Infrared Photon Detectors - Gbv.de

3y ago
38 Views
3 Downloads
2.57 MB
7 Pages
Last View : 7d ago
Last Download : 3m ago
Upload by : Maxine Vice
Transcription

Infrared PhotonDetectorsAntoni RogalskiInstitute of Technical Physics, WATWarsawWith contributions byMasafumi KimataMitsubishi Electric CorporationVasily F. KocherovResearch, Development, and Production Center "Orion"Jozef PiotrowskiVIGO Ltd.Feodor F. SizovInstitute of Semiconductor PhysicsIgor I. TaubkinResearch, Development, and Production Center "Orion"Natsuro TubouchiMitsubishi Electric CorporationNicolas B. ZaletaevResearch, Development, and Production Center "Orion"SPIEO P T I C A LE N G I N E E R I N GPRESSA Publication of SPIE—The International Society for Optical EngineeringBellingham, Washington USA

ContentsContributorsxiPrefacexiii1. IntroductionAntoni Rogalski1.1. Historical background1.2. General classification of IR detectors1.3. Photon noise and fundamental limitsReferences115792. Photoconductive DetectorsAntoni Rogalski2.1. Intrinsic photoconductivity theory2.1.1. General theory2.1.2. Sweep-out effects2.1.3. Noise mechanisms in photoconductors2.1.4. Quantum efficiency2.1.5. Ultimate performance of photoconductors2.1.6. Influence of background2.1.7. Influence of surface recombination2.2. Extrinsic photoconductivity theory2.3. Operating temperature of extrinsic and intrinsic photoconductivedetectors2.3.1. Detector thickness2.3.2. Capture cross-section2.3.3. Free carrier density2.3.4. Impurity 446463. Photovoltaic DetectorsAntoni Rogalski3.1. Photovoltaic effect3.2. Dark current in p-n junctions3.2.1. Diffusion current3.2.2. Generation-recombination currentV5151535455

vi Contents3.3.3.4.3.5.3.6.3.7.3.8.3.9.3.2.3. Tunneling current3.2.4. Surface leakage currentPhotocurrent in the p-n junctionR0A product3.4.1. Diffusion current3.4.2. Generation-recombination current3.4.3. Tunneling currentNoise mechanisms in photodiodesDetectivityResponse timeSchottky barrier photodiodes3.8.1. Schottky-Mott theory and its modifications3.8.2. Current transport processes3.8.3. SuicidesAvalanche photodiodesReferences4. Photoelectromagnetic and Dember DetectorsAntoni Rogalski4.1. Photoelectromagnetic detectors4.2. Dember detectorsReferences5. Heterodyne 1Antoni RogalskiReferences6. Charge Transfer DevicesMasafumi Kimata and Natsuro Tubouchi6.1. Charg 2-coupled device6.1.1. MIS capacitor6.1.2. Charge transfer6.1.3. Gate structures and clocking techniques6.1.4. Charge transfer efficiency6.1.5. Buried-channel CCD6.1.6. Output readout techniques6.1.7. Electrical signal input technique6.1.8. Low temperature operation6.2. Focal plane arrays6.2.1. FPA architectures6.2.2. Unit cell design6.2.3. Readout architectures6.2.4. Time-delay integration6.3. Noise analysis6.4. FPA evaluation and figure of 124128135137140141

Contents7. Generation-Recombination Processes: Recombination TimeAntoni Rogalski7.1. Shockley-Read mechanism7.2. Radiative mechanism7.3. Auger mechanism7.3.1. Band-to-band Auger mechanisms7.3.2. Other Auger recombination mechanisms7.4. Carrier lifetime in silicon7.5. Carrier lifetime in InSb and InAs7.6. Carrier lifetime in HglxCdxTe7.7. Carrier lifetime in lead saltsReferences8. Extrinsic Silicon and Germanium DetectorsVasily F. Kocherov, Igor I. Taubkin, and Nicolas B. Zaletaev8.1. Photoconductor detectors8.2. Peculiarities of the performance of extrinsic photoconductordetectors under low backgrounds8.2.1. Dependence of concentration of free charge carriersin a compensated extrinsic semiconductor on temperatureand background irradiance8.2.2. Distribution of excess charge carriers in detector underhomogeneous irradiation in the presence of electric field8.2.3. Dependence of photoconductive gain on detectorbias voltage, frequency of photosignal modulation, andbackground irradiance8.2.4. Local responsivity of detector and crosstalkin detector arrays8.2.5. Noise and the radiation limit of detectivity8.2.6. Photoresponse of detector at signal levels exceedingbackground irradiance8.2.7. Impedance of detector8.2.8. Transient behavior of detector with variation of bias:a new operation mode of an extrinsic photoconductordetector8.3. Other varieties of extrinsic photodetectors8.3.1. Extrinsic double-injection photodiodes8.3.2. Detectors based on impurity-band photoconductors8.3.3. Integrating IR p-i-n detector8.3.4. Extrinsic IR field-effect transistor8.4. Focal plane arrays8.4.1. Monolithic photodetector arrays8.4.2. Accumulation-mode charge-injection device (CID)arrays8.4.3. Bulk-accumulation-mode 84

