Fundamentals Of Thermodynamics - PDHonline

2y ago
17 Views
3 Downloads
3.01 MB
139 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Mara Blakely
Transcription

PDHonline Course M210 (4 PDH)Fundamentals of ThermodynamicsInstructor: A. Bhatia, B.E.2012PDH Online PDH Center5272 Meadow Estates DriveFairfax, VA 22030-6658Phone & Fax: 703-988-0088www.PDHonline.orgwww.PDHcenter.comAn Approved Continuing Education Provider

DOE-HDBK-1012/1-92JUNE 1992DOE FUNDAMENTALS HANDBOOKTHERMODYNAMICS, HEAT TRANSFER,AND FLUID FLOWVolume 1 of 3U.S. Department of EnergyFSC-6910Washington, D.C. 20585Distribution Statement A. Approved for public release; distribution is unlimited.

This document has been reproduced directly from the best available copy.Available to DOE and DOE contractors from the Office of Scientific and Technical Information.P. O. Box 62, Oak Ridge, TN 37831; (615) 576-8401.Available to the public from the National Technical Information Service, U.S. Department ofCommerce, 5285 Port Royal Rd., Springfield, VA 22161.Order No. DE92019789

THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOWABSTRACTThe Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook wasdeveloped to assist nuclear facility operating contractors provide operators, maintenancepersonnel, and the technical staff with the necessary fundamentals training to ensure a basicunderstanding of the thermal sciences. The handbook includes information on thermodynamicsand the properties of fluids; the three modes of heat transfer - conduction, convection, andradiation; and fluid flow, and the energy relationships in fluid systems. This information willprovide personnel with a foundation for understanding the basic operation of various types of DOEnuclear facility fluid systems.Key Words: Training Material, Thermodynamics, Heat Transfer, Fluid Flow, Bernoulli'sEquationRev. 0HT

THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOWFOREWORDThe Department of Energy (DOE) Fundamentals Handbooks consist of ten academicsubjects, which include Mathematics; Classical Physics; Thermodynamics, Heat Transfer, and FluidFlow; Instrumentation and Control; Electrical Science; Material Science; Mechanical Science;Chemistry; Engineering Symbology, Prints, and Drawings; and Nuclear Physics and ReactorTheory. The handbooks are provided as an aid to DOE nuclear facility contractors.These handbooks were first published as Reactor Operator Fundamentals Manuals in 1985for use by DOE Category A reactors. The subject areas, subject matter content, and level of detailof the Reactor Operator Fundamentals Manuals was determined from several sources. DOECategory A reactor training managers determined which materials should be included, and servedas a primary reference in the initial development phase. Training guidelines from the commercialnuclear power industry, results of job and task analyses, and independent input from contractorsand operations-oriented personnel were all considered and included to some degree in developingthe text material and learning objectives.The DOE Fundamentals Handbooks represent the needs of various DOE nuclear facilities'fundamentals training requirements. To increase their applicability to nonreactor nuclear facilities,the Reactor Operator Fundamentals Manual learning objectives were distributed to the NuclearFacility Training Coordination Program Steering Committee for review and comment. To updatetheir reactor-specific content, DOE Category A reactor training managers also reviewed andcommented on the content. On the basis of feedback from these sources, information that appliedto two or more DOE nuclear facilities was considered generic and was included. The final draftof each of these handbooks was then reviewed by these two groups. This approach has resultedin revised modular handbooks that contain sufficient detail such that each facility may adjust thecontent to fit their specific needs.Each handbook contains an abstract, a foreword, an overview, learning objectives, and textmaterial, and is divided into modules so that content and order may be modified by individual DOEcontractors to suit their specific training needs. Each subject area is supported by a separateexamination bank with an answer key.The DOE Fundamentals Handbooks have been prepared for the Assistant Secretary forNuclear Energy, Office of Nuclear Safety Policy and Standards, by the DOE Training CoordinationProgram. This program is managed by EG&G Idaho, Inc.Rev. 0HT

THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOWOVERVIEWThe Department of Energy Fundamentals Handbook entitled Thermodynamics, HeatTransfer, and Fluid Flow was prepared as an information resource for personnel who areresponsible for the operation of the Department's nuclear facilities. A basic understanding of thethermal sciences is necessary for DOE nuclear facility operators, maintenance personnel, and thetechnical staff to safely operate and maintain the facility and facility support systems. Theinformation in the handbook is presented to provide a foundation for applying engineeringconcepts to the job. This knowledge will help personnel more fully understand the impact thattheir actions may have on the safe and reliable operation of facility components and systems.The Thermodynamics, Heat Transfer, and Fluid Flow handbook consists of three modulesthat are contained in three volumes. The following is a brief description of the informationpresented in each module of the handbook.Volume 1 of 3Module 1 - ThermodynamicsThis module explains the properties of fluids and how those properties areaffected by various processes. The module also explains how energy balances canbe performed on facility systems or components and how efficiency can becalculated.Volume 2 of 3Module 2 - Heat TransferThis module describes conduction, convection, and radiation heat transfer. Themodule also explains how specific parameters can affect the rate of heat transfer.Volume 3 of 3Module 3 - Fluid FlowThis module describes the relationship between the different types of energy in afluid stream through the use of Bernoulli's equation. The module also discussesthe causes of head loss in fluid systems and what factors affect head loss.Rev. 0HT

THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOWThe information contained in this handbook is by no means all encompassing. Anattempt to present the entire subject of thermodynamics, heat transfer, and fluid flow would beimpractical. However, the Thermodynamics, Heat Transfer, and Fluid Flow handbook doespresent enough information to provide the reader with a fundamental knowledge level sufficientto understand the advanced theoretical concepts presented in other subject areas, and to betterunderstand basic system and equipment operations.Rev. 0HT

Department of EnergyFundamentals HandbookTHERMODYNAMICS, HEAT TRANSFER,AND FLUID FLOWModule 1Thermodynamics

ThermodynamicsTABLE OF CONTENTSTABLE OF CONTENTSLIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ivLIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiREFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiiOBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xTHERMODYNAMIC PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Mass and Weight . . . . . . . . . . . .Specific Volume . . . . . . . . . . . .Density . . . . . . . . . . . . . . . . . .Specific Gravity . . . . . . . . . . . .Humidity . . . . . . . . . . . . . . . . .Intensive and Extensive PropertiesSummary . . . . . . . . . . . . . . . . .1334445TEMPERATURE AND PRESSURE MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . 6Temperature . . . . .Temperature ScalesPressure . . . . . . . .Pressure Scales . . .Summary . . . . . . .669912ENERGY, WORK, AND HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Energy . . . . . . . . . . . . . . . . . .Potential Energy . . . . . . . . . . .Kinetic Energy . . . . . . . . . . . .Specific Internal Energy . . . . . .Specific P-V Energy . . . . . . . .Specific Enthalpy . . . . . . . . . .Work . . . . . . . . . . . . . . . . . . .Heat . . . . . . . . . . . . . . . . . . . .Entropy . . . . . . . . . . . . . . . . .Energy and Power EquivalencesSummary . . . . . . . . . . . . . . . .Rev. 0.Page i.1414151617181819222325HT-01

TABLE OF CONTENTSThermodynamicsTABLE OF CONTENTS (Cont.)THERMODYNAMIC SYSTEMS AND PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . 26Thermodynamic Systems and SurroundingsTypes of Thermodynamic Systems . . . . . .Thermodynamic Equilibrium . . . . . . . . . . .Control Volume . . . . . . . . . . . . . . . . . . .Steady State . . . . . . . . . . . . . . . . . . . . . .Thermodynamic Process . . . . . . . . . . . . . .Cyclic Process . . . . . . . . . . . . . . . . . . . . .Reversible Process . . . . . . . . . . . . . . . . . .Irreversible Process . . . . . . . . . . . . . . . . .Adiabatic Process . . . . . . . . . . . . . . . . . .Isentropic Process . . . . . . . . . . . . . . . . . .Polytropic Process . . . . . . . . . . . . . . . . . .Throttling Process . . . . . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . . .2627272727282828282929292930CHANGE OF PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Classification of Properties . . . . .Saturation . . . . . . . . . . . . . . . . .Saturated and Subcooled Liquids .Quality . . . . . . . . . . . . . . . . . . .Moisture Content . . . . . . . . . . . .Saturated and Superheated VaporsConstant Pressure Heat Addition .Critical Point . . . . . . . . . . . . . .Fusion . . . . . . . . . . . . . . . . . . .Sublimation . . . . . . . . . . . . . . .Triple Point . . . . . . . . . . . . . . .Condensation . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . .31333334353535363637373839PROPERTY DIAGRAMS AND STEAM TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Property Diagrams . . . . . . . . . . . . . . . .Pressure-Temperature (P-T) Diagram . . .Pressure-Specific Volume (P-v) DiagramPressure-Enthalpy (P-h) Diagram . . . . . .Enthalpy-Temperature (h-T) Diagram . . .HT-01.Page ii.4142434445Rev. 0

