Solutions To Exercises From Chapter 2 Of Lawrence C. Evans .

3y ago
74 Views
9 Downloads
255.40 KB
25 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Kian Swinton
Transcription

Solutions to exercises from Chapter 2 ofLawrence C. Evans’ book ‘Partial DifferentialEquations’Sümeyye YilmazBergische Universität WuppertalWuppertal, Germany, 42119February 21, 20161Write down an explicit formula for a function u solving the initialvalue problem)ut b · Du cu 0 in Rn (0, )u g on Rn {t 0}Solution. We use the method of characteristics; consider a solution to thePDE along the direction of the vector (b, 1): z(s) u(x bs, t s). We haveż(s) ut (x bs, t s) b·Du(x bs, t s) cu(x bs, t s) cz(s), thusthe PDE reduces to an ODE. The characteristic curves can be parametrizedby (x0 bs, t0 s); and all the characteristic curves are parallel to each other.Given any (x0 , t0 ) in Rn (0, ), we have u(x0 , t0 ) u(x0 bt0 , 0)e ct0 g(x0 bt0 )e ct0 ; and this is an explicit formula for the solutions to the PDE.1

2Prove that Laplace’s equation u 0 is rotation invariant; that is,if O is an orthogonal n n matrix and we definev(x) : u(Ox)(x Rn ),then v 0.P roof. By chain rule we haveDxi v(x) Σnk 1 Dxk u(Ox)oik ,thenDxi xj v(x) Σnl 1 Σnk 1 Dxk xl u(Ox)oik ojl .Since O is orthogonal, OOT I, that is,(1 if k loik oil 0 if k 6 l.Thus v Σni 1 Σnk 1 Σnl 1 Dxk xl u(Ox)oik oil u 0.3Modify the proof of the mean value formulas to show for n 3 thatˆ111( n 2 n 2 )f dx,u(0) gdS n(n 2)α(n) B(0,r) x r B(0,r)provided u f in B 0 (0, r)u g on B(0, r))P roof. Defineφ(s) : u(y)dS(y) B(x,s)u(x sz)dS(z) B(0,1)2

we shall have0Du(x sz) · zdS(z) φ (s) B(0,1) B(x,s)D(y) B(x,s)s udS(y) νn 2 u(y)dy B(x,s)sny zdS(y)s u(y)dyB(x,s)We have φ(r) φ( ) ˆ rˆ r s0φ (s)ds u(y)dy dsn B(0,s) ˆ r ˆ r ˆ s1 f (y)dy ds f(y)dydsn B(0,s)nα(n)sn 1 B(0,s) ˆ rˆ 1 ˆ r 11 f(y)dyf(y)dyds n(2 n)α(n) sn 2 B(0,s)sn 2 B(0,s) ˆˆ 111 f (y)dy n 2f (y)dy n 2n(n 2)α(n)r B(0,r)B(0, )ˆˆ r 1f (y)dy ds n 2s B(0,s) Now notice that1 n 2andˆ0r1sn 2ˆf (y)dy C 2 ;B(0, )ˆ rˆ f (y)f (y)dy ds dydsn 20 B(0,s) s B(0,s)ˆf (x) dxn 2B(0,r) x ˆAs 0 we haveˆˆ rˆˆ 11f (x)f (y)dy f (y)dy ds dxn 2n 2n 2 sB(0, ) B(0,s)B(0,r) x and φ( ) u(0). We have thus demonstrated3

1u(0) gdS n(n 2)α(n) B(0,r)ˆ(B(0,r)11 n 2 )f dx.n 2 x r4Give a direct proof that if u C 2 (U ) C ( Ū ) is harmonic within abounded open set U , then maxŪ u max U u.P roof. Define u : u x 2 . Suppose u is achieveing maximum in Ūat an interior point x0 , then D(u (x0 )) 0 and H Dij (u (x0 )) is negativedefinite. Yet, (u ) 2 0, a contradiction, as the Laplacian is the traceof the Hessian. Letting 0, we can conclude that u cannot attain aninterior maximum.5We say v C 2 (Ū ) is subharmonic if v 0 in U.(a) Prove for subharmonicvdy for all B(x, r) U.v(x) B(x,r)(b) Prove that therefore maxŪ v max U v.(c) Let φ : R 7 R be smooth and convex. Assume u is harmonicand v : φ(u). Prove v is subharmonic.(d) Prove v : Du 2 is subharmonic, whenever u is harmonic.Solution. (a) We setf (r) : u(y)dS(y) B(x,r)u(x rz)dS(z). B(0,1)4

