝑥) 𝑑𝑈(𝑥)𝑑𝑥8.22𝑊 𝐸𝑚𝑒𝑐 𝐾 𝑈8.258.26𝑊 𝐸𝑚𝑒𝑐 𝐸𝑡ℎ8.33 𝐸𝑡ℎ 𝑓𝑘 𝑑𝑐𝑜𝑠𝜃8.31𝑊 𝐸 𝐸𝑚𝑒𝑐 𝐸𝑡ℎ 𝐸𝑖𝑛𝑡8.35Average PowerInstantaneous Power**In General Physics, Kinetic Energy is abbreviated to KE and Potential Energy is PE𝑃𝑎𝑣𝑔 𝑃 𝐸 𝑡𝑑𝐸𝑑𝑡8.408.41

Chapter 9Impulse and Momentum𝑡𝑓Impulse𝐽⃗ 𝐹⃗ (𝑡)𝑑𝑡𝑡𝑖9.35𝑝⃗ 𝑚𝑣⃗9.22𝐽⃗ Δ𝑝⃗ 𝑝⃗𝑓 𝑝⃗𝑖𝑑𝑝⃗𝑑𝑡𝐹⃗𝑛𝑒𝑡 𝑚⃗𝑎⃗𝑐𝑜𝑚𝑃⃗⃗ �𝑒𝑡 Newton’s 2nd lawSystem of Particles9.30𝐽 𝐹𝑛𝑒𝑡 𝑡Linear MomentumImpulse-MomentumTheoremCollision continued 𝐹⃗𝑛𝑒𝑡 9.319.32Inelastic CollisionConservation of LinearMomentum (in 2D)Average forceElastic Collision𝑛𝑛 𝑝 𝑚 𝑣 𝑡 𝑡 𝑚𝐹𝑎𝑣𝑔 𝑣 𝑡2𝑚1 ()𝑣𝑚1 𝑚2 1𝑖𝑛9.149.259.27Center of mass location𝑟⃗𝑐𝑜𝑚1 𝑚𝑖 𝑟⃗𝑖𝑀9.67𝑖 1𝑛𝑣⃗𝑐𝑜𝑚 1 𝑚𝑖 𝑣⃗𝑖𝑀Rocket EquationsThrust (Rvrel)𝑅𝑣𝑟𝑒𝑙 𝑀𝑎9.68Change in velocity9.429.43𝑝⃗1𝑖 𝑝⃗2𝑖 𝑝⃗1𝑓 𝑝⃗2𝑓9.509.519.78𝐾1𝑖 𝐾2𝑖 𝐾1𝑓 𝐾2𝑓9.8𝑖 1𝑃⃗⃗ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑃⃗⃗𝑖 𝑃⃗⃗𝑓𝑚1 𝑣𝑖1 𝑚2 𝑣12 𝑚1 𝑣𝑓1 𝑚2 𝑣𝑓29.379.40Center of Mass𝑑𝑡𝑚1 𝑚2𝑣1𝑓 ()𝑣𝑚1 𝑚2 1𝑖9.779.22Collision𝑣2𝑓𝑃⃗⃗1𝑖 𝑃⃗⃗2𝑖 𝑃⃗⃗1𝑓 𝑃⃗⃗2𝑓𝐹𝑎𝑣𝑔 Center of mass velocityFinal Velocity of 2objects in a head-oncollision where oneobject is initially at rest1: moving object2: object at restConservation of LinearMomentum (in 1D)𝑚1 𝑣01 𝑚2 𝑣02 (𝑚1 𝑚2 )𝑣𝑓Δ𝑣 𝑣𝑟𝑒𝑙 𝑙𝑛𝑀𝑖𝑀𝑓9.889.88

