Chapter 6 Partial Differential Equations (PDE)

3y ago
200 Views
14 Downloads
269.58 KB
8 Pages
Last View : 7d ago
Last Download : 3m ago
Upload by : Grant Gall
Transcription

Chapter 6 Partial Differential Equations (PDE)6-1 Classification of Partial Differential EquationsThe first-order linear PDE: a ( x, y ) u u b ( x, y ) f ( x, y )u g ( x, y ) 0 x yThe second-order linear PDE: a ( x, y ) d ( x, y ) 2u 2u 2u b(x,y) c(x,y) x y x 2 y 2 u u e( x, y ) f ( x, y )u g ( x, y ) 0 x y hyperbolic at ( x0 , y 0 ) : ( x0 , y 0 ) b( x0 , y 0 ) 2 4a( x0 , y 0 )c( x0 , y 0 ) 0 elliptic at ( x0 , y 0 ) : ( x0 , y 0 ) 0 parabolic at ( x0 , y 0 ) : ( x0 , y 0 ) 0 𝟐 𝒖 𝟐 𝒖Eg. Which is the type of partial differential equation for 𝟒 𝒙𝟐 𝟑 𝒚𝟐 ? [2018 台大電研] 2 𝑢 2 𝑢(Sol.) 4 𝑥 2 3 𝑦 2 0, 0-4 4 (-3) 48 0, it is hyperbolic.Wave equation:2 2u 2u 2u u2 u 2 ) b Fa(222 t x y z t2 u 2u 2u2 u a ( 2 2 2) a 2 2uHeat equation or Diffusion equation: t x y zLaplace’s and Poisson’s equations: 2u Schrodinger’s equation: i 2 u 2 u 2 u 0 x 2 y 2 z 2 ρ ψ 2 2 ψ Vψ in quantum mechanics.2m t 52

6-2 Separation-of-Variable MethodEg. Solve 2θ 2θ θ θ 2 , θ(x,0) x, θ(0,t) 0, 0 , and 0.2 t t 0 x x 1 x t(Sol.) Let θ ( x, t ) X ( x)T (t ) , X ′′( x)T (t ) X ( x)T ′′(t ) ,X ′′( x) T ′′(t ) λX ( x)T (t ) (2n 1)π (2n 1)πX(0) 0, X’(1) 0 λ , X n C n sin 22 2 x T ′′(t ) (2n 1)π (2n 1)π, T(0) constant, T’(0) 0 Tn d n cos 2T (t )2 2 (2n 1)π θ ( x, t ) An cos 2 n 1 (2n 1)πt sin 2 x (2n 1)πx sin 2 (2n 1)π x An θ ( x,0) x An sin 12 2 ( 2n 1)πn 1 1 sin 21 Eg. Solve 1 t , x dxn 1 8( 1)(2n 1) 2 π 2 x dx 2u 2u u 2 , u(0,t) u(1,t) u(x,0) 0, and sin(πx) .2 t t 0 x t(Sol.) u ( x, t ) X ( x)T (t ) , X ′′( x)T (t ) X ( x)T ′′(t ) ,X ′′( x) T ′′(t ) λ,X ( x)T (t )X(0) 0 X(1) λ -(nπ)2 and X(x) C n sin(nπx),T ′′(t ) -(nπ)2 and T(0) 0, T’(0) constant T(t) d n sin(nπt),T (t ) u ( x, t ) An sin( nπx) sin( nπt ) ,n 1 u ( x, t ) nπAn sin( nπx) cos(nπt ) tn 1 u1 sin(πx) πA 1 1 A 1 1/π but A n 0 for n 1 u ( x, t ) sin(πx) sin(πt ) t t 0π u 2 u, u(x,0) 3sin(2πx), u(0,t) u(1,t) 0, 0 x 1, t 0. t x 2X ′′( x) T ' (t )(Sol.) u ( x, t ) X ( x)T (t ) , X ( x)T ' (t ) X " ( x)T (t ) , λ,X ( x) T (t )Eg. SolveX(0) 0 X(1) λ -(nπ)2 and X(x) C n sin(nπx), T ' (t ) -(nπ)2 and T(0) constantT (t ) T(t) d n e n π t , u ( x, t ) An sin( nπx) e n π222n 12 tand u(x,0) An sin( nπx)n 1u(x,0) 3sin(2πx) A 2 3 but A n 0 for n 2 u(x,t) 3e 4π t sin( 2πx)2 53