Taking derivative we have0Du(x rz) · zdS(z)f (r) B(0,1)and consequently using Green’s formula we havey x0Du(y) ·dS(z)f (r) r B(0,1) u dS(y) B(x,r) νr u(y)dy 0 n B(x,r)This means that f (r) is non-decreasing, therefore given r 0u(x) limf (t) limt 0t 0 u(y)dS(y) B(x,t)u(y)dS(y) B(x,r)And this impliesˆrˆn u(y)dS(y) dsα(n)r u(x) 0 B(x,s)u(x) u(y)dyB(x,r)0(b) Assume the subharmonic function v attainsffl maximum at x0 U , forany ball B(x0 , r) U0 we have by (a) v(x0 ) B(x0 ,r) v(y)dy. Yet, v(x0 ) fflv(y) for any y B(x0 , r), thus v(x0 ) B(x0 ,r) v(y)dy, and v(x0 ) v(y) forany y B(x0 , r). We can choose r so that Ū B(x0 , r) {x1 }. We havethus shown that maxv maxv.x Ūx U00(c) As φ is convex and smooth, φ 0; and u 0. HencenX000 φ(u) (φ · (uxi )2 φ · uxi xi ) 0,i 1we can conclude that φ(u) is subharmonic.(d) If u is harmonic then u 0, thus uxi ( u)xi 0, hence Du isharmonic. Since Du 2 is convex with respect to Du, the result follows from(c).5

6Let U be a bounded open subset of Rn . Prove that there exists aconstant C, depending only on U, such thatmax u C(max g max f ) UŪŪwhere u is a smooth solution of( u f in Uu g on U.(Hint: (u x 2λ)2n 0, for λ : maxŪ f .)Solution. We consider the function v(x) : u(x) maxŪ f . Indeed v is a subharmonic function since v u x 2λ,2nwhere λ x 2 λ (f max f ) 0.2nŪThe weak maximum principle holds for subharmonic functionsmax u max v max vŪŪ2 max u U U2 x x λ max u maxλ max g C max f U U 2n U2nŪwhere C is some constant depending on U.Replacing u by u, we can conclude that there exists some constant Cdepending on U, such that max u C max g max f .Ū UŪ7Use Poisson’s formula for the ball to provern 2r x r x u(0) u(x) rn 2u(0)n 1(r x )(r x )n 16

whenever u is positive and harmonic in B 0 (0, r). This is an explicitform of Harnack’s inequality.Solution. We recall Poisson’s formula for a ballˆg(y)r2 x 2dS(y)u(x) nω(n)r B(0,r) x y ng(y) rn 2 (r2 x 2 )dS(y),n B(0,r) x y therefore,u(0)u(0)n 2 22 u(x) r(r x ),(r x )n(r x )nr x r x n 2rn 2u(0) u(x) ru(0).(r x )n 1(r x )n 1rn 2 (r2 x 2 )8Prove Theorem 15 in section 2.2.4. (Hint: Sinceu 1 solves (44) for g 1, the theory automatically implies B(0,1) K(x, y)dS(y) 1for each x B 0 (0, 1).)Let’s recall theorem 15 in section 2.2.4. (Poisson’s formula for a ball)Assume g C( B(0, r)) and define u byˆg(y)r2 x 2dS.u(x) nα(n)r B(0,r) x y nThen(i) u C (B 0 (0, r))(ii) u 0 in B(0, r), and(iii) limx x0 u(x) g(x0 ) for each point x0 B(0, r).x B 0 (0,r)P roof. (1) For each fixed x, the mapping y 7 G(x, y) is harmonic, exceptfor x y. As G(x, y) G(y, x), x 7 G(x, y) is harmonic, except for x y. G(x, y) K(x, y) for x, y B 0 (0, r).Thus x 7 yn7

