INFSO-ICT-248523 BeFEMTO D2.2 The BeFEMTO System Architecture

3y ago
18 Views
2 Downloads
498.45 KB
54 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Annika Witter
Transcription

D2.2 1.0INFSO-ICT-248523 BeFEMTOD2.2Version 1.0The BeFEMTO System ArchitectureContractual Date of Delivery to the CEC:M24Actual Date of Delivery to the CEC:M24Author(s):Alexander Tyrrell, Andrea Garavaglia, Andrey Krendzel, DimitryMarandin, Frank Zdarsky, Josep Mangues-Bafalluy, Lorenza Giupponi,Manuel Palmowski, Mariano López, Massinissa Lalam, Mehdi Bennis,Mehrdad Shariat, Pablo Arozarena, Stefan Brueck, Stefan Schmid, TaoGuo, Youngwook Ko, Zubin BharuchaParticipant(s):SC, NEC, TID, DOCOMO, QC, TTI, mimoOn, CTTC, UOulu, UniSWorkpackage:WP2: Use Cases, Requirements and System ArchitectureEstimated person months:3Security:PUNature:RVersion:1.0Total number of pages:54Abstract:This deliverable D2.2 describes the BeFEMTO System Architecture, synthesized from the various smallarchitectural evolutions following from the individual concepts developed within the BeFEMTO project.The BeFEMTO System Architecture breaks down into the BeFEMTO Evolved Packet System (EPS)Architecture and the BeFEMTO Transport Network Architecture as well as the BeFEMTO HeNB NodeArchitecture and the BeFEMTO LFGW (Local Femtocell GateWay) Node Architecture, which describethe internal architecture of two important entities that are part of the BeFEMTO EPS and TransportArchitectures.Apart from describing existing, extended and new functional entities and interfaces of each of these subarchitectures, this report also provides a high-level overview of the various novel technologies developedin BeFEMTO, their benefits and limitations relative to other approaches, their impact on the overallarchitecture, and potentially on standardization.Page 1 (54)

D2.2 1.0Executive SummaryThis deliverable D2.2 describes the BeFEMTO System Architecture, synthesized from the various smallarchitectural evolutions following from the individual concepts developed within the BeFEMTO project.The BeFEMTO System Architecture breaks down into the following sub-system architectures: The BeFEMTO Evolved Packet System (EPS) Architecture, which extends 3GPP’s EPSarchitecture with new functional entities and interfaces. The BeFEMTO Transport Network Architecture, which builds upon a fixed broadband accessnetwork architecture, e.g., the one from TISPAN (Telecommunications Internet converged Servicesand Protocols for Advanced Networking) or BroadBand Forum. This is extended to provide end-toend Quality of Service (QoS) provisioning and authentication a) from the EPS to the customer’spremises and b) inside the customer premises, in particular for the case of networked femtocells. The BeFEMTO HeNB Node Architecture, which extends the internal architecture of traditionalHeNBs with new functional blocks and interfaces for novel radio resource and interferencemanagement (RRIM), Self-Organized Networking (SON), network synchronization, routing andother capabilities. The BeFEMTO LFGW (Local Femtocell GateWay) Node Architecture, which describes thefunctional blocks and interfaces of a new network element that can improve the performance,scalability, and manageability of large femtocell network deployments by providing functionalitiessuch as local mobility management, local breakout, local routing and local RRIM.Apart from describing existing, extended and new functional entities and interfaces of each of these subarchitectures, this report also provides a high-level overview of the various novel technologies developedin BeFEMTO. It also discusses their benefits and limitations relative to other approaches, their impact onthe overall system architecture, as well as their potential impact on standardization.Page 2 (54)

D2.2 1.0List of Acronyms and XDSCPEAPeNBEPAEPCETSIMicro-second3rd Generation Partnership Project4th GenerationAnalog to DigitalAuthentication, Authorization, AccountingAlternate CurrentAcknowledgementAdjacent Channel Leakage RatioAdjacent Channel Power LeakageAuthentication and Key AgreementAccess PointApplication Programming InterfaceAccess StratumAdditive White Gaussian Noisebit per second per Hertz per cellBroadcast ChannelBroadband evolved FEMTO networksBlock Error RateBase StationBandwidthCarrier AggregationComponent CarrierCumulative Distribution FunctionCarrier FrequencyCentral Power ManagementControl-PlaneChannel Quality IndicationCyclic Redundancy CheckCell Specific Reference SymbolsCustomer ServiceClosed Subscriber Groupdecibeldecibel (referenced to one milliwatt)Dual Carrier-High Speed Uplink Speed Packet AccessDiscrete Fourier Transform- Orthogonal Frequency Division MultiplexingDynamic Host Configuration ProtocolDownlinkDonor evolved Node BDiscontinuous ReceptionDifferentiated Services Code PointExtensible Authentication ProtocolEvolved Node-B (LTE macro base station)Extended Pedestrian A-modelEvolved Packet CoreEuropean Telecommunication Standards InstitutePage 3 (54)