Chapter 10Angular displacement(in radiansAverage angularvelocityInstantaneous VelocityAverage angularaccelerationInstantaneous angularacceleration𝑠𝑟Δ𝜃 𝜃2 𝜃1 𝜃𝜔𝑎𝑣𝑔 𝑡𝑑𝜃𝜔 𝑑𝑡 𝜔𝛼𝑎𝑣𝑔 𝑡𝑑𝜔𝛼 𝑑𝑡10.110.4𝜃 Rotational Kinematics𝜔 𝜔0 𝛼𝑡1Δ𝜃 𝜔0 𝑡 𝛼𝑡 2222𝜔 𝜔0 2𝛼Δ𝜃1Δ𝜃 (𝜔 𝜔0 )𝑡21Δ𝜃 𝜔𝑡 𝛼𝑡 2210.510.610.710.810.1310.1410.15𝐼 𝐼𝑐𝑜𝑚 𝑀ℎ210.36𝜏 𝑟𝐹𝑡 𝑟 𝐹 𝑟𝐹𝑠𝑖𝑛𝜃10.3910.41Newton’s Second Law𝜏𝑛𝑒𝑡 𝐼𝛼10.45Rotational work doneby a toque𝑊 𝜏𝑑𝜃TorqueRotational KineticEnergyWork-kinetic energytheorem𝑣 𝜔𝑟10.18Tangential Acceleration𝑎𝑡 𝛼𝑟10.192𝑣 𝜔2 𝑟𝑟10.232𝜋𝑟 2𝜋 𝑣𝜔10.1910.20𝑇 10.35Power in rotationalmotionVelocityPeriod𝐼 𝑟 2 𝑑𝑚Rotation inertia(discrete particlesystem)Parallel Axis Theoremh perpendiculardistance between twoaxes𝜃𝑓Relationship Between Angular and Linear Variables𝑎𝑟 10.3410.1210.16Radical component of 𝑎⃗𝐼 𝑚𝑖 𝑟𝑖2Rotation inertia𝜃𝑖𝑊 𝜏 𝜃 (𝜏 constant)𝑑𝑊𝑃 𝜏𝜔𝑑𝑡1𝐾 𝐼𝜔2211 𝐾 𝐾𝑓 𝐾𝑖 𝐼𝜔𝑓2 𝐼𝜔𝑖2 𝑊2210.5310.5410.5510.3410.52

Moments of Inertia I for various rigid objects of Mass MThin walled hollow cylinder or hoopabout central axisAnnular cylinder (or ring) aboutcentral axis𝐼 𝑀𝑅 21𝐼 𝑀(𝑅12 𝑅22 )2Solid Sphere, axis through center2𝐼 𝑀𝑅 25Thin rod, axis perpendicular to rodand passing though endSolid Sphere, axis tangent to surface7𝐼 𝑀𝑅 25Thin Rectangular sheet (slab), axisparallel to sheet and passing thoughcenter of the other edgeSolid cylinder or disk about centralaxis1𝐼 𝑀𝑅 22Thin Walled spherical shell, axisthrough centerSolid cylinder or disk about centraldiameter11𝐼 𝑀𝑅 2 𝑀𝐿2412Thin rod, axis perpendicular to rodand passing though center2𝐼 𝑀𝑅 23Thin Rectangular sheet (slab , axisalong one edge𝐼 1𝑀𝐿212Thin rectangular sheet (slab) aboutperpendicular axis through center1𝐼 𝑀𝐿23𝐼 1𝑀𝐿2121𝐼 𝑀𝐿23𝐼 1𝑀(𝑎2 𝑏 2 )12