(2) Note that we haver2 x 21 nα(n)rˆ B(0,r)1dS x y nfor x B 0 (0, r). And as g is bounded, u is likewise bounded. Since x 7 K(x, y) is smooth, for x 6 y, we can verify that u C (B 0 (0, r)) withˆ u(x) x K(x, y)g(y)dS 0 B(0,r).(3) Now fix x0 B(0, r), 0. Choose δ 0 such that g(y) g(x0 ) if y x0 δ, y B(0, r). Then if x x0 2δ , x B 0 (0, r),ˆ0 u(x) g(x ) K(x, y)[g(x) g(x0 )]dy B(0,r)ˆ K(x, y)[g(x) g(x0 )]dy B(0,r) B(x0 ,δ)ˆK(x, y)[g(x) g(x0 )]dy : I J B(0,r)/B(x0 ,δ) We have I B(0,r) K(x, y)dy . Furthermore if x x0 2δ and y x0 δ, we have y x0 y x 2δ y x 12 y x0 . Hence1 y x y x0 .2ThusˆJ 2kgkL K(x, y)dy B(0,r)/B(x0 ,δ)2n 1 (r2 x 2 )kgkL nα(n)rˆ y x0 n dy 0 B(0,r)/B(x0 ,δ) as x x0 .Combining this two estimates we can conclude that limx x0 u(x) g(x0 )x B 0 (0,r)0for each point x B(0, r).8

9( u 0 in Rn given by Poisson’s formulau g on Rn for the half-space. Assume g is bounded and g(x) x for x Rn , x 1. Show Du is not bounded near x 0. (Hint: Estimateu(λen ) u(0).)λLet u be the solution ofSolution. We recall Poisson’s formula for the half-spaceˆ2xng(y)dS(y).u(x) nα(n) Rn x y nNotice that u(0) g(0) 0; following the hint we estimate u(λenλ) u(0) :ˆ 1 2en y pu(λen ) u(0) n dS(y).λnα(n) Rn (λ2 y 2 )We consider the integral2ennα(n)ˆ Rn { y 1} y p n dS(y)(λ2 y 2 )ˆ1 (n 1)α(n 1)0ˆ1 (n 1)α(n 1)0r n rn 2 drλ2 r 21r (λ/r)2 1 n/2 drthus the integral diverges. Hence lim u(λenλ) u(0) cannot be bounded, whichλ 0implies Du · en is unbounded at 0. Therefore Du is unbounded at 0.10(Reflection principle)(a) Let U denote the open half-ball {x Rn x 1, xn 0}.Assume u C 2 (U ) is harmonic in U , with u 0 on U xn 0.Set(u(x) if xn 0v(x) : u(x1 , ., xn 1 , xn ) if xn 09

for x U B 0 (0, 1). Prove v C 2 (U ) and thus v is harmonic withinU.(b) Now assume only that u C 2 (U ) C(U ). Show that v isharmonic within U. (Hint: Use Poisson’s formula for the ball.)Solution. (a) Apparently v(x) is of class C 2 in each of U and U : B(0, 1)/U . We can check that for i 6 nlim xi xn v(x1 , x2 , ., xn ) xi xn v(x1 , x2 , ., 0)xn 0 xi xn u(x1 , x2 , ., 0) lim xi xn v(x1 , x2 , ., xn );xn 0while xn xn v(x1 , x2 , ., 0) 0, and all other derivatives which do not involvexn vanishes. So we can assure that D2 v exists and is continuous in U .Since v(x) u(x) in U and v(x) u(x1 , x2 , ., xn ) if xn 0. Andwe have already known that u is harmonic in U . Given any x with xn 0,we have v(x) satisfies a local version of mean value theoremv(x) v(y)dy B(x,δ)for small enough δ 0. The local mean value property is equivalent toharmonicity. Finally, if xn 0, we also havev(y)dy 0v(y)dy v(x) B (x,δ) B (x,δ)since v(x) v(x1 , x2 , ., xn ). We therefore can conclude that v(x) is aharmonic function in U .(b) Now assume that u is merely continuous on the boundary, we wouldlike to find a harmonic function w such that w v on B(0, 1) by thePoisson’s formula for the ballˆr2 x 2v(y)w(x) dS(y),nα(n)r B(0,1) x y nwe shall see that w(x) 0 on xn 0. Therefore, w u on U and by themaximum principle we have u w 0 throughout U . So w v in U andwe can similarly show w v in U . Therefore, v is harmonic within U.10

