Asphalt 101:An Introduction toHot Mix AsphaltMaterials-Part IAsphalt andModified Asphalts1
Asphalt 101:An Introduction toHot Mix AsphaltMaterials-Part IAsphalt andModified AsphaltsScott ShulerCSU1
2
Glue:Scott ShulerSticky Glue:Marshall Shackelford2
Why Study Asphalt?3
Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)3
Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)100,000ConcreteEarthGravelAsphalt3
Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)100,000Concrete400,000EarthGravelAsphalt3
Why Study Asphalt?of all the ROADS IN THE U. S. lAsphalt3
Why Study Asphalt?2,200,000of all the ROADS IN THE U. S. velAsphalt95%3
Why Study Asphalt?4
Why Study Asphalt? Highway Expenditures in 2008– 140 Billion4
Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion4
Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion Employment– 300,000 directly– 600,000 additionally4
Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion Employment– 300,000 directly– 600,000 additionally Asphalt is Largely Empirical– “Old Timers” Retiring4
What Are Asphalt Pavements ?5
What Are Asphalt Pavements ? Rocks Glued Together With Asphalt5
What Are Asphalt Pavements ? Rocks Glued Together With Asphalt5
What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumenRocksAbout 86%5
What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumennRocksAbout 86%Asphalt About 10%5
What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumennRocksAbout 86%Asphalt About 10%nAir4%5
Let’s Consider the Glue6
Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC6
Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC6
Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC6
Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC– Bible References Noah’s Arc Waterproofed with “Pitch” Genesis 6:14.20Moses’ Basket Coated with “Bitumen” and “Pitch” Exodus 2:3.246
Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC– Bible References Noah’s Arc Waterproofed with “Pitch” Genesis 6:14.20Moses’ Basket Coated with “Bitumen” and “Pitch” Exodus 2:3.24– Roman Buildings Waterproofed and Cemented Romans called the source Lacus Asphaltites6
So It Will Work!7
So It Will Work!7
So It Will Work!7
So It Will Work!7
Reed Boat, aka Gufa8
9
Bitumen9
BitumenAsphaltsTars9
BitumenTarsAsphaltsNaturalPetroleumCoal9
Asphalts10
AsphaltsNaturalPetroleum10
AsphaltsNaturalPetroleumLake10
AsphaltsNaturalPetroleumTrinidadLake10
AsphaltsNaturalPetroleumTrinidadLa BreaLake10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeRock10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRock10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTX10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXAB10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXABAsphaltites10
AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXABAsphaltitesUT-Gilsonite10
AsphaltsNaturalPetroleumTrinidadLa onite10
AsphaltsNaturalPetroleumTrinidadLa sphaltitesUT-Gilsonite10
Crude Oil Variations11
Crude Oil VariationsVenezuelanNigerian Light11
Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%11
Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Kerosene20%11
Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Gas Oil 33%Kerosene20%Gas Oil 46%11
Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Gas Oil 33%Residuum58%Kerosene20%Gas Oil 46%Residuum 1%11
Refining Methods12
Refining Methods Distillation– Atmospheric– Vacuum12
Refining Methods Distillation– Atmospheric– Vacuum Solvent Deasphalting– Propane and Butane Extraction of Lube Oils– Result is Very Hard Precipitate AC12
Refining Methods Distillation– Atmospheric– Vacuum Solvent Deasphalting– Propane and Butane Extraction of Lube Oils– Result is Very Hard Precipitate AC Solvent Extraction (ROSE)– Separates AC into Asphaltenes/Resins/Oils– Result is Blended to Produce Spec AC12
Petroleum Asphalts13
Petroleum AsphaltsOil Well13
Petroleum AsphaltsOil WellCrudeStorage13
Petroleum AsphaltsOil WellAtmos StillCrudeStorage60-700F13
Petroleum AsphaltsOil WellCondenserAtmos StillCrudeStorage60-700F13
Petroleum Asphalts60-325FOil WellCrudeStorageCondenserAtmos Still325-500FGasolineKerosene60-700F13
Petroleum Asphalts60-325FOil WellCrudeStorageCondenserAtmos Still325-500FGasolineKerosene60-700F13
