Quantitative LC-MS Solution For Targeted Analysis Of Cell .

3y ago
12 Views
3 Downloads
1.03 MB
7 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Konnor Frawley
Transcription

Quantitative LC-MS Solution for Targeted Analysis of CellCulture MediaFeaturing the SCIEX QTRAP 6500 LC-MS/MS SystemZuzana Demianova1 and Lei Xiong21SCIEX, Brea, CA; 2SCIEX, Redwood City, CAIntroductionCell culture media (CCM) optimization is a critical step during thedevelopment and scale up of biotherapeutic production. Inparticular, the emphasis on quality by design (QbD) has made itnecessary to understand how the components of CCM changeduring production and how these changes relate to productquality. There is a vital need to develop analytical assays thatcan provide comprehensive and accurate cell culture mediaprofiling for a wide range of biotherapeutics types produced fromor are themselves living cells.Compared to traditional analytical and biosensor techniques,(e.g., UV-visible spectrophotometry, nuclear magnetic resonanceand Raman spectroscopy; liquid chromatography massspectrometry (LC-MS) techniques provide a strong solutionrequire for cell culture media analysis. High sensitivity,selectivity, speed, and robustness; enables unambiguousidentification and quantification of a large number of analytes in asingle analysis.To enable rapid analysis of a wide array of cell culture mediacomponents, SCIEX has developed a CCM method on theQTRAP 6500 system coupled to the ExionLCTM system. Thisnew CCM method targets important nutrients, including aminoacids, vitamins, carbohydrates, fatty acids, nucleic acid,inorganic acids, and other essential compounds found in media.By offering sensitive, reproducible and robust quantification 110SCIEX QTRAP 6500 coupled to ExionLCTM Systemkey cell culture media components can be analyzed in a singleLC-MS/MS method.Key Features of Cell Culture Media Method SCIEX QTRAP 6500 coupled to ExionLCTM system offersspeed, high sensitivity, reproducibility and linear ion trapfunctionality Phenomenex Kinetex F5 column provides excellentresolution of target analytes a cross different chemistries The MRM library identifies 110 key cell culture nutrients andcontains two MRMs per compound with a few exceptions The Accurate Mass Metabolite Spectra Library forcompound confirmation with over 550 essential metabolitesfor biological processes Powerful, comprehensive software solution - SCIEX OS-Qsoftware offers versatile qualitative and quantitativeworkflowsRepresentative Extracted Ion Chromatograms of selectedcomponents from compound library analyzed using a scheduleMRMTM methodp1

Experimental SectionSample preparation: A cell culture master mix was preparedusing standards from various groups is listed in Table 1 andcontained the individual components listed in Table 2. A stocksolution of individual standards (1 mg/ml) was prepared withdifferent solvent depending on compound solubility. A finalmaster mix was prepared containing all standards (6.67-20 µg/mldepending on analyte signal).Cell culture medium (CD CHO medium, Gibco) was diluted 5-foldwith 0.1% formic acid in 50% acetonitrile, and centrifuged. thesupernatant was further diluted 60-fold with 0.1% formic acid.Table 1: The summary of cell culture media component coverageamong various compound groups.Component groupNumber of componentsAmino acids39Vitamins15Carbohydrates4Fatty acids5Nucleic acids17Others32Chromatography: Analytes were separated on an ExionLCTMSystem using a Phenomenex Kinetex F5 column (150 mm x 2.1mm ID, particle size 2.6 µm). Total method time was 20 min at aflowrate of 200 µl/min. Mobile phase A was 0.1% formic acid inwater, and mobile phase B was acetonitrile with 0.1% formicacid. Column oven temperature was 40 C. Injection volume was5 µL.Figure 1. Scheduled MRMTM Algorithm Pro. Using knowledge of theelution time of each analyte, each MRM transition is monitored onlyduring a short retention time window. This allows many more MRMtransitions to be monitored in a single LC run, while still maintainingmaximized dwell times and optimized cycle times.Mass Spec: MRM parameters for 110 cell culture componentswere optimized by chemical standards for a SCIEX QTRAP 6500 and a Triple QuadTM 6500 system. The scheduledMRMTM Algorithm Pro(sMRM) was used to optimize cycle timesand maximized dwell times for each MRM transition. Byscheduling transitions around expected retention time of ananalyte, the sMRMs method allows for significantly more MRMtransitions to be monitored simultaneously without sacrificing thesuperior analytical precision (Figure 1). Two MRM transitionswere monitored for each analyte, with a few exceptions whenonly one MRM was available or analytes ionized in positive andnegative mode. This allows for comparisons to standard ratios tohelp identify peak integration issues. This method contains 178positive MRMs and 54 negative MRMs.The MIDASTM workflow was used to confirm components of themaster mix based on their full MS/MS fragmentation pattern ofeach analyte.Mass spectrometer settings were: curtain gas 30 psi, GS1 50psi, GS2 50 psi, ISVF 4500 V or -4500 V, TEM. 400 C. Fastpolarity switching allowed analysis in positive and negativeionization modes within one method.Data processing: Scheduled MRM data was processed byusing SCIEX OS-Q 1.5 software with a targeted quantitativeworkflow. The MQ4 algorithm was used for integration of analytepeaks. Confirmation of components was carried out using fullMS/MS fragmentation pattern (MIDASTM) in SCIEX OS-Q 1.5software with qualitative workflow and the Accurate MassMetabolite Spectral Library (AMMSL).Results and DiscussionOne major challenge encountered in cell culture media analysisis the chromatographic separation and retention of variousgroups of components including isomers and polar analytes.Recently the use of HILIC has emerged as an approach forseparation of some classes of CCM components. As thediversity of the components increases the advantage of HILICdecreases when compared to traditional reverse phaseapproaches. In addition the overall run times using HILIC arefrequently longer due to extended re-equilibration and as suchthe retention time reproducibility may suffer.SCIEX developed a CCM method that separates various classesof compounds (Table1) using the reversed phasechromatography. For this purpose we selected the Kinetex F5column. This chemistry provides separation with high resolvingpower for chemically different analytes based on five differentinteractions (hydrophobic, aromatic, electrostatic, steric/planar,and hydrogen bonding) which enables efficient separation over ap2