11(Kelvin transform for Laplace’s equation) The Kelvin transf ormKu ū of a function u : Rn R isu(x) : u(x̄) x̄ n 2 u(x/ x 2 ) x 2 n , (x 6 0),where x̄ x/ x 2 . Show that if u is harmonic, then so is ū. (Hint:First show that Dx x̄(Dx x̄)T x 4 I. The mapping x x̄ is conf ormal,meaning angle preserving.)P roof. We denote ψ(x) x̄, and computeδij2xi xj jψ (x) 2 , xi x x 4where δij is Kronecker’s delta symbol. We write Dx x̄ in coordinate freeexpression:xxTDx x̄ x 2 (I 2 2 ), x thus Dx x̄(Dx x̄)T x 4 (I 4 x 2 xxT 4 x 4 xxT xxT ) x 4 I.We now calculate ψ; since careful computations shall show thatψxj i xi 2 x 4 (xj 2δij xi ) 8 x 6 x2i xj .Thus, ψ n(2 n) x x4 .Hence T u(x/ x 2 ) x 2 n x 2 n u(x̄) 2DuDx̄ D x 2 n x 2 n Du · x̄ x 2 n Tr (Dx̄)T D2 uDx̄ .Note that the firstis 0 for x 6 0; and the last term is also 0 as termT 2 4Tr (Dx̄) D uDx̄ x u 0. While we havexxT ) (2 n) x n x x 2 2(n 2) x 2 n Du · x x 2 n Du · x̄.2DuDx̄ D x 2 n T 2Du x 2 (I 2Therefore the Kelvin transform preserves harmonic functions.11

12Suppose u is smooth and solves ut u 0 in Rn (0, ).(a) Show uλ (x, t) : u(λx, λ2 t) also solves the heat equation foreach λ R.(b) Use (a) to show v(x, t) : x · Du(x, t) 2tut (x, t) solves the heatequation as well.P roof. (a) We compute to show that the dilation of u also satisfies theheat equation, since uλ (x, t) u(λx, λ2 t) λ2 ut t tand 2uλ (x, t) λ2 uxi xi . x2iWe see that uλ solves the heat equation.(b) Differentiating uλ with respect to λ we shall have uλ x · Du(λx, λ2 t) 2tλut (λx, λ2 t). λNow let λ 1 we then see that uλ x · Du(x, t) 2tut (x, t) v(x, t). λSince u is smooth, the mixed partials are equal under exchanges of orders ofdifferentiation. And uλ solves the heat equation, that is(uλ )t (uλ ) 0.We differentiate both sides with respect to λ and conclude that v(x, t) is alsoa solution to the heat equation.13Assume n 1 and u(x, t) v( xt ).000(a) Show ut uxx if and only if v z2 v 0. Show that the generalsolution is12

ˆze sv(z) c2 /4ds d.0 v( xt )(b) Differentiate u(x, t) with respect to x and select theconstant c properly to obtain the fundamental solution Φ for n 1.Explain why this procedure produces the fundamental solution.(Hint: What is the initial condition for u?)3000Solution. (a) Differentiate v we have ut 12 xt 2 v and uxx 1t v . By the000xv 0. Vice versa, if v satisfies the ODE thenheat equation we get v 2 tz20 0u solves the heat equation. We solve the ODE, notice that (e 4 v(z) ) 0,then the solution shall beˆ z2e s /4 ds d.v(z) c0(b) The initial condition is the δ distribution. Differentiate u(x, t) v(z)x2with respect to x we have ux (x, t) ct e 4t , which should also be a solutionto the heat equation. Since the integral of δ function is 1,ˆ s2e 4 ds 2c π,1 c we must have c for n 1.1 ,2 π2thus Φ(x, t) x 1 e 4t4πtis the fundamental solution14Write down an explicit formula for a solution of(ut u cu f in Rn (0, )u g on Rn {t 0}where c R.Solution. First we consider the homogeneous equation with initial boundary data(vt v cv 0 in Rn (0, )v h on Rn {t 0}13