Petroleum Asphalts60-325FOil WellCrudeStorageVacuum StillCondenserAtmos Still325-500FGasolineKerosene60-700F13
Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850F650-1050F13
Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850FAsphaltCements650-1050F13
Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850FH 2OEmulsionsAsphaltCements650-1050F13
Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850F650-1050FH 2OAsphaltCementsEmulsionsGaKe s/roCutbacks13
Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas OilVacuum StillAsphaltCementsr650-1050FH 2OEmulsionsGaKe s/roAi60-700FCondenserAtmos Still650-850FRoofingAsphaltsCutbacks13
Asphalt Types14
Asphalt Types Asphalt Cement14
Asphalt TypesAsphalt Cement Liquid Asphalts – Emulsified Asphalts– Cutback Asphalts14
Behavior of Asphalt Cements15
Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures15
Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures15
Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures Silly Putty is Viscoelastic– Pull it Slowly- It stretches – same as high temperature15
Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures Silly Putty is Viscoelastic– Pull it Slowly- It stretches – same as high temperature– Pull it Rapidly – It breaks – same as low temperature15
Asphalt Performance dependson Environment and Traffic16
Asphalt Performance dependson Environment and Traffic16
17
17Hot Behavior
Hot BehaviorWeak Behavior17
Hot BehaviorWeak BehaviorCold Behavior17
Temperature Effects18
Temperature Effects1 Hour100 F18
Temperature Effects1 Hour100 F30 F18
Temperature Effects1 Hour100 F10 Hours30 F18
Temperature Effects1 Hour100 F10 Hours30 F18
Material Effects19
Material Effects1 Hour30 F19
Material Effects1 Hour30 FHard AsphaltSofter Asphalt19
20
Achieving20
SUPERPAVETo The Rescue !20
SUPERPAVETo The Rescue !20
SPECIFYING PERFORMANCEBased on Climate21
SPECIFYING PERFORMANCEBased on ClimatePG 64 - 2221
SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGrade21
SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGradeAverage 7-day maxpavement temperature, C21
SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGradeMin pavementtemperature, CAverage 7-day maxpavement temperature, C21
Tests in PG meterRotationalViscometer22
)Courtesy of FHWAPermanent Deformation (Caused by Warm Weather, Traffic and Wrong Mixture23
High Temperature or,Slow Loading Behavior, aka Rutting High Pavement Temperature– Desert climates– Summer temperatures Sustained loads– Slow moving trucks– Intersections24
High Temperature or,Slow Loading Behavior, aka Rutting High Pavement Temperature– Desert climates– Summer temperatures 1 Hour100 FSustained loads– Slow moving trucks– Intersections24
Thermal CrackingCourtesy of FHWACaused by Low Temperatures, Rapid Loads, Hard Binder25
Low Temperature,or Fast Loading Behavior-aka Cracking26
Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter26
Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter Rapid Loads– Fast moving trucks26
Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter Rapid Loads– Fast moving trucksσε26
Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter CrackingFailureRapid Loads– Fast moving trucksσε26
Aging Asphalt reacts with oxygen– Becomes harder, more brittle– More Elastic, Less Viscous Short term– During Mixing with Aggregates (280F-330F) Long term– In Pavement– Air, Water, Sun27
Asphalt Plant and Construction Aging Rolling Thin Film Oven (RTFO)FanRotatingBottleCarriageBlowing Air28
Pressure Aging VesselPressure AgingVessel29
Pressure Aging Vessel50 grams of Asphalt inEach PanPressure AgingVessel29
Pressure Aging VesselCourtesy of FHWA30
Rutting, Hardening and FatigueDSRBBRRV31
1 cycle32
Fixed Lower Plate1 cycle32
Oscillating Upper PlateFixed Lower Plate1 cycle32
Oscillating Upper PlateBCAFixed Lower Plate1 cycle32
Asphalt Glued InBetweenOscillating Upper PlateBCAFixed Lower Plate1 cycle32
Asphalt Glued InBetweenOscillating Upper PlateBCAFixed Lower PlateTime1 cycle32
Asphalt Glued InBetweenOscillating Upper PlateBCFixed Lower PlateABAAATimeC1 cycle32
Asphalt Glued InBetweenOscillating Upper PlateBCFixed Lower PlateABAAANow, Measure theForce Required toRotate the UpperPlateAnd, Measure WhenMovement Occurs inthe BinderTimeC1 cycle32
33
ElasticTime33
ElasticBStressStrainAAATimeCStrain Occurs With Stressδ 0o33