Figure 2. Representative Extracted Ion Chromatograms ofselected components from component MRM library. Panel Ashows various XICs of components from standard cell culturemixture.wide range of molecular properties. Figure 2A illustratesextracted ion chromatograms of representative components fromcell culture media standard master mix, for clarity only one MRMper component for selected components are shown. As a proofof concept, the Gibco cell culture (CD CHO) medium wasanalyzed using this CCM method. As shown in Figures 3, anumber of components are found in the CD CHO medium thatalign with the standard master mix used for methoddevelopment. Due to concentration differences low abundancecomponents are shown in the top panel of Figure 3 while theamino acids are presented separately in the bottom panel.A particular challenge with generic methods for CCM analysis isthe separation of closely related compounds. One example is theability to distinguish between L-cysteine and L-cystine due tosimilar fragmentation patterns. L-cystine is one of five aminoacids (arginine, cystine, glutamine, histidine, tyrosine) that areessential for the survival and growth of cells in culture 1. Lcystine, the dimer of L-cysteine, is formed non-enzymaticallythrough reversible oxidation of the thiol residue. Monitoring theways that cells use these components may be important during aFigure 3. Top panel shows various XICs of low abundantcomponents from Gibco’s cell culture media (CD CHO medium).Bottom panel shows amino acids from Gibco’s cell culturemedia (CD CHO medium).development of successful medium. Using the methodpresented here, L-cystine and L-cysteine are well separated fromeach other, and also distinguished by unique MRMs (Figure 4A).Another example is detection of L-Arginine and its metabolites,such as L-ornithine and L-citrulline. L-citrulline converts to Larginine2 during biosynthesis. The separation of thesecomponents is shown in Figure 4B using MRMs for each.Separation of isomers is a good indicator of sufficient columnselectivity. Figure 5, top panel, shows a good baselineseparation of L-leucine and L-isoleucine. Baseline separationand unique MRMs enable correct assignment of each isomer.Figure 4. Example of separation between amino acid and its homologs, its metabolite and dimer. Panel A shows extracted ion chromatograms ofCysteine, Cystine and Homocysteine MRMs. Panel B shows extracted ion chromatograms of L-Arginine, L-Ornithine and L-Citrulline MRMs. Theseexamples were extracted from separation of cell culture standard master mix on Kinetex F5 column within 20 min.p3