We take the Fourier transform with respect to the spacial variable andthe equation shall become an ODE(vbt ξ 2 vb cbv 0 in Rn (0, )vb bh on Rn {t 0}Solving the ODE- vb e ( ξ transform we have2 c)te ctv(x, t) (4πt)n/2d then taking the inverse Fourierh(ξ),ˆe (x y)24th(y)dy.RnBy Duhamel’s principle we conclude that the solution to the non-homogeneousproblem isˆ(x y)2e ct 4teg(y)dyu(x, t) (4πt)n/2 Rnˆ tˆ(x y)2e c(t s) 4(t s) ef (y, s)dyds.n/20 (4π(t s))Rn15Given g : [0, ) R, with g(0) 0, derive the formulaˆ t x2x14(t s) g(s)dsu(x, t) e4π 0 (t s)3/2for a solution of the initial/boundary value problem ut uxx 0 in R (0, )u 0 on R {t 0} u g on {x 0} [0, )(Hint: Let v(x, t) : u(x, t) g(t) and extend v to {x 0} by oddreflection.)14

Solution. We follow the hint and extend our function v(x, t) : u(x, t) g(t) by odd extension to {x 0} : v(x, t) : g(t) u( x, t). Then ourproblem becomes vt vxx gt in R (0, )vt vxx gt in R (0, ) v 0 on R {t 0}Apply the formula for the solution to the heat equation we haveˆ v(x, t) Φ(x y, t)0dy ˆ tˆ 0 Φ(x y, t s)g (s)dydsˆ 0t ˆ 000 Φ(x y, t s)g (s)dyds0 ˆ tˆ ˆ tˆ 000 Φ(x y, t s)g (s)dyds Φ(x y, t s)g (s)dyds000 ˆ tˆ 0ˆ tˆ 00Φ(x y, t s)g (s)dydsΦ(x y, t s)g (s)dyds 2 0 0 ˆ tˆ tˆ 000g (s)ds 2Φ(x y, t s)g (s)dyds 0We denote h(s) : ˆ0 0 0h(s) Φ(x y, t s)dy and z : (x y) and compute4(t s)(x y)21e 4(t s)dy 1/2(4π(t s))πˆ 2e z dz x4(t s)x2x 4(t s)e;h0 (s) 3/24 π(t s)and continueˆ t t0v(x, t) g(t) 2 h(s)g(s) 0 2g(s)h (s)ds0ˆ t2 xx14(t s) g(s)ds. g(t) e4π 0 (t s)3/215

Therefore we havexu(x, t) v(x, t) g(t) 4πˆ0t x214(t s) g(s)ds.e(t s)3/216Give a direct proof that if U is bounded and u C12 (UT ) C(ŪT ) solvesthe heat equation, then maxu maxu. (Hint: Define u : u t forŪTΓ̄T 0, and show u cannot attain its maximum over ŪT at a pointin UT .)P roof. We denote UT : U (0, T ] and ΓT : Ū {0} ( U [0, T ]).Claim: if u ut 0 in UT , then maxu maxu.ŪTΓTFirst we consider the case where u ut 0. For any (0, T ) exsists a point (x0 , t0 ) UT such that u(x0 , t0 ) maxŪT u(x, t) since u iscontinuous and U T is compact. If (x0 , t0 ) UT by derivative tests wehave u(x0 , t0 ) 0, ut (x0 , t0 ) 0 and u(x0 , t0 ) 0, a contradiction to u ut 0. Hence we must have (x0 , t0 ) ΓT . Letting 0 we havemaxu maxu.ŪTΓTNow we consider the case where u ut 0. For 0, we define afunction u (x, t) : u(x, t) t, notice that u u ut (ut ) (u )t .So we have by our previous reasoning that maxu maxu . Letting 0,ŪTΓTwe have the desired conclusion.17We say v C12 (UT ) is a subsolution of the heat equation ifvt v 0in UT .16