ThermodynamicsTABLE OF CONTENTSTABLE OF CONTENTS (Cont.)Temperature-Entropy (T-s) Diagram . . . .Enthalpy-Entropy (h-s) or Mollier DiagramSteam Tables . . . . . . . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . .46474752FIRST LAW OF THERMODYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68SECOND LAW OF THERMODYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Second Law of Thermodynamics . . . .Entropy . . . . . . . . . . . . . . . . . . . . .Carnot’s Principle . . . . . . . . . . . . . .Carnot Cycle . . . . . . . . . . . . . . . . . .Diagrams of Ideal and Real ProcessesPower Plant Components . . . . . . . . .Heat Rejection . . . . . . . . . . . . . . . .Typical Steam Cycle . . . . . . . . . . . .Causes of Inefficiency . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . .69707171777885909596COMPRESSION PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Boyle’s and Charles’ Laws . . . . . . . . . . . . . . . . . .Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . .Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Compressibility of Fluids . . . . . . . . . . . . . . . . . . .Constant Pressure Process . . . . . . . . . . . . . . . . . . .Constant Volume Process . . . . . . . . . . . . . . . . . . .Effects of Pressure Changes on Fluid Properties . . .Effects of Temperature Changes on Fluid PropertiesSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97989999100100100101102APPENDIX A Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1Rev. 0Page iiiHT-01

LIST OF FIGURESThermodynamicsLIST OF FIGURESFigure 1Comparison of Temperature Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 2Pressure Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 3Intensive Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 4Piston-Cylinder Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 5Vapor Pressure Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 6T-V Diagram Showing the Saturation Region . . . . . . . . . . . . . . . . . . . . . . . 34Figure 7T-V Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 8Pressure-Temperature Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Figure 9P-T Diagram for Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Figure 10 P-v Diagram for Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Figure 11 P-h Diagram for Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Figure 12 h-T Diagram for Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Figure 13 T-s Diagram for Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Figure 14 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Figure 15 Control Volume Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Figure 16 Open System Control Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Figure 17 Open System Control Volumes (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Figure 18 Mulitple Control Volumes in Same System . . . . . . . . . . . . . . . . . . . . . . . . . 58Figure 19 T-s Diagram with Rankine Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61HT-01Page ivRev. 0

ThermodynamicsLIST OF FIGURESLIST OF FIGURES (Cont.)Figure 20 Typical Steam Plant Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Figure 21 Carnot Cycle Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Figure 22 Real Process Cycle Compared to Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . 75Figure 23 Control Volume for Second Law Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 76Figure 24 Expansion and Compression Processes on T-s Diagram . . . . . . . . . . . . . . . . 78Figure 25 Expansion and Compression Processes on h-s Diagram . . . . . . . . . . . . . . . . 78Figure 26 Steam Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Figure 27 Comparison of Ideal and Actual Turbine Performances . . . . . . . . . . . . . . . . . 80Figure 28 Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Figure 29 Carnot Cycle vs. Typical Power Cycle Available Energy . . . . . . . . . . . . . . . 86Figure 30 Ideal Carnot Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Figure 31 Rankine Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Figure 32 Rankine Cycle with Real v.s. Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Figure 33 Rankine Cycle Efficiencies T-s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Figure 34 h-s Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Figure 35 Typical Steam Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Figure 36 Steam Cycle (Ideal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Figure 37 Steam Cycle (Real) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Figure 38 Mollier Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Figure 39 Ideal Gas Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Figure 40 Pressure-Volume Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Rev. 0Page vHT-01

LIST OF FIGURESThermodynamicsLIST OF FIGURES (Cont.)Figure A-1 Mollier Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1Figure A-2 Sample Steam Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3Figure A-3 Thermodynamic Properties of Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . A-5Figure A-4 Thermodynamic Properties of CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .HT-01Page viA-7Rev. 0