Chapter 11Rolling Bodies (wheel)Speed of rolling wheelKinetic Energy of RollingWheelAcceleration of rollingwheelAcceleration along x-axisextending up the ramp𝑣𝑐𝑜𝑚 𝜔𝑅11.2Angular Momentum112𝐾 𝐼𝑐𝑜𝑚 𝜔2 𝑀𝑣𝑐𝑜𝑚2211.5Magnitude of AngularMomentum𝑎𝑐𝑜𝑚 ��� 𝐼1 𝑐𝑜𝑚2𝑀𝑅11.10Magnitude of torqueNewton’s 2nd Law𝜏⃗ 𝑟⃗ 𝐹⃗11.14𝜏 𝑟𝐹 𝑟 𝐹 ��� ⃗⃗𝑑ℓ𝑑𝑡ℓ 𝑟𝑚𝑣𝑠𝑖𝑛𝜙ℓ 𝑟𝑝 𝑟𝑚𝑣 11.1811.1911.21𝑛Angular momentum of asystem of particles⃗⃗ ⃗⃗𝐿ℓ𝑖𝑖 1𝜏⃗𝑛𝑒𝑡 Torque as a vectorTorqueAngular Momentum⃗⃗ ⃗𝑣⃗)𝑣 ⃗ℓ⃗ ⃗𝑟⃗ ⃗𝑝⃗ 𝑚(𝑟⃗⃗𝑑𝐿𝑑𝑡Angular Momentum continuedAngular Momentum of a𝐿 𝐼𝜔rotating rigid bodyConservation of angular𝐿⃗⃗ 𝑖 sion of a GyroscopePrecession rateΩ 𝑀𝑔𝑟𝐼𝜔11.31

Chapter 12Chapter 13Static Equilibrium12.3Gravitational Force(Newton’s law ofgravitation)𝜏⃗𝑛𝑒𝑡 012.5Principle ofSuperposition𝐹⃗𝑛𝑒𝑡,𝑥 0, 𝐹⃗𝑛𝑒𝑡,𝑦 012.712.8𝐹⃗𝑛𝑒𝑡 0If forces lie on thexy-planeStress (force per unitarea)Strain (fractionalchange in length)Stress (pressure)Tension/CompressionE: Young’s modulusShearing StressG: Shear modulusHydraulic StressB: Bulk modulus𝜏⃗𝑛𝑒𝑡,𝑧 0𝑠𝑡𝑟𝑒𝑠𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑠𝑡𝑟𝑎𝑖𝑛𝐹𝑃 𝐴𝐹 𝐿 𝐸𝐴𝐿𝐹 𝑥 𝐺𝐴𝐿 𝑉𝑝 𝐵𝑉12.912.22𝐹 𝐺𝐹⃗1,𝑛𝑒𝑡 𝐹⃗1𝑖𝐹⃗1 𝑑𝐹⃗Escape SpeedKepler’s 3rd Law(law of periods)Energy for bject incircular orbit13.6𝐺𝑀𝑟2𝐺𝑚𝑀𝐹 𝑟𝑅3𝐺𝑀𝑚𝑈 𝑟13.11𝑎𝑔 Gravitational PotentialEnergy12.24𝑈 (13.1913.21𝐺𝑚1 𝑚2 𝐺𝑚1 𝑚3 𝐺𝑚2 𝑚3 )𝑟12𝑟13𝑟232𝐺𝑀𝑣 𝑅𝑇2 (𝑈 4𝜋 2 3)𝑟𝐺𝑀𝐺𝑀𝑚𝑟𝐾 𝐸 ��𝑚Mechanical Energy𝐸 (elliptical orbit)2𝑎 11*Note: 𝐺 6.6704 10𝑁 𝑚2 /𝑘𝑔2Mechanical Energy(circular orbit)13.5𝑖 2Gravitation within aspherical Shell12.2313.1𝑛Gravitational Forceacting on a particlefrom an extendedbodyGravitationalaccelerationPotential energy on asystem (3 particles)𝑚1 𝑚2𝑟213.3413.2113.3813.4013.42