(a) Prove for a subsolution v that x y 21v(y, s)v(x, t) ndyds4r(t s)2E(x,t;r)for all E(x, t; r) UT .(b) Prove that therefore maxŪT v maxΓT v.(c) Let φ : R R be smooth and convex. Assume u solves theheat equation and v : φ(u). Prove v is a subsolution.(d) Prove v : Du 2 u2t is a subsolution, whenever u solves theheat equation.P roof. (a) Without loss of generality, we shift (x, t) to (0, 0), and uponmollifying if necessary, we assume that u is smooth. We write E(r) E(0, 0, ; r). We define the function y2y21u(ry, r2 s) 2 dyds.u(y, s) 2 dyds φ(r) : n4rssE(1)E(r)We shall use an identity: y 2dydsE(1) s 2 0φ (r) 1rn 1 nXE(1) i 1nX0 4. We calculate φ (r) :uyi yi y 2 y 2 2rudydsss2suyi yi y 2 y 2 2rudydsss2sE(r) i 1 : A B2Also, let us introduce a function ψ : n2 log( 4πs) y n log r and since4s nΦ(y, s) r on E(r) we have ψ 0 on E(r). We utilize the formulato write nX1B n 14usyi ψyi dydsrE(r)i 1 nX1 n 14nus ψ 4usyi yi ψdyds;rE(r)i 117

due to integral by parts and the fact that ψ 0 on E(r). Integrating byparts with respect to s, we discoverB rn 1 1 4nus ψ 4E(r)E(r)rn 1nXuyi yi ψs dydsuyi yi i 1 1nXi 1 4nus ψ 4rn 1 1 y 2 n 2 dyds2s 4sn2n Xuy yi dyds A. 4nus ψ s i 1 iE(r)Consequently since ut u 0,01φ (r) A B n2n X n 1 4n uψ uy yi dydsrs i 1 iE(r) nX12n 4nuψ uyi yi dyds 0yyiin 1rsE(r)i 1Hence φ(r) is non-decreasing; and therefore 1y2φ(r) nu(y, s) 2 dyds 4rsE(r) 1 y 2 limφ(t) u(0, 0) lim ndyds 4u(0, 0).2t 0t 0 tE(t) sAs1tn E(t) y 2dyds s2 E(1) y 2dyds.s2(b) Suppose that there exists some point (x0 , t0 ) UT such that u(x0 , t0 ) M : maxu. Then for sufficiently small r 0 we have E(x0 , t0 ; r) UT ; andŪTwe have1M u(x0 , t0 ) n4r u(y, s)E(x0 ,t0 ;r)18 x0 y 2dyds M(t0 s)2

since14rn E(x0 ,t0 ;r) x0 y 2dyds 1.(t0 s)2We shall have for all (y, s) E(x0 , t0 ; r), u(y, s) u(x0 , t0 ).Draw any line segment L in UT connecting (x0 , t0 ) with some other point(y0 , s0 ) UT with s0 t0 . Considerr0 : min{s s0 u(x, t) M for all points (x, t) L, s t t0 }.Since u is continuous, the minimum is attained. Assume r0 s0 . Thenu(z0 , r0 ) M for some point (z0 , r0 ) on L UT and so u M on E(z0 , r0 ; r)for sufficiently small r. Since E(z0 , r0 ; r) contains L {r0 σ t r0 } forsome small σ 0, we have a contradiction. Thus r0 s0 and hence u Mon L.(c) A direct computation shall show that000 t (φ(u)) (φ(u)) φ (ut u) φ Du 2 .00As φ is convex, we have φ 0. Thus t (φ(u)) (φ(u)) 0.(d) If u solves the heat equation, then ut and Du each solves the heatequation; by part (c), (ut )2 and Du 2 are two subsolutions. Since the heatequation is linear, we simply apply superposition principle to conclude.18(Stoke’s rule) Assume u solves the initial value problem(utt u 0 in Rn (0, )u 0, ut h on Rn {t 0}Show that v : ut solves(vtt v 0 in Rn (0, )v h, vt 0 on Rn {t 0}This is Stoke0 s rule.19