2x y y 1 2 , y(x,0) f(x) 0.1 1 2π t x 2Eg. Solve2π 0.2 x,0 x π2, xπ 1 0.2 , x π π 2 and y(x,t) b (t ) sin(nx) . (a) Find the Fourier sine series for f(x) on [0,π]. (b)n 1nFind the ordinary differential equation and the initial condition for b n (t). (c) Findy(x,t). [1990 中央電研] (Sol.) (a) f ( x) a n sinn 1an nπx nπx a n sin( nx) , 2 L 2π , L π , nxLLn 11 π2 πf ( x) sin( nx)dx f ( x) sin( nx)dx π LL 0π2 π 2 0.2 xx 0.8 nπ sin(nx )dx π 0.2 1 sin(nx )dx 2 2 sin π 0 π2 π 2 n π0. 8 nπ sin sin( nx)2 2 2 n 1 n π f ( x) n 1n 1(b) y ( x, t ) bn (t ) sin( nx) , y ( x,0) bn (0) sin( nx) f ( x) n 1n 1 bn′′ (t ) sin( nx) bn (t ) n 2 ( sin( nx)) bn′′ (t ) n 2 bn (t ) 0 is the ordinary differential equation. bn (t ) α n cos(nt ) b n sin( nt ) 0.8 nπ sin()sinnxbn (0) sin( nx) 2 2 2 n 1 n πn 10.8 nπ bn (0) 2 2 sin α n (the initial condition), β n 0nπ 2 y ( x ,0 ) f ( x ) n 1n 1(c) y ( x, t ) bn (t ) sin( nx) α n cos(nt ) sin( nx)0.8 nπ sin cos(nt ) sin( nx) .2 2 2 n 1 n π 54

6-3 Laplace Transform Solutions of Partial Differential EquationsEg. Solve θ θ y , θ(x,0) 0 for x 0, and θ(0,y) y for y 0. [1990 台大化工研] x y(Sol.) Method 1: By Laplace transform 1 L[θ (0, y )] Θ(0, s )s211dΘ ( x , s ) sΘ( x, s ) θ ( x,0) 2 Θ( x, s ) A( s ) e sx 3dxss1 11111 1Θ(0, s ) A( s ) 3 2 A( s ) 2 3 Θ( x, s ) 2 3 e sx 3sssss s sL[θ ( x, y )] θ ( x, y )e sy dy Θ( x, s ) , L[ y ] 01y2 θ ( x, y ) y x ( y x ) 2 u ( y x ) 22 y2 , y x 22 y x 1 ( y x) 2 y , y x 22u vMethod 2: Define u x y and v x-y, x ,2u vy ,2 θ θ u θ v θ θwe have x u x v x u v θ θ u θ v θ θ and y u y v y u vu v θ u v θ θ θ 1 u 2 y 2 ,, θ (u , v) ( uv) C(v) 2 u x y4 2 u41 θ(x,0) 0forx 0 θ(u vu v, 0) 0,22u vandwehave 1 v 2 v 2 ) C (v) 0,4 2θ (y2 1 u 2v2v 2 1for v 0 or x y θ ( uv) (u v) 2 for x y4 2288 8u vu v u v2 θ(0,y) y for y 0 θ( 0,) , u -v and we have222 C(v) 1 v 23v 2for v 0 or x y v 2 ) C (v) -v, C(v) v 4 28θ (( x y) 2v2 y2 1 u 23v 2 1 (u v) 2 -v (y-x)for x y( uv) v 82224 28Note: This partial differential equation cannot be solved by separation of variables. θ 55