Chapter 14Density 𝑚 𝑉𝑚𝜌 𝑉𝜌 Pressure and depth ina static FluidP1 is higher than P2Gauge PressureArchimedes’ principleMass Flow RateVolume flow rateBernoulli’s EquationEquation of continuityEquation of continuitywhen14.114.2 𝐹 𝐴𝐹𝑝 𝐴14.314.4𝑝2 𝑝1 𝜌𝑔(𝑦1 𝑦2 )𝑝 𝑝0 𝜌𝑔ℎ14.714.8𝑝 PressureChapter 15Angular frequencyAccelerationKinetic and PotentialEnergy𝐹𝑏 𝑚𝑓 𝑔14.16𝑅𝑚 𝜌𝑅𝑉 𝜌𝐴𝑣14.25𝑅𝑉 𝐴𝑣14.24𝑅𝑉 𝐴𝑣 ty𝜌𝑔ℎ1𝑝 𝜌𝑣 2 𝜌𝑔𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡2𝑅𝑚 𝜌𝑅𝑉 𝜌𝐴𝑣 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡Frequencycycles per time14.29Angular frequency𝑓 1𝑇15.2𝑥 𝑥𝑚 cos(𝜔𝑡 𝜙)𝜔 2𝜋 2𝜋𝑓𝑇15.315.5𝑣 𝜔𝑥𝑚 sin(𝜔𝑡 𝜙)15.6𝑎 𝜔2 𝑥𝑚 cos(𝜔𝑡 𝜙)15.711𝐾 𝑚𝑣 2 𝑈 𝑘𝑥 222𝑘𝜔 𝑚15.12Period𝑇 2𝜋 𝑚𝑘15.13Torsion pendulum𝐼𝑇 2𝜋 𝑘15.23Simple Pendulum𝐿𝑇 2𝜋 𝑔15.28Physical Pendulum𝐼𝑇 2𝜋 𝑚𝑔𝐿15.2914.2514.24Damping force𝐹⃗𝑑 𝑏𝑣⃗displacement𝑥(𝑡) 𝑥𝑚 𝑒 2𝑚 cos(𝜔′ 𝑡 𝜙)15.42Angular frequency𝑘𝑏2𝜔′ 𝑚 4𝑚215.43Mechanical Energy1 2 𝑏𝑡𝐸(𝑡) 𝑘𝑥𝑚𝑒 𝑚215.44𝑏𝑡

Chapter 16Sinusoidal WavesMathematical form(positive direction)Angular wave numberAngular frequencyWave speedAverage Power𝑦(𝑥, 𝑡) 𝑦𝑚 sin(𝑘𝑥 𝜔𝑡)2𝜋𝑘 𝜆2𝜋𝜔 2𝜋𝑓𝑇𝑣 𝜔 𝜆 𝜆𝑓𝑘 𝑇12𝑃𝑎𝑣𝑔 𝜇𝑣𝜔2 𝑦𝑚2Traveling Wave Form16.216.5𝑦(𝑥, 𝑡) ℎ(𝑘𝑥 𝜔𝑡)16.17𝜏𝑣 𝜇16.2611𝑦 ′ (𝑥, 𝑡) [2𝑦𝑚 cos ( 𝜙)] sin (𝑘𝑥 𝜔𝑡 𝜙)2216.51𝑦 ′ (𝑥, 𝑡) [2𝑦𝑚 sin(𝑘𝑥)]cos(𝜔𝑡)16.60Wave speed onstretched string16.9Resulting wave when 2waves only differ byphase constant16.13Standing wave16.33Resonant frequency𝑣𝑣𝑓 𝜆 𝑛 2𝐿 for n 1,2, 16.66