viii Contents8.4.4. Extrinsic charge-extraction device (XCED) arrays8.4.5. Direct readout extrinsic photodetector arraysReferences9. Schottky-Barrier Photoemissive DetectorsMasafumi Kimata and Natsuro Tubouchi9.1. Schottky-barrier detectors9.1.1. Internal photoemission9.1.2. Scattering effect9.1.3. Metal electrodes9.1.4. Barrier height control9.1.5. Back-side illumination/front-side illumination9.1.6. Dark current9.2. Schottky-barrier infrared focal plane arrays9.2.1. Historical overview9.2.2. Pixel design and operation9.2.3. Improvement in fill factor9.2.4. Performance9.3. Infrared cameras with Schottky-barrier infrared focalplane arrays9.4. Novel photoemissive detectorsReferences10. III-V DetectorsAntoni Rogalski10.1. Some physical properties of III-V narrow gap semiconductors10.2. Technology and properties of InSb photoconductive detectors10.3. Technology and properties of InSb photoelectromagneticdetectors10.4. Technology and properties of III-V photodiodes10.4.1. InSb and InAs photodiodes10.5. Technology and properties of InASj xSbx detectors10.5.1. InAs lx Sb x photodiodes*10.5.2. InAs( xSbx photoconductors10.6. Focal plane arrays10.6.1. Hybrid InSb/Si focal plane arrays10.6.2. InSb charge-injection devices10.6.3. InSb charge-coupled devicesReferences11. Hg t xCdxTe DetectorsJozef Piotrowski11.1. Some physical properties of Hgj xCdxTe11.1.1. Performance-related semiconductor properties11.1.2. Growth of bulk crystals and epilayers11.1.3. Defects and 381384384391393393398402

Contents ix11.2. Ultimate performance of Hg, xCdxTe photodetectors11.2.1. Theoretical model11.2.2. Equilibrium mode11.2.3. Non-equilibrium mode11.2.4. Reduced volume devices11.3. Photoconductive detectors11.3.1. Theoretical performance11.3.2. Technology11.3.3. Measured performance11.3.4. SPRITE detectors11.3.5. Excluded photoconductors11.4. Dember effect detectors11.5. Photoelectromagnetic detectors11.5.1. Theoretical design11.5.2. Fabrication and measured performance11.5.3. Magnetoconcentration detectors11.6. Photodiodes11.6.1. Theoretical performance11.6.2. Technology11.6.3. Properties11.6.4. Non-equilibrium photodiodes11.7. Focal plane arrays11.7.1. Monolithic FPAs11.7.2. Hybrid FPAs11.7.3. Monolithic heterostructure FPAs11.8. Final . HgZnTe and HgMnTe DetectorsAntoni Rogalski12.1. Hg, xCdxTe versus alternative materials12.2. Hg, "znXTe detectors 1-X495495500X12.2.1. Photoconductive detectors12.2.2. Photovoltaic detectors12.3. Hg,xMnxTe detectorsReferences13. IV-VI DetectorsAntoni Rogalski13.1. Some physical properties of lead salts13.2. Binary lead salt photoconductive detectors13.3. Photovoltaic detectors13.1.1. R0A product13.3.2. Technology and properties of lead salt photodiodes13.3.3. Schottky-barrier photodiodes500502505509513513519524524531538