Eg. Solve 2u 2u u 2 , u(0,t) u(1,t) u(x,0) 0, and sin(πx) .2 t t 0 x t (Sol.) L[u ( x, t )] u( x, t )e st dt U ( x, s )0d 2U ( x, s ) u s 2U ( x, s ) su( x,0) s 2U ( x, s ) sin(πx )2dx t t 0d 2U ( x, s )sin πx s 2U ( x, s ) sin(πx) U ( x, s ) c1e sx c2 e sx 22s π2dx u (0, t ) 0 U (0, s ) 0 c1 01 u ( x, t ) sin(πx) sin(πt ) π U (1, s ) 0 u (1, t ) 0 c 2 0Eg. Solve(Sol.) u 2 u, u(x,0) 3sin(2πx), u(0,t) u(1,t) 0, 0 x 1, t 0. t x 2 L[u( x, t )] u( x, t )e st dt U ( x, s ) sU ( x, s ) u ( x,0) 0d2U ( x, s )dx 2d23U ( x, s ) sU ( x, s ) 3 sin( 2πx) U ( x, s ) c1e s x c2 e s x sin(2πx )2s 4π 2dxL[u(0, t )] U (0, s ) 0 , L[u(1, t )] U (1, s ) 0 c1 0 , c 2 0U ( x, s ) 23 3 sin( 2πx) 3e 4π t sin( 2πx) sin(2πx ) u ( x, t ) L 1 22s 4π s 4π 56

6-4 Fourier Transform Solutions of Partial Differential Equations2 u 2 uEg. Solve 2 , u(x,0) e x , - x , t 0. [2011 成大電研、2001 台大電研類 t x似題] 2 u ( x, t ) 2(Sol.) ℑ[u ( x, t )] U (ω , t ) , ℑ ω U (ω , t )2 x 2dU (ω , t ) ω 2U (ω , t ) U (ω , t ) Ae ω tdtAccording to ℑ[e a2 2x] πaU (ω ,0) A ℑ[u( x,0)] ℑ[e e x2ω24a2,] π e ω24 A π e Let b2 t 1/4 and according to ℑ 1 [e b ω ] 2 u ( x, t ) ℑ 1 [U (ω , t )] ℑ 1 [ π eEg. Solve ω242e ω24x24b 22b π,e ω t ] π ℑ 1 [e21 ( t )ω 24] e x21 4 t1 4t 2u 2u u ( x,0), u(x,0) 4e-5 x , 9 0 , - x , t 0.22 t t x 2 u ( x, t ) 2(Sol.) ℑ[u ( x, t )] U (ω , t ) , ℑ 9 9ω U (ω , t )2 x d2U (ω , t ) 9ω 2U (ω , t ) U (ω , t ) A cos(3ωt ) B sin(3ωt )2dtdU (ω , t ) -3ωAsin(3ωt) 3ωBcos(3ωt)dt402aAccording to ℑ e a x 2, U (ω ,0) A ℑ[u ( x,0)] ℑ[4e 5 x ] 225 ω 2a ω40 u ( x,0)d cos(3ωt )] U (ω ,0) 0 3ωB B 0, U (ω , t ) 2ℑ[ tdtω 25By ℑ -1[ejaωF(ω)] f(x a) and ℑ -1[e-jaωF(ω)] f(x-a),[]4040e i 3ωt e i 3ωt 1cos(3t)] ω[ℑ ] 2ω 2 25ω 2 252 5 e i 3ωt )] 2ℑ 1 [ 2 (e i 3ωt e i 3ωt )] 2e-5 x-3t 2e-5 x 3t ω 25u(x,t) ℑ 1 [U (ω , t )] ℑ 1 [ ℑ 1 [20 (e i 3ωtω 252 57