ThermodynamicsLIST OF TABLESLIST OF TABLESNONERev. 0Page viiHT-01

REFERENCESThermodynamicsREFERENCESVanWylen, G. J. and Sonntag, R. E., Fundamentals of Classical ThermodynamicsSI Version, 2nd Edition, John Wiley and Sons, New York, ISBN 0-471-04188-2.Kreith, Frank, Principles of Heat Transfer, 3rd Edition, Intext Press, Inc., NewYork, ISBN 0-7002-2422-X.Holman, J. P., Thermodynamics, McGraw-Hill, New York.Streeter, Victor, L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN07-062191-9.Rynolds, W. C. and Perkins, H. C., Engineering Thermodynamics, 2nd Edition,McGraw-Hill, New York, ISBN 0-07-052046-1.Meriam, J. L., Engineering Mechanics Statics and Dynamics, John Wiley andSons, New York, ISBN 0-471-01979-8.Schneider, P. J. Conduction Heat Transfer, Addison-Wesley Pub. Co., California.Holman, J. P., Heat Transfer, 3rd Edition, McGraw-Hill, New York.Knudsen, J. G. and Katz, D. L., Fluid Dynamics and Heat Transfer, McGraw-Hill,New York.Kays, W. and London, A. L., Compact Heat Exchangers, 2nd Edition, McGrawHill, New York.Weibelt, J. A., Engineering Radiation Heat Transfer, Holt, Rinehart and WinstonPublish., New York.Sparrow, E. M. and Cess, R. E., Radiation Heat Transfer, Brooks/Cole Publish.Co., Belmont, California.Hamilton, D. C. and Morgan, N. R., Radiant-Interchange Configuration Factors,Tech. Note 2836, National Advisory Committee for Aeronautics.HT-01Page viiiRev. 0

ThermodynamicsREFERENCESREFERENCES (Cont.)McDonald, A. T. and Fox, R. W., Introduction to Fluid mechanics, 2nd Edition,John Wiley and Sons, New York, ISBN 0-471-01909-7.Zucrow, M. J. and Hoffman, J. D., Gas Dynamics Vol.b1, John Wiley and Sons,New York, ISBN 0-471-98440-X.Crane Company, Flow of Fluids Through Valves, Fittings, and Pipe, Crane Co.Technical Paper No. 410, Chicago, Illinois, 1957.Esposito, Anthony, Fluid Power with Applications, Prentice-Hall, Inc., NewJersey, ISBN 0-13-322701-4.Beckwith, T. G. and Buck, N. L., Mechanical Measurements, Addison-WesleyPublish Co., California.Wallis, Graham, One-Dimensional Two-Phase Flow, McGraw-Hill, New York,1969.Kays, W. and Crawford, M. E., Convective Heat and Mass Transfer, McGrawHill, New York, ISBN 0-07-03345-9.Collier, J. G., Convective Boiling and Condensation, McGraw-Hill, New York,ISBN 07-084402-X.Academic Program for Nuclear Power Plant Personnel, Volumes III and IV,Columbia, MD: General Physics Corporation, Library of Congress Card#A326517, 1982.Faires, Virgel Moring and Simmang, Clifford Max, Thermodynamics, MacMillanPublishing Co. Inc., New York.Rev. 0Page ixHT-01

OBJECTIVESThermodynamicsTERMINAL OBJECTIVE1.0Given operating conditions of a system, EVALUATE the thermodynamic state of thesystem.ENABLING OBJECTIVES1.1DEFINE the following properties:a.Specific volumeb.Densityc.Specific gravityd.Humidity1.2DESCRIBE the following classifications of thermodynamic properties:a.Intensive propertiesb.Extensive properties1.3DEFINE the thermodynamic properties temperature and pressure.1.4DESCRIBE the Fahrenheit, Celsius, Kelvin, and Rankine temperature scales including:a.Absolute zero temperatureb.The freezing point of water at atmospheric pressurec.The boiling point of water at atmospheric pressure1.5CONVERT temperatures between the Fahrenheit, Celsius, Kelvin, and Rankine scales.1.6DESCRIBE the relationship between absolute pressure, gauge pressure, and vacuum.1.7CONVERT pressures between the following units:a.Pounds per square inchb.Inches of waterc.Inches of mercuryd.Millimeters of mercurye.Microns of mercury1.8DEFINE the following:a.Heatb.Latent heatc.Sensible heatd.Unit used to measure heatHT-01Page xRev. 0