x Contents13.3.4. Unconventional thin film photodiodes13.4. Lead salt FPAsReferences14. Semiconductor Superlattice and Quantum Well DetectorsFeodor F. Sizov14.1. Semiconductor superlattices and quantum wells14.1.1. Band offset and material considerations14.1.2. Types of structures14.1.3. Confined electrons and optical transitions in SLsand MQWs14.2. Intersubband quantum well detectors14.2.1. Intersubband optical absorption14.2.2. Intersubband relaxation time14.2.3. Intersubband multiple quantum well III-Vphotoconductive detectors14.2.4. Miniband transport intersubband multiple quantumwell detectors14.2.5. Photovoltaic type intersubband multiple quantum welldetectors14.2.6. Multicolor multiple quantum well detectors14.2.7. Performance of intersubband detectors14.2.8. Intersubband n-type III-V material systems detectorarrays14.3. Normal incidence quantum well intersubband detectors14.3.1. Si/Si, Ge intersubband normal incidence 81583585587591594594X14.3.2. III-V system intersubband normal incidence detectors14.4. Interband type II infrared superlattice detectors14.4.1. rnSb/rnASj xSbx strained layer superlattice detectors14.2.2. InAs/Gaj xInxSb strained layer superlattice detectors14.5. HgTe/CdTe superlattices for infrared detection14.6. Doping superlattice detectors14.6.1. III-V doping superlattices14.6.2. IV-VI doping superlattices14.7. 4Final RemarksAntoni Rogalski625Index635Contributor Biographies643

Intersubband n-type III-V material systems detector arrays 591 14.3. Normal incidence quantum well intersubband detectors 594 14.3.1. Si/Si, Ge intersubband normal incidence detectors 594 1-Х X 14.3.2. III-V system intersubband normal incidence detectors 597 14.4. Interband type II infrared superlattice detectors 600 14.4.1. rnSb/rnASj xSbx .

Related Documents:

loads unmodified and obtain the benefits of Photon transparently. Queries can partially run in Photon and fall back to Spark SQL for unsupported operations, while Photon features are being contin-uously added to reduce these transitions. This ability to partially roll out Photon has given us valuable operational experience in using Photon in .

Photon Flux Photon ux F0 is the number of photons per cm2.sec incident on a surface Using the photon energy Eph( ), we can readily translate irradiance density E( ) into photon ux F0 Z 700 400 10 4E( ) Eph( ) d photons/cm2.sec Translating from illuminance to photon ux: At 555nm, Eph 35:8 10 20Joule; thus 1 lux corresponds to F0 1016 683 35:8 4:09 1011photons/cm2 sec, or, 133 photons

EDU allows students and teachers access to Photon Joystick, Photon Draw, Photon Badge, Photon Blocks, Photon Code, and Scratch. Each of these programs connects directly with the Photon robot to execute different commands and sequences designed by students. Students can work individually, in pairs, or in small groups with each task, scenario, or .

(Markus et al., 2016). ATLAS is a six-beam, photon-counting laser altimeter (Fig. 1). In a photon-counting system, single-photon sensitive detectors are used to record arrival time of any detected photon. ATLAS will use short ( 2ns) 532nm (green) wavelength laser pulses, with a 10kHz repetition rate, which yields a 0.70m along-track sampling .

Single-photon detectors (SPDs) are used for the detection of light at the single-photon level. Some applications of SPDs include quantum communications, photon-pair correlation measurements, and fluorescence lifetime measurements [1-3]. These applications typically involve time-resolved measurements. Depending on the application, a certain type

GBV. Increase public awareness of GBV by moving away from the mere 16 days of activism to a robust 365 days campaign against GBV and encourage every citizen to take specific steps to prevent GBV in both the private and public arena. In light of the recommendations made the Government UN GBV JP facilitated a one day workshop

Components of voice alarm systems - strong loudspeakers /strong Components using radio links Carbon monoxide detectors - point detectors Multi sensor fire detectors - point detectors using both smoke and heat detection Multi- sensor fire detectors point detectors using /p div class "b_factrow b_twofr" div class "b_vlist2col" ul li div strong File Size: /strong 2MB /div /li /ul ul li div strong Page Count: /strong 280 /div /li /ul /div /div /div

7 Annual Book of ASTM Standards, Vol 14.02. 8 Discontinued 1996; see 1995 Annual Book of ASTM Standards, Vol 03.05. 9 Annual Book of ASTM Standards, Vol 03.03. 10 Available from American National Standards Institute, 11 West 42nd St., 13th Floor, New York, NY 10036. 11 Available from General Service Administration, Washington, DC 20405. 12 Available from Standardization Documents Order Desk .