Chapter 17Sound WavesStanding Waves Patterns in Pipes𝐵𝑣 𝜌17.3𝑠 𝑠𝑚 cos(𝑘𝑥 𝜔𝑡)17.12Change in pressureΔ𝑝 Δ𝑝𝑚 sin(𝑘𝑥 𝜔𝑡)17.13Standing wavefrequency (open atboth ends)Standing wavefrequency (open atone end)Pressure amplitudeΔ𝑝𝑚 (𝑣𝜌𝜔)𝑠𝑚17.14beatsSpeed of sound wavedisplacement𝑣𝑓 𝜆 𝑣𝑓 𝜆 𝑛𝑣2𝐿𝑛𝑣4𝐿for n 1,2,317.39for n 1,3,517.41𝑓𝑏𝑒𝑎𝑡 𝑓1 𝑓217.46InterferencePhase differenceFully ConstructiveInterferenceFull DestructiveinterferenceMechanical EnergyΔ𝐿2𝜋𝜆𝜙 𝑚(2𝜋) for m 0,1,2 Δ𝐿 0,1,2𝜆𝜙 (2𝑚 1)𝜋 for m 0,12Δ𝐿 .5,1.5,2.5 𝜆𝜙 1 2 𝑏𝑡𝐸(𝑡) 𝑘𝑥𝑚𝑒 𝑚217.2117.2217.2317.2417.2515.44Doppler EffectSource Moving towardstationary observerSource Moving awayfrom stationaryobserverObserver movingtoward stationarysourceObserver moving awayfrom stationary sourceSound Intensity𝐼 IntensityIntensity -uniform inall directions𝑃𝐴12𝐼 𝜌𝑣𝜔2 𝑠𝑚2𝐼 𝑃𝑠4𝜋𝑟 2𝑓′ 𝑓𝑣𝑣 𝑣𝑠17.53𝑓′ 𝑓𝑣𝑣 𝑣𝑠17.54𝑣 𝑣𝐷𝑣𝑣 𝑣𝐷𝑓′ 𝑓𝑣𝑓′ 𝑓Shockwave17.2617.2717.29Intensity level indecibels𝐼𝛽 (10𝑑𝐵) log ( )𝐼𝑜17.29Mechanical Energy1 2 𝑏𝑡𝐸(𝑡) 𝑘𝑥𝑚𝑒 𝑚215.44Half-angle 𝜃 of Machcone𝑠𝑖𝑛𝜃 𝑣𝑣𝑠17.4917.5117.57

Chapter 18Temperature ScalesFahrenheit to CelsiusCelsius to Fahrenheit5𝑇𝐶 (𝑇𝐹 32)99𝑇𝐹 𝑇𝐶 325𝑇 𝑇𝐶 273.15Celsius to KelvinFirst Law of Thermodynamics18.818.818.7 𝐸𝑖𝑛𝑡 𝐸𝑖𝑛𝑡,𝑓 𝐸𝑖𝑛𝑡,𝑖 𝑄 𝑊First Law of18.26Thermodynamics18.27𝑑𝐸𝑖𝑛𝑡 𝑑𝑄 𝑑𝑊Note: 𝐸𝑖𝑛𝑡 Change in Internal EnergyQ (heat) is positive when the system absorbs heat and negative when itloses heat. W (work) is work done by system. W is positive when expandingand negative contracts because of an external forceThermal ExpansionApplications of First LawLinear Thermal Expansion 𝐿 𝐿𝛼 𝑇18.9Volume Thermal Expansion 𝑉 𝑉𝛽 𝑇18.10Q 0 𝐸𝑖𝑛𝑡 𝑊Adiabatic(no heat flow)W 0 𝐸𝑖𝑛𝑡 𝑄 𝐸𝑖𝑛𝑡 0Q W𝑄 𝑊 𝐸𝑖𝑛𝑡 0(constant volume)HeatHeat and temperaturechange𝑄 𝐶(𝑇𝑓 𝑇𝑖 )𝑄 𝑐𝑚(𝑇𝑓 𝑇𝑖 )18.1318.14Heat and phase change𝑄 𝐿𝑚18.16Power (Conducted)𝑃𝑐𝑜𝑛𝑑𝑄𝑇𝐻 𝑇𝐶 𝑘𝐴𝑡𝐿Free expansionsMisc.𝑉𝑓P Q/tPowerCyclical process18.32Rate objects absorbsenergy4𝑃𝑎𝑏𝑠 𝜎𝜖𝐴𝑇𝑒𝑛𝑣18.39Power from radiation𝑃𝑟𝑎𝑑 𝜎𝜖𝐴𝑇 418.38Work Associated withVolume Change𝑊 𝑑𝑊 𝑝𝑑𝑉𝑉𝑖18.25𝑊 𝑝 𝑣𝜎 5.6704 10 8 𝑊/𝑚2 𝐾 4Revised 7/20/17

PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter 2 Units for SI Base Quantities Quantity Unit Name Unit Symbol Length Meter M Time Second s Mass (not weight) Kilogram kg Common Conversions 1 kg or 1 1m 1000 g or m 1 m 106 1 m 100 cm 1 inch 2.54 cm

Related Documents:

Physics 20 General College Physics (PHYS 104). Camosun College Physics 20 General Elementary Physics (PHYS 20). Medicine Hat College Physics 20 Physics (ASP 114). NAIT Physics 20 Radiology (Z-HO9 A408). Red River College Physics 20 Physics (PHYS 184). Saskatchewan Polytechnic (SIAST) Physics 20 Physics (PHYS 184). Physics (PHYS 182).

Credit is not given for both PHYS 102 and either PHYS 212 or PHYS 214. Prerequisite: PHYS 101. This course satisfies the General Education Criteria for: Nat Sci Tech - Phys Sciences . Credit or concurrent registration in PHYS 212. PHYS 246 Physics on the Silicon Prairie: An Introduction to Modern Computational Physics credit: 2 Hours. (https .

ENTM 20600 General Entomology & ENTM 20700 General Entomology Lab PHYS 17200 Modern Mechanics PHYS 21800 General Physics I PHYS 21900 General Physics II PHYS 22000 General Physics PHYS 22100 General Physics PHYS 24100 Electricity & Optics PHYS 27200 Electric & Magnetic Interactions

PHYS 0160 Introduction to Relativity, Waves and Quantum Physics 1 or PHYS 0060 Foundations of Electromagnetism and Modern Physics PHYS 0470 Electricity and Magnetism 1 PHYS 0500 Advanced Classical Mechanics 1 PHYS 1410 Quantum Mechanics A 1 PHYS 1530 Thermodynamics and Statistical Mechanics 1 S

21 years of experience teaching Physics at Louisiana State University and California State University Stanislaus. Courses taught include: General Physics of Physics Majors (PHYS 1201/02) General Physics Laboratory for Physics Majors (PHYS 1208/09) General Physics (PHYS 2001/02) Introductory Physics for Technical Students (PHYS 2101/02)

Letter to the Editor L541 Herrick D R 1976 J. Chem. Phys. 65 3529 Killingbeck J 1977 Rep. Prog. Phys. 40 963 Koch P M 1978 Phys. Rev. Lett. 41 99 Littman M G, Kash M M and Kleppner D 1978 Phys. Rev. Lett. 41 103 Ortolani F and Turchetti G 1978 J. Phys. B: Atom.Molec. Phys. 11 L207 Reinhardt W P 1976 Int. J. Quantum Chem. Symp. 10 359 Silverstone H J 1978 Phys. Rev.

Texts of Wow Rosh Hashana II 5780 - Congregation Shearith Israel, Atlanta Georgia Wow ׳ג ׳א:׳א תישארב (א) ׃ץרֶָֽאָּהָּ תאֵֵ֥וְּ םִימִַׁ֖שַָּה תאֵֵ֥ םיקִִ֑לֹאֱ ארָָּ֣ Îָּ תישִִׁ֖ארֵ Îְּ(ב) חַורְָּ֣ו ם

2020 Sutherland, Alister Peasant seals and sealing practices in eastern England, c. 1200-1500 Ph.D. . 2015 Harris, Maureen ‘A schismatical people’: conflict between ministers and their parishioners in Warwickshire between 1660 and 1714. Ph.D. 2015 Harvey, Ben Pauper narratives in the Welsh borders, 1790 - 1840. Ph.D. 2015 Heaton, Michael English interwar farming: a study of the financial .