Solution. Suppose that u solves(utt u 0 in Rn (0, )u 0, ut h on Rn {t 0},we differentiate the wave equation with respect to time and we haveutt ut 0, that is, vtt v 0,where v : ut .On Rn {t 0} since u 0 so u 0, therefore vt utt u 0.Hence v : ut solves the initial value problem(vtt v 0 in Rn (0, )v h, vt 0 on Rn {t 0}.19(a) Show the general solution of the PDE uxy 0 isu(x, y) F (x) G(y)for arbitrary functions F, G.(b) Using the change of variables ξ x t, η x t, show utt u 0 if and only if uξη 0.(c) Use (a) and (b) to derive D’Alembert’s formula.(d) Under what conditions on the initial data g, h is the solutionu a right-moving wave? A left-moving wave?Solution. (a) It is obvious by integrating with respect to x and y., ξ η), differentiate we get uξη 14 ( u utt ).(b) Since u(x, t) u( ξ η22Hence uξη 0 iff u solves the wave equation.(c) The general solution is given by u F (ξ) G(η) F (x t) G(x t).00From the initial condition we have F (x) G(x) g(x) and F (x) G (x) h(x). xIntegrating the second theequation F (x) G(x) 0 h(y)dy,then xx11F (x) 2 g(x) 0 h(y)dy and G(x) 2 g(x) 0 h(y)dy . We thenarrive at D’Alembert’s formulaˆ 1 x t1u(x, t) g(x t) g(x t) h(y)dy.22 x t20

z(d) If F (z) g(z) 0 h(y)dy 0, the solution is a right-moving wave;zif G(x) g(z) 0 h(y)dy 0, the wave is moving towards the left.20Assume that for some attenuation function

Solutions to exercises from Chapter 2 of Lawrence C. Evans’ book ‘Partial Di erential Equations’ Sumeyy e Yilmaz Bergische Universit at Wuppertal Wuppertal, Germany, 42119 February 21, 2016 1 Write down an explicit formula for a function usolving the initial value problem u t bDu cu 0 in Rn (0;1) u gon Rnf t 0g)

Related Documents:

Part One: Heir of Ash Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26 Chapter 27 Chapter 28 Chapter 29 Chapter 30 .

TO KILL A MOCKINGBIRD. Contents Dedication Epigraph Part One Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Part Two Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18. Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26

DEDICATION PART ONE Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 PART TWO Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 .

piano exercises czerny, czerny piano exercises imslp, carl czerny 101 exercises piano pdf, carl czerny 101 exercises piano, czerny hanon piano exercises, czerny piano exercises youtube May 4, 2020 — I always teach Hanon, since it exercises all five fingers equally, and I

18.4 35 18.5 35 I Solutions to Applying the Concepts Questions II Answers to End-of-chapter Conceptual Questions Chapter 1 37 Chapter 2 38 Chapter 3 39 Chapter 4 40 Chapter 5 43 Chapter 6 45 Chapter 7 46 Chapter 8 47 Chapter 9 50 Chapter 10 52 Chapter 11 55 Chapter 12 56 Chapter 13 57 Chapter 14 61 Chapter 15 62 Chapter 16 63 Chapter 17 65 .

About the husband’s secret. Dedication Epigraph Pandora Monday Chapter One Chapter Two Chapter Three Chapter Four Chapter Five Tuesday Chapter Six Chapter Seven. Chapter Eight Chapter Nine Chapter Ten Chapter Eleven Chapter Twelve Chapter Thirteen Chapter Fourteen Chapter Fifteen Chapter Sixteen Chapter Seventeen Chapter Eighteen

HUNTER. Special thanks to Kate Cary. Contents Cover Title Page Prologue Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 . Within was a room as familiar to her as her home back in Oparium. A large desk was situated i