ZnO Nanorod Optical Disk Photocatalytic Reactor For .

2y ago
8 Views
3 Downloads
1.40 MB
10 Pages
Last View : 14d ago
Last Download : 3m ago
Upload by : Ronnie Bonney
Transcription

ZnO nanorod optical disk photocatalytic reactorfor photodegradation of methyl orangeYu Lim Chen,1 Li-Chung Kuo,1 Min Lun Tseng,2 Hao Ming Chen,1,3 Chih-Kai Chen,3Hung Ji Huang,4 Ru-Shi Liu,3,5 and Din Ping Tsai1,2,6,*1Department of Physics, National Taiwan University, Taipei 10617, TaiwanGraduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan3Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan4Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 30076, Taiwan5rsliu@ntu.edu.tw6Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan*dptsai@phys.ntu.edu.tw2Abstract: A low-cost and efficient photocatalytic reactor for environmentaltreatment and green technology was presented. ZnO nanorods firmlygrowing on polycarbonate optical disk substrate are generally perpendicularto the substrate as the immobilized photocatalyst of the spinning diskreactor. The photocatalytic efficiency and durability of the ZnO nanorodsare effectively demonstrated. 2013 Optical Society of AmericaOCIS codes: (160.4236) Nanomaterials; (240.6670) Surface photochemistry; (220.0220)Optical design and fabrication; (160.6000) Semiconductor materials.References and links1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications ofsemiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysistechnique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors forphotocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D.P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorptionspectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst forcancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxidenanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles onthe photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue usingTa-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of asuper-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J.Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “Anew approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv.Energy Mater. 1(5), 742–747 (2011).J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic watersplitting,” J. Phys. Chem. C 115(1), 210–216 (2011).D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallerymode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).K. Okazaki, D. Nakamura, M. Higashihata, P. Iyamperumal, and T. Okada, “Lasing characteristics of anoptically pumped single ZnO nanosheet,” Opt. Express 19(21), 20389–20394 (2011).N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnOnanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).#184847 - 15.00 USD(C) 2013 OSAReceived 7 Feb 2013; revised 6 Mar 2013; accepted 6 Mar 2013; published 15 Mar 201325 March 2013 / Vol. 21, No. 6 / OPTICS EXPRESS 7240

16. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photonpumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).17. C.-L. Yeh, H.-R. Hsu, S.-H. Chen, and Y. Liu, “Near infrared enhancement in CIGS-based solar cells utilizing aZnO: H window layer,” Opt. Express 20(S6), A806–A811 (2012).18. J. Ahn, H. Park, M. A. Mastro, J. K. Hite, C. R. Eddy, Jr., and J. Kim, “Nanostructured n-ZnO / thin film psilicon heterojunction light-emitting diodes,” Opt. Express 19(27), 26006–26010 (2011).19. J.-T. Chen, W.-C. Lai, C.-H. Chen, Y.-Y. Yang, J.-K. Sheu, K.-W. Lin, and L.-W. Lai, “Sputtered ZnO-SiO2nanocomposite light-emitting diodes with flat-top nanosecond laser treatment,” Opt. Express 20(18), 19635–19642 (2012).20. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible andultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).21. D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadbanddetection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACSNano 5(10), 7748–7753 (2011).22. P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O.Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of lightintensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168(2010).23. C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment withTiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).24. C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange bya multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).25. A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,”Catal. Today 40(1), 73–83 (1998).26. K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,”Appl. Therm. Eng. 20(12), 1127–1146 (2000).27. J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning discreactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).28. M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenicaldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuousspinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).29. D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating diskphotocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants inwater,” Water Res. 34(11), 2927–2940 (2000).30. H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalyticreactor,” Chemosphere 42(4), 397–403 (2001).31. X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401(2013).32. T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalyticprocesses,” Chem. Eng. Prog. 46(9), 781–789 (2007).33. J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev. 38(1), 185–196 (2009).34. O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).35. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590(2011).36. Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in opticalfiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).37. P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for watertreatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).38. The Photonics Industry & Technology Development Association, PIDA photonics market report, “Globaloptoelectronics market and Taiwan photonics industry report for 2011–2012” (PIDA, 12 Q1/2012 Q1 Ch06.pdf39. S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J.Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).40. H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures andnanostructured arrays,” ACS Nano 2(5), 944–958 (2008).41. K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnOparticles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).42. C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,”Appl. Catal. A 304, 55–61 (2006).43. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” NanoRes. 4(11), 1013–1098 (2011).44. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1),013001–0130019 (2009).#184847 - 15.00 USD(C) 2013 OSAReceived 7 Feb 2013; revised 6 Mar 2013; accepted 6 Mar 2013; published 15 Mar 201325 March 2013 / Vol. 21, No. 6 / OPTICS EXPRESS 7241