ThermodynamicsOBJECTIVESENABLING OBJECTIVES (Cont.)1.9DEFINE the following thermodynamic properties:a.Specific enthalpyb.Entropy1.10DESCRIBE the following types of thermodynamic systems:a.Isolated systemb.Closed systemc.Open system1.11DEFINE the following terms concerning thermodynamic systems:a.Thermodynamic surroundingsb.Thermodynamic equilibriumc.Control volumed.Steady-state1.12DESCRIBE the following terms concerning thermodynamic processes:a.Thermodynamic processb.Cyclic processc.Reversible processd.Irreversible processe.Adiabatic processf.Isentropic processg.Throttling processh.Polytropic process1.13DISTINGUISH between intensive and extensive properties.1.14DEFINE the following terms:a.Saturationb.Subcooled liquidc.Superheated vapord.Critical Pointe.Triple Pointf.Vapor pressure curveg.Qualityh.Moisture content1.15DESCRIBE the processes of sublimation, vaporization, condensation, and fusion.Rev. 0Page xiHT-01

OBJECTIVESThermodynamicsENABLING OBJECTIVES (Cont.)1.16Given a Mollier diagram and sufficient information to indicate the state of the fluid,DETERMINE any unknown properties for the fluid.1.17Given a set of steam tables and sufficient information to indicate the state of the fluid,DETERMINE any unknown properties for the fluid.1.18DETERMINE the change in the enthalpy of a fluid as it passes through a systemcomponent, given the state of the fluid at the inlet and outlet of the component and eithersteam tables or a Mollier diagram.1.19STATE the First Law of Thermodynamics.1.20Using the First Law of Thermodynamics, ANALYZE an open system including allenergy transfer processes crossing the boundaries.1.21Using the First Law of Thermodynamics, ANALYZE cyclic processes for athermodynamic system.1.22Given a defined system, PERFORM energy balances on all major components in thesystem.1.23Given a heat exchanger, PERFORM an energy balance across the two sides of the heatexchanger.1.24IDENTIFY the path(s) on a T-s diagram that represents the thermodynamic processesoccurring in a fluid system.1.25STATE the Second Law of Thermodynamics.1.26Using the Second Law of Thermodynamics, DETERMINE the maximum possibleefficiency of a system.1.27Given a thermodynamic system, CONDUCT an analysis using the Second Law ofThermodynamics.1.28Given a thermodynamic system, DESCRIBE the method used to determine:a.The maximum efficiency of the systemb.The efficiency of the components within the systemHT-01Page xiiRev. 0

ThermodynamicsOBJECTIVESENABLING OBJECTIVES (Cont.)1.29DIFFERENTIATE between the path for an ideal process and that for a real process ona T-s or h-s diagram.1.30Given a T-s or h-s diagram for a system EVALUATE:a.System efficienciesb.Component efficiencies1.31DESCRIBE how individual factors affect system or component efficiency.1.32Apply the ideal gas laws to SOLVE for the unknown pressure, temperature, or volume.1.33DESCRIBE when a fluid may be considered to be incompressible.1.34CALCULATE the work done in constant pressure and constant volume processes.1.35DESCRIBE the effects of pressure changes on confined fluids.1.36DESCRIBE the effects of temperature changes on confined fluids.Rev. 0Page xiiiHT-01

ThermodynamicsIntentionally Left BlankHT-01Page xivRev. 0

ThermodynamicsTHERMODYNAMIC PROPERTIESTHERMODYNAMIC PROPERTIESThermodynamic properties describe measurable characteristics of a substance.A knowledge of these properties is essential to the understanding ofthermodynamics.EO 1.1DEFINE the following properties:a.Specific volumeb.Densityc.Specific gravityd.HumidityEO 1.2DESCRIBE the following classifications ofthermodynamic properties:a.Intensive propertiesb.Extensive propertiesMass and WeightThe mass (m) of a body is the measure of the amount of material present in that body. Theweight (wt) of a body is the force exerted by that body when its mass is accelerated in agravitational field. Mass and weight are related as shown in Equation 1-1.wt mggc(1-1)where:wtmggc weight (lbf)mass (lbm)acceleration of gravity 32.17 ft/sec2gravitational constant 32.17 lbm-ft/lbf-sec2Note that gc has the same numerical value as the acceleration of gravity at sea level, but is notthe acceleration of gravity. Rather, it is a dimensional constant employed to facilitate the use ofNewton’s Second Law of Motion with the English system of units.The weight of a body is a force produced when the mass of the body is accelerated by agravitational acceleration. The mass of a certain body will remain constant even if thegravitational acceleration acting upon that body changes.Rev. 0Page 1HT-01