D2.2 AMACMb/sMBMSMBSMBSFNMCSExtended Typical Urban modelEvolved Universal Terrestrial Radio AccessEvolved Universal Terrestrial Radio Access NetworkExtended Vehicular A-modelError Vector ModuleFemto Access PointFrequency Division DuplexFrame Error RateFractional Frequency ReuseFairness IndexFixed Reference ChannelFiber To The HomeFemtocell UEGiga bits per secondGigaHertzGeneral Packet Radio ServiceGPRS Tunneling ProtocolHybrid Automatic Repeat RequestHome evolved Node-BHeterogeneous NetworksHome Node-BHandOverHome Subscriber ServerHigh Speed Uplink Speed Packet AccessInter Cell Interference CoordinationIP Multimedia SubsystemInternational Mobile Telephony – AdvancedIndoor HotspotInternet ProtocolInter Site DistanceInternational Telecommunication Union-Radiocommunication Sectorkilometre per hourKey Performance IndicatorLocal Femtocell GateWayLocal P-GWLocal IP accessLocal Location ManagementLocal Network GatewayLocal Network ManagerLine Of Sight3GPP Long Term EvolutionLong Term Evolution – AdvancedMedia Access ControlMega bits per secondMultimedia Broadcast Multicast SystemMacro Base StationMBMS Single Frequency NetworkModulation and Coding SetPage 4 (54)

D2.2 IUSRANRAN4RBRFRLCRMaRMSRNMega HertzMulti Input Multi OutputMobility Management EntityMobile Network OperatorMobile Relay NodeMacro UENegative AcknowledgementNon-Access StratumNetwork Access Support SubsystemNext Generation NetworkNon-Line of SightNumber of Resource BlocksnanosecondOperation, Administration and MaintenanceOrthogonal Frequency Division MultiplexingOrthogonal Frequency Division Multiple AccessOptical Line TerminationOptical Network TerminationObserved Time Difference of ArrivalPhysical Cell IdentityPhysical Downlink Control ChannelPacket Data Control ProtocolProbability Distribution FunctionPhysical Downlink Shared ChannelProtocol Data UnitPhysical (Layer)Penetration LossProxy MMEparts per millionPoint to Point ProtocolPhysical Random Access ChannelPhysical Resource BlockProxy Serving GateWayPhysical Uplink Control ChannelPhysical Uplink shared ChannelQuadrature Amplitude ModulationQuality of ServiceQuadrature Phase Shift KeyingRemote Access Control SubsystemRemote Authentication Dial in User ServerRadio Access NetworkRadio Acces Network (Working Group 4)Resource BlockRadio FrequencyRadio Link ControlRural MacroRoot Mean SquareRelay NodePage 5 (54)

D2.2 CUTRAUTRANVoIPWANWCDMAWIDWiMAXWLANRelay – Physical Downlink Control ChannelRelay – Physical Downlink Shared ChannelRelay – Physical Uplink Shared ChannelRoot Raised CosineRemote Radio HeadRadio Resource ManagementRelay StationReceived Signal Strength IndicatorReference Signal Received PowerRelative Time Difference Of ArrivalReceiverSynchronization ChannelStream Control Transmission ProtocolSymmetric Digital Subscriber LineService Data UnitSoft Frequency ReuseServing GateWaySingle Input Multi OutputSignal to Interference plus Noise RatioSelected IP Traffic OffloadSingle Input Single OutputSuburban MacroSignal to Noise RatioSelf-Optimizing Centralized RRIMSelf-Organising NetworksSemi-Persistent SchedulingScheduling RequestTime Division DuplexTelecommunications and Internet converged Services and Protocols forAdvanced NetworkingTime RatioTransmission Time IntervalTransmitterUser EquipmentUniversal Integrated Circuit CardUplinkUrban MacroUniversal Mobile Telecommunication SystemUser-PlaneCoordinated Universal TimeUniversal Terrestrial Radio AccessUniversal Terrestrial Radio Access NetworkVoice over Internet ProtocolWide Area NetworkWideband Code Division Multiple AccessWork Item DescriptionWorldwide interoperability for Microwave AccessWireless Local Area NetworkPage 6 (54)