6-5 Miscellaneous Methods of Solving Partial Differential Equations2 x u 2Error function: erf ( x) e duπ0Complementary error function: erfc( x) 1 erf ( x)Eg. Solve 𝟐 𝒖 𝟐 𝟐 𝒖 𝟐 𝒖 𝟐 𝟐 𝟎, u(0,y) 0 and u(x,1) x2 .(Sol.) Set u(x,y) f(y mx) and ε y mx m2f”(ε) 2mf”(ε) f”(ε) 0, m2 2m 1 0,m -1, -1 u(x,y) f(y-x) xg(y-x). u(0,y) 0 f(y-0) 0 g(y-0) f(y) f(1-x) 0 and f(y-x) 0u(x,1) x2 f(1-x) xg(1-x) xg(1-x) g(1-x) x, g(x) 1-x g(y-x) 1-y x u(x,y) x (1-y x) 2u u u 2 u . [2015 台大電子所工數 K]2 x y x(Sol.) u ( x, y ) X ( x)Y ( y ) , [ X ′′( x) 2 X ' ( x)] Y ( y ) X ( x) [Y ' ( y ) Y ( y )] ,X ′′( x) 2 X ' ( x) Y ' ( y ) Y ( y ) λ X”(x) 2X’(x)-λX(x) 0 and Y’(y) (1-λ)Y(y) 0X ( x)Y ( y)Eg. SolveX”(x) 2X’(x)-λX(x) 0, r2 2r-λ 0, r -1 1 λ1. If 1 λ 0,1 λ k R, λ k2-1 and r -1 k X(x) Ae(-1 k)x Be(-1-k)x, 1-λ 2-k2,Y’(y) (1-λ)Y(y) 0 Y(y) C’e-(1-λ)y C’ e ( k 2 2 ) y u(x,y) e x 2 y [ C (k )e kx k y dk D(k )e kx k y dk ]20202. If 1 λ 0, λ -1 and r -1, -1 X(x) Ae-x Bxe-x, Y’(y) 2Y(y) 0 Y(y) C’e-2y u(x,y) e x 2 y (C Dx)3. If 1 λ 0,1 λ iω, r -1 iω X(x) Ae-xcos(ωx) Be-xsin(ωx),λ -ω2-1, 1-λ 2 ω2, Y’(y) (2 ω2)Y(y) 0, Y(y) C’ e ( ω 2 2 ) y u(x,y) e x 2 y [ C (ω )e ω y cos(ωx)dω D(ω )e ω y sin(ωx)dω ]020 582

59

52 Chapter 6 Partial Differential Equations (PDE) 6-1 Classification of Partial Differential Equations . The first-order linear PDE: ( , ) ( , ) ( , ) ( , ) 0

Related Documents:

Math 5510/Math 4510 - Partial Differential Equations Ahmed Kaffel, . Text: Richard Haberman: Applied Partial Differential Equations . Introduction to Partial Differential Equations Author: Joseph M. Mahaffy, "426830A jmahaffy@sdsu.edu"526930B Created Date:

Chapter 12 Partial Differential Equations 1. 12.1 Basic Concepts of PDEs 2. Partial Differential Equation A partial differential equation (PDE) is an equation involving one or more partial derivatives of an (unknown) function, call it u, that depends on two or

(iii) introductory differential equations. Familiarity with the following topics is especially desirable: From basic differential equations: separable differential equations and separa-tion of variables; and solving linear, constant-coefficient differential equations using characteristic equations.

Part One: Heir of Ash Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26 Chapter 27 Chapter 28 Chapter 29 Chapter 30 .

3 Ordinary Differential Equations K. Webb MAE 4020/5020 Differential equations can be categorized as either ordinary or partialdifferential equations Ordinarydifferential equations (ODE's) - functions of a single independent variable Partial differential equations (PDE's) - functions of two or more independent variables

The main objective of the thesis is to develop the numerical solution of partial difierential equations, partial integro-difierential equations with a weakly singular kernel, time-fractional partial difierential equations and time-fractional integro partial difierential equations. The numerical solutions of these PDEs have been obtained .

Chapter 1 Introduction 1 1.1 ApplicationsLeading to Differential Equations 1.2 First Order Equations 5 1.3 Direction Fields for First Order Equations 16 Chapter 2 First Order Equations 30 2.1 Linear First Order Equations 30 2.2 Separable Equations 45 2.3 Existence and Uniqueness of Solutionsof Nonlinear Equations 55

Introduction to Advanced Numerical Differential Equation Solving in Mathematica Overview The Mathematica function NDSolve is a general numerical differential equation solver. It can handle a wide range of ordinary differential equations (ODEs) as well as some partial differential equations (PDEs). In a system of ordinary differential equations there can be any number of