Figure 5. Representative MIDASTM workflow for L-Leucine and L-Isoleucine with compound match from the Sciex Accurate Metabolite Spectra(AMMSL) Library. Top panel illustrates separation of L-Leucine isoforms with XICs from corresponding MRMs. Bottom panels shows in the blue spectrumthe LIT scan of all measured MS/MS ions from L-Leucine and L-Isoleucine parent ion and the grey spectrum shows the library spectrum of L-Isoleucine andL-Leucine from the AMMSL Library.In cases where assignment of the correct component, oridentification of a new component, is required the MIDAS workflow enables collection of MRM and IDA data within thesame acquisition. Figure 5 bottom illustrates confirmation of Lleucine and L-isoleucine using data acquired using the MIDAS workflow. As shown, the identification of each isomer is based onMS/MS spectral matching between the experimental andtheoretical MS/MS spectra from the AMMSL library. In thisexample, the isomer position is confirmed by a specific Lisoleucine MS/MS fragment (69.10 m/z) which is not present inthe L-leucine MS/MS pattern. For each component the matchscore was above 90 providing high confidence in assignmentand therefore its use in quantification.Quantitation of components from cell culture medium can bechallenging and analyte dependent, especially when substantialFigure 6. Linear calibration curves of representative cell culturecomponent per group measured in positive and negative mode.Concentration slope for T-Tryptophan and Linoleic acid is from 0.001ng/mL to 3350 ng/mL (orange and red lines), Adenosine is from 0.001ng/mL to 2000 ng/mL(green lines), D-threonic acid and Riboflavinpos/neg is from 0.001 ng/mL to 1000 ng/mL, and 2-Isopropylmalic acid0.05 ng/mL to 2000 ng/mL(blue, purple and turquoise lines). Outlierswere removed and average R2 value this components is 0.98893. Y-axisis presented as %Area of 4.7e8 and X-axis is concentration in ng/ml.concentration differences and multiple components aresimultaneously analyzed. The lower limit of quantification (LLOQ)and linear dynamic range (LDR) was investigating during themethod evaluation. In Figure 6, calibration curves arerepresenting linear respond of selected component per group. Asan example, L-tryptophan has linear range from 0.001 ng/mL to3350 ng/mL and LLOQ of 0.025 ng/ml with signal to noise (S/N)of 46. On average LDRs across all of the components in themethod range from 2.5 to 6 orders of magnitude.To monitor the levels of cell culture media components duringthe different stages of biotherapeutics production, SCIEX OSsoftware offers a visual way to gauge the level of nutritionavailable for cell growth through its integrated plot functionality(concentration metric plot), the graphical representation ofresults across different stages is shown in Figure 7.Figure 7. Metric plots reflect concentration variation betweensamples. Cell culture components: - linoleic acid (yellow), L-tryptophan(red), adenosine (blue), riboflavin (pink), D-threonic acid (light blue) 2isopropylmalic acid (green). Component quantity is shown from thehighest to lowest calibration point normalized to highest concentration.p4

Figure 8. Extracted Ion Chromatograms shows two MRMs per selected compound from cell culture group class. In the cell culture standard mixture theLDR vary from 2- to 6-orders of magnitude depending. Blue XIC is MRM and pink XIC is MRM2 for selected compound. The Signal to Noise ratio valuesindicating the LLOQ of compound. * 2x higher load on a column.This visualization tool compares the different stages of cellculture media cultivation for successful large scalebiotherapeutics production. The measured quantity from thehighest to lowest calibration point is normalized to highestconcentration and plotted against time (Figure 7). In the tool,representative components for each cell culture mediacomponent group are represented by different colors: aminoacids – L-tryptophan (red), vitamins – riboflavin (pink),carbohydrates- D-threonic acid (light blue), fatty acids – linoleicacid (yellow), nucleic acids – adenosine (blue line) and organicacids – 2-isopropylmalic acid (green line). Initially, the plot showslower concertation of carbohydrate (D-threonic acid) and organicacid (2-isopropylmalic acid ) at the highest point of calibration,this most probably results of detector saturation (Figure 7).p5

ConclusionsHerein, a quantitative LC-MS solution for targeted cell culturemedia analysis was presented. This solution is based on the useof a SCIEX QTRAP 6500 mass spectrometer coupled toExionLCTM system, and was designed specifically to meetindustry demands and overcome technical challenges for assaydevelopment. This cell culture media analysis method offers: Superior separation of critical cell culture mediacomponents over a broad range of chemistries Measurement of polar and nonpolar as well as positiveand negative polarity components within a singlemethod An MRM-driven method that is easily convertible toother chromatographic systems High sensitivity and dynamic range when using aSCIEX QTRAP 6500 and Triple QuadTM 6500 system A full software solution for direct quantitation andprincipal components based graphical visualization Enhanced robustness due to the IondriveTM Turbo Vsource that delivers high sensitivity for both positive andnegative analysis A heavy internal standard kit that will allow for accuratequantitation of individual component groups within cellculture media (forthcoming)References1 Eagle, H. (1959) Science, 130, pp. 432.2 Schinke, R. (1964) The Journal of Biological Chemistry, 239, 1,pp. 136.RemarksIf you are interested in this method, please contact a SCIEXsales representative for further information. Method is sharedafter confidentiality agreement has been signed, and installationof the method will be coordinated by an application supportspecialist.p6