THERMODYNAMIC PROPERTIESThermodynamicsAccording to Newton’s Second Law of Motion, force (F) ma, where a is acceleration. Forexample, on earth an object has a certain mass and a certain weight. When the same object isplaced in outer space, away from the earth’s gravitational field, its mass is the same, but it isnow in a "weightless" condition (that is, gravitational acceleration and, thus, force equal zero).The English system uses the pound-force (lbf) as the unit of weight. Knowing that accelerationhas the units of ft/sec2 and using Newton’s second law, we can determine that the units of massare lbf-sec2/ft. For simplification, 1 lbf-sec2/ft is called a slug. The basic unit of mass in theEnglish system is the slug. However, the slug is an almost meaningless unit for the averageindividual. The unit of mass generally used is the pound-mass (lbm). In order to allow lbm tobe used as a unit of mass, we must divide Newton’s second law by the gravitational constant (gc). 32.17 lbm ft lbf sec2 gcNewton’s second law can be expressed by Equation 1-2.Fmagc(1-2)Use of the gravitational constant, gc, adapts Newton’s second law such that 1 lbf 1 lbm at thesurface of the earth. It is important to note that this relationship is only true at the surface of theearth, where the acceleration due to gravity is 32.17 ft/sec2. However, because all of ourdiscussions will be based upon experiences and observations on earth, we will use the lbm as theunit of mass.NOTE:In Equation 1-2, acceleration "a" is often written as "g" because, in this case, theacceleration is the gravitational acceleration due to the earth’s gravitational field(g 32.17 ft/sec2).Example:Using Equation 1-2, prove that 1 lbf l lbm on earth.Solution:F1 lbf1 lbfHT-01mggc(1 lbm) (32.17 ft/sec2)(lbm ft)32.17(lbf sec2)1 lbf ( an equality)Page 2Rev. 0

ThermodynamicsTHERMODYNAMIC PROPERTIESSpecific VolumeThe specific volume (ν) of a substance is the total volume (V) of that substance divided by thetotal mass (m) of that substance (volume per unit mass). It has units of cubic feet perpound-mass (ft3/lbm).νVm(1-3)where:ν specific volume (ft3/lbm)V volume (ft3)

DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This Portable Document Format (PDF) file contains bookmarks, thumbn

Related Documents:

1.4 Second Law of Thermodynamics 1.5 Ideal Gas Readings: M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics,3rd ed., John Wiley & Sons, Inc., or Other thermodynamics texts 1.1 Introduction 1.1.1 Thermodynamics Thermodynamics is the science devoted to the study of energy, its transformations, and its

Non-Conventional Machining Technology Fundamentals Instructor: Jurandir Primo, PE 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com . www.PDHcenter.com PDHonline Course M500 www.PDHonline.org 2013 Jurandir Primo Page 2 of 61 .

Forensic Analysis of a Trampoline Peter Chen, P.E., CFEI, ACTAR 2015 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com . www.PDHcenter.com PDHonline Course G523 www.PDHonline.org 2014 Peter Chen Page 2 of 16 .

Engineering Fundamentals-Thermodynamics By Professor Paul A. Erickson . Basic Thermodynamics . Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer Michael J. Moran Howard N. Shapiro Bruce R. Munson David P. DeWitt John Wiley & Sons, Inc.

1. Fundamentals of Engineering Thermodynamics, 8th ed., by Moran, Shapiro, et al., John Wiley and Sons, 2014 (ISBN 9781118412930) 2. Thermodynamics for Engineers (Schaum's Outlines) 3rd Edition by Merle Potter 3. DOE Fundamentals Handbook Thermodynamics, Heat Transfer and Fluid Flow,Volume 1 of 3, DOE-HDBK-1012/3 -92 Optional References TBD

Reversible and Irreversible processes First law of Thermodynamics Second law of Thermodynamics Entropy Thermodynamic Potential Third Law of Thermodynamics Phase diagram 84/120 Equivalent second law of thermodynamics W Q 1 1 for any heat engine. Heat cannot completely be converted to mechanical work. Second Law can be formulated as: (A .

The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics

ASME A17.1, 2013 NFPA 13, 2013 NFPA 72, 2013 Not a whole lot has changed in the sub-standards. Substantial requirements in the IBC/IFC. International Building Code (IBC) and International Fire Code (IFC) “General” Requirements. Hoistway Enclosures Built as “shafts” using fire barrier construction o 1 hr for 4 stories o 2 hr for 4 or more stories o Additional .