ElasticViscousBStressStrainAAATimeCStrain Occurs With Stressδ 0o33
ElasticViscousBBStressStrainAAACTimeAAACStrain Occurs With Stressδ 0o33
ElasticViscousBBStressStrainAAACStrain Occurs With Stressδ 0oTimeAAACStrain Lags Stressδ 90o33
δ34
δElastic, G’34
Viscous, G”δElastic, G’34
Viscous, G”CMxlepomodsulu*G,δElastic, G’Complex Modulus isthe vector sum ofElastic and Viscous Components34
Controlling RuttingHeavy Trucks Early part ofpavement life35
Controlling RuttingAddressed by:G*/sin δ on Unaged binder 1.00 kPaG*/sin δ on Lab Aged binder 2.20 kPaHeavy Trucks Early part ofpavement life35
Fatigue Cracking36
Caused by repeated traffic loads in wheel pathsFatigue Cracking36
Fatigue Cracking Addressed by intermediatetemperature stiffness– G*sin δ on RTFO & PAVaged binder 5000 kPa Later part ofpavement service life37
ThermalCrackingRVDSRBBR38
Bending Beam RheometerDeflection TransducerComputerLoad CellFluid Bath39
BBR Measures Stiffness at LowTemperatures using Beam Theory40
BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness att 60 secsS(t) PL34 bh3 δ (t)40
BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramst 60 secsS(t) PL34 bh3 δ (t)40
BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)40
BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)Beam Width, 12.5 mmBeam Thickness, 6.25 mm40
BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)Deflection at t 60 secsBeam Width, 12.5 mmBeam Thickness, 6.25 mm40
Bending Beam Rheometer41
Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope 41
Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041
Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041
Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041
Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041
Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope Log CreepStiffness, S(t)m8153060120Log Loading Time, t (sec)24041
Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope Log CreepStiffness, S(t)m8153060120Log Loading Time, t (sec)24041
Thermal Cracking Question: How Much Should the AsphaltBe Able to Stretch before Breaking?42
Thermal Cracking Question: How Much Should the AsphaltBe Able to Stretch before Breaking?Answer: at least 1%How: Find the Temperature Where theAsphalt Can Stretch 1% or More42
Direct Tension TestΔ Le43
Direct Tension TestΔ Le43
Direct Tension TestLoadΔLΔ Le43
Direct Tension TestLoadΔLσfΔ LeStrainεf43
Direct Tension TestLoadΔLσfΔ LeStrainεf43
Direct Tension TestLoadStress σ P / AΔLσfΔ LeStrainεf43
But Will it Flow for Mixing ometerBendingBeamRheometer44
Rotational Viscometer(Brookfield)Torque MotorInner CylinderThermoselEnvironmentalChamberDigital TemperatureController45
Spec Requirements Make Sure It’s Not Too Thick– Keep Viscosity Below 3 Pa-sec at 275F (135C)46
47
Why Study Asphalt? Highway Expenditures in 2008 – 140 Billion Hot Mix Asphalt Placed Annually – 500 Million Tons – 10.5 Billion Employment – 300,000 directly – 600,000 additionally Asphalt is Largely Empirical – “Old Timers” Retiring
Pavement Performance, yrs. Ohio High/Low Asphalt 16 Low Composite 11 High Composite 7 North Carolina ---- Concrete 6 –10 Ontario High Asphalt 8 Illinois Low Asphalt 7 –10 New York ---- Asphalt 5 –8 Indiana Low Asphalt 9 –11 Austria High/Low Asphalt 10 High Concrete 8 Georgia Low Asphalt 10
that the asphalt plant be calibrated as specified in AASHTO M-156. Airport Specification 401-4.2 requires the asphalt plant to conform to ASTM D 995. The Asphalt Institute's Manuals MS-3 Asphalt Plant Manual and MS-22 Principles of Construction of Hot-Mix Asphalt Pavements contain much more information on asphalt plants. Batch Plants
Asphalt Terminology Recycled Asphalt Pavement (RAP): Old asphalt pavement that is incorporated into new asphalt mix. Replacement Binder–recycled asphalt binder from RAS or RAP that is replacing some of the virgin binder in HMA. Performance Grade Asphalt Binderis specified based on performance within a temperature range.
Verkehrszeichen in Deutschland 05 101 Gefahrstelle 101-10* Flugbetrieb 101-11* Fußgängerüberweg 101-12* Viehtrieb, Tiere 101-15* Steinschlag 101-51* Schnee- oder Eisglätte 101-52* Splitt, Schotter 101-53* Ufer 101-54* Unzureichendes Lichtraumprofil 101-55* Bewegliche Brücke 102 Kreuzung oder Einmündung mit