Table 2. List of components in the MRM libraryCell Culture compoundL-AlanineBeta-AlanineL-ArginineL-Aspartic AcidL-CystineL-Glutamic yric acidL-alpha-Amino-n-butyric acidDL-β-Aminoisobutryic eL-SarcosineL-AsparagineL-GlutamineL-Methionine sulfoxideL-pyroGlutamic acidN-Acetyl -L-aspartic NorvalinesarcosineL-Kynureninelinolenic acidlinoleic acidoleic acidstearic acidpalimitic e2'-DeoxycytidineAdenosine free baseAdenosine 5'-monophosphateCytidineCytidine 5'-monophosphateGuanosineGuanosine 5'-monophosphate disodium hydrateInosineThymidineUridineXanthosine dihydrateSucroseGroupAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidAmino acidFatty acidFatty acidFatty acidFatty acidFatty sideNucleosideNucleosideSacharidesD-( )-glucoseD-( )-glucosamine hydrochloride(-)-Tocopherol acetateBiotinCyanocobalaminD-Pantothenic acid hemicalciumFolic acidL-Ascorbic acidL-Ascorbic acid 2-phosphate sesquimagnesium saltNiacinamideNicotinic acid (niacin)Pyridoxal hydrochloride(-)-Riboflavinergocalciferolsodium ascorbatepyridoxine(-)-alpha-Lipoic acidTaurine2-isopropyl Malic acid2-oxovaleric acidCitric acidDL-A-Keto-B-methyl-n-valeric acid sodiumDL-Isocitric acid trisodium hydrateDL-P-Hydroxyphenyllactic acidFumaric acidLactic acidPyruvic acidSuccinic acidmalic acidD-gluconic acid sodiumL-AnserineALA-GLNgly-gln monohydrate4-Aminobenzoic acidCholine chlorideL-2-Aminoadipic acidL-Pipecolic acidUric acidFolinic acid calcium salt hydratePenicillin G sodium2-Aminoethanol (monoethanolamine)EthylenediamineHistamine free baseO-PhosphoethanolaminePutrescinePhosphocholine chloride calcium salt tetrahydrateGlutathione oxidizedL-glycerophosphocholineD-Threonic acid hersOthersOthersOthersOthersAB Sciex is doing business as SCIEX. 2019 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.AB SCIEX is being used under license.Document number: RUO-MKT-02-9746-Ap7

Quantitative LC-MS Solution for Targeted Analysis of Cell Culture Media Featuring the SCIEX QTRAP 6500 LC-MS/MS System Zuzana Demianova1 and Lei Xiong2 1SCIEX, Brea, CA; 2SCIEX, Redwood City, CA Introduction Cell culture media (CCM) optimization is a critical step during the development and scale up of biotherapeutic production. In

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

och krav. Maskinerna skriver ut upp till fyra tum breda etiketter med direkt termoteknik och termotransferteknik och är lämpliga för en lång rad användningsområden på vertikala marknader. TD-seriens professionella etikettskrivare för . skrivbordet. Brothers nya avancerade 4-tums etikettskrivare för skrivbordet är effektiva och enkla att

Den kanadensiska språkvetaren Jim Cummins har visat i sin forskning från år 1979 att det kan ta 1 till 3 år för att lära sig ett vardagsspråk och mellan 5 till 7 år för att behärska ett akademiskt språk.4 Han införde två begrepp för att beskriva elevernas språkliga kompetens: BI

**Godkänd av MAN för upp till 120 000 km och Mercedes Benz, Volvo och Renault för upp till 100 000 km i enlighet med deras specifikationer. Faktiskt oljebyte beror på motortyp, körförhållanden, servicehistorik, OBD och bränslekvalitet. Se alltid tillverkarens instruktionsbok. Art.Nr. 159CAC Art.Nr. 159CAA Art.Nr. 159CAB Art.Nr. 217B1B