45. J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various typesof aqueous pollutants,” Catal. Today 53(1), 115–129 (1999).46. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).47. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A.Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).48. Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement ofphotocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).49. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and materialdesigns for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).50. H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T.S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical watersplitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).51. M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J.He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication ofa Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,”ACS Nano 6(6), 5190–5197 (2012).52. L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D.P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiencyphotothermal therapy reagent,

ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange Yu Lim Chen, 1 Li-Chung Kuo, Min Lun Tseng,2 Hao Ming Chen,1,3 Chih-Kai Chen,3 Hung Ji Huang,4 Ru-Shi Liu,3,5 and Din Ping Tsai1,2,6,* 1Department of Physics, National Taiwan University, Taipei 10617, Taiwan 2Graduate Institute of Applied

Related Documents:

the research that aimed at the reduction of the photocatalysis of TiO2 and ZnO have scarcely been reported [29,30]. This paper reviews the recent progress in our research group in the reduction of photocatalytic activity of ZnO nanoparticles [31-34]. 2 Reduction of photocatalytic activity 2.1 Surface modification of ZnO nanoparticles

zinc oxide thin films, possibly achieved without any post- growth treatment of the deposited ZnO layers [2]. Normally ZnO founds in the hexagonal structure [3]. ZnO thin films is interested as transparent conductor, because the n-type ZnO thin film has a wide band gap (E. g 3.2 eV), and high transmission in the visible range, and ZnO thin

Photocatalytic reduction of CO 2 to methanol is not only to mitigate emissions but also provides alternative fuels under ambient conditions. In this work, hexagonal plate ZnO and copper-modified hexagonal plate ZnO nanostructures were synthesized and used as catalysts for photocatalytic reduction of CO 2 to methanol in water.

ZnO (ZnO:Fe) thin films under a pulsed magnetic field of 4 T and determined that the magnetic field annealing process has a dramatic stabilizing effect on the switching parameters of Pt/ZnO:Fe/Pt structures. Methods Five percent of Fe-doped ZnO thin films were prepared on Pt(111)/TiO 2/

Growth and Characterization of Conducting ZnO Thin Films . In addition, the various analytical data of the ZnO films were compared with those of ZnO single crystal. According to our analytical data, metallic zinc plays an important role for the high conductivity in ALD ZnO films. Therefore when the metallic zinc was additionally oxidized with .

The present invention relates to an optical disk and to an optical disk drive which records, reproduces and erases information on/from the optical disk by projecting a light beam. BACKGROUND OF THE INVENTION On a conventional optical disk, generally, informa- tion (hereinafter referred to as address information) indi- .

Nanoparticle characterization and spiking procedures Two sizes of zinc oxide (ZnO) were applied, namely 30 nm (Nanosun ZnO P99/30) and 200 nm (Microsun ZnO W45/ 30). Figure 1 shows transmission electron micrographs (TEM) of the ZnO powders, which were dispersed in

reading is to read each day for at minimum 30 minutes. Please turn in all assignments to your child’s teacher in the fall. May you have a blessed, restful, relaxing, enjoyable and fun-filled summer! Sincerely, Thomas Schroeder & Vicki Flournoy Second Grade Summer Learning Packet. DEAR FAMILY, As many of you are planning for your summer activities for your children, we want you to remember .