D2.2 1.0WPWork PackagePage 7 (54)

D2.2 1.0AuthorsPartnerNamePhone / Fax / e-mailFrank ZdarskyPhone: 49 6221 4342-142e-mail: frank.zdarsky@neclab.euPhone: 49 6221 4342-154e-mail: stefan.schmid@neclab.euNECStefan SchmidTelefonica I D (TID)Pablo ArozarenaPhone: 34 91 483 28 66e-mail: pabloa@tid.esZubin BharuchaPhone: 49 89 56824 231e-mail: bharucha@docomolab-euru.comStefan BrueckPhone: 49 911 540 1370e-mail: sbrueck@qualcomm.comMariano LópezPhone: 34 942 291212e-mail: mlopez@ttinorte.esDimitry MarandinManuel Palmowskie-mail: dimitri.marandin@mimoon.dePhone: 49 203 3064529e-mail: manuel.palmowski@mimoon.deLorenza GiupponiPhone: 34 936452922e-mail: lorenza.giupponi@cttc.ese-mail: josep.mangues@cttc.cate-mail: jaime.ferragut@cttc.ese-mail: CJosep Mangues-BafalluyJaime FerragutAndrey KrendzelUOuluMehdi BennisPhone: 358 40 8241 742e-mail: bennis@ee.oulu.fiMehrdad ShariatPhone: 44 1483 689330e-mail: m.shariat@surrey.ac.ukPhone: 44 1483 683883e-mail: y.ko@surrey.ac.ukPhone: 44 1483 689330e-mail: t.guo@surrey.ac.ukUniversity of SurreyYoungwook KoTao GuoSagemcomMassinissa LalamPhone: 31 1 57 61 13 41e-mail: massinissa.lalam@sagemcom.comPage 8 (54)

D2.2 1.0Table of Contents1. Introduction.132. Overview of the BeFEMTO System Architecture.142.1BeFEMTO Evolved Packet System Architecture . 142.1.1 Overview. 142.1.2 Functional Entities . 142.1.3 Interfaces. 162.2 BeFEMTO Transport Architecture. 172.2.1 Overview. 172.2.2 Functional Entities . 182.2.3 Interfaces. 192.3 BeFEMTO HeNB Node Architecture . 202.3.1 Overview. 202.3.2 Functional Blocks . 212.3.3 HeNB Internal Interfaces . 262.4 BeFEMTO LFGW Node Architecture . 262.4.1 Overview. 262.4.2 Functional Blocks . 272.4.3 Interfaces. 293. Base Band Processing and RF Front End Extensions .303.1Carrier Aggregation Extensions . 303.1.1 High-Level Approach . 303.1.2 Benefits and Limitations . 303.1.3 Impact on Architecture . 313.1.4 Impact on Standards. 314. Radio Resource and Interference Management Functions .334.1RRIM Variant 1: Centralized with HeNB Coordinator in LFGW . 334.1.1 High-Level Approach . 334.1.2 Benefits and Limitations . 334.1.3 Impact on Architecture . 334.1.4 Impact on Standards. 334.2 RRIM Variant 2: Distributed with HeNB Coordination via X2 . 334.2.1 High-Level Approach . 334.2.2 Benefits and Limitations . 334.2.3 Impact on Architecture . 344.2.4 Impact on Standards. 344.3 RRIM Variant 3: Distributed with eNB and HeNB Coordination via X2 . 344.3.1 High-Level Approach . 344.3.2 Benefits and Limitations . 344.3.3 Impact on Architecture . 344.3.4 Impact on Standards. 344.4 RRIM Variant 4: Autonomous without Coordination with Other Nodes . 344.4.1 High-Level Approach . 344.4.2 Benefits and Limitations . 354.4.3 Impact on Architecture . 354.4.4 Impact on Standards. 355. SON Coordinator and Enabling Functions .365.1SON Coordinator. 365.1.1 High-Level Approach . 365.1.2 Benefits and Limitations . 365.1.3 Impact on Architecture . 365.1.4 Impact on Standards. 36Page 9 (54)

5.25.35.45.55.65.75.8D2.2 1.0Positioning . 365.2.1 High-Level Approach . 365.2.2 Benefits and Limitations . 375.2.3 Impact on Architecture . 375.2.4 Impact on Standards. 37Coverage Estimation . 375.3.1 High-Level Approach . 375.3.2 Benefits and Limitations . 375.3.3 Impact on Architecture . 375.3.4 Impact on Standards. 37Network Synchronisation: Self-Organized Slot Synchronization. 385.4.1 High-Level Approach . 385.4.2 Benefits and Limitations . 385.4.3 Impact on Architecture . 385.4.4 Impact on Standards. 38Network Synchronisation (Internet-based Master-Slave Approach) . 385.5.1 High-Level Approach . 385.5.2 Benefits and Limitations . 385.5.3 Impact on Architecture . 395.5.4 Impact on Standards. 39Learning (Variant 1: Coordinated by HeNB GW) . 395.6.1 High-Level Approach . 395.6.2 Benefits and Limitations . 395.6.3 Impact on Architecture .

architecture with new functional entities and interfaces. The BeFEMTO Transport Network Architecture, which builds upon a fixed broadband access network architecture, e.g., the one from TISPAN (Telecommunications Internet converged Services and Protocols for Advanced Networking) or BroadBand Forum. This is extended to provide end-to-

Related Documents:

Afhankelijk van de onderwijsambities en de ICT inzet van de school kan dit zijn; een ICT kartrekker (Professional) een ICT-coördinator (Pionier) een ICT coach (Specialist) De rol van de ICT'er op school is vooral inspireren en adviseren bij een goede inzet van ICT en krijgt hierbij ondersteuning van de Adviseur ICT Onderwijs en .

Het aandeel van de ICT-sector is dus gegroeid. — In 2013 realiseerden Nederlandse ICT-bedrijven een lagere omzet dan in 2012. De krimp bedroeg 1,4 procent. Zowel de ICT-industrie, de ICT-groothandel als de ICT-dienstverlening zagen hun omzet dalen in 2013. — In 2012 zorgden ICT-bedrijven voor 5 procent van de toegevoegde waarde

7.3 Children’s use of ICT 64 7.4 Use of ICT to support children’s learning 65 Supporting children’s learning 65 Documenting children’s learning 65 7.5 Use of ICT to communicate with parents, caregivers, and whānau 66 7.6 Staff use of ICT for their own learning 66 7.7 Staff readiness and confidence to use ICT 67

berdasarkan peringkat kesediaan, penggunaan, penerapan dan transformasi. d. Mengenal pasti fokus latihan ICT untuk meningkatkan kompetensi ICT pemimpin sekolah. 1.4 Soalan Kajian 1. Apakah tahap kompetensi ICT dalam kalangan pemimpin sekolah berdasarkan domain Dasar dan Kepimpinan ICT, Pembudayaan ICT organisasi, Pengetahuan dan Kemahiran

worden aangepakt door de huidige ICT-omkadering. Vanuit het onderwijsveld komt de vraag om het statuut van de ICT-coördinator te versterken en de taakomschrijving van de ICT-coördinatoren te actualiseren. Het is de ambitie van de Vlaamse overheid om de taak van de ICT-coördinator breder in te bedden in een teamgerichte ICT-werking van de .

Regelmatig overleg met de ICT-coördinator over alle relevante zaken betreffende ICT. Het eigentijdse onderwijs waarborgen . Dat de veranderingscapaciteit van ICT van de school ook ingezet wordt. In samenspraak met ICT-coördinator en het team een scholingsplan opstellen. Het bewaken van de opbrengsten van de inzet van ICT.

ICT service in the country shall apply for ICT Facility based license or ICT service based license to the Authority as per the format prescribed in Annexure 4 or 5 of this Rules and Regulations. 2.1.2 A person shall not own or operate an ICT facility or provide any ICT service or value-added service without obtaining licence from the Authority.

Paper-and-Pencil Assessments INCLUDING Reading Comprehension Items English/Language Arts (ELA) Directions for Administering the Part 1 ELA Paper Practice Test- Section 1 . If the Mathematics practice test was previously administered, make sure you redistribute the practice test books to the correct students according to their names on the front covers. The passage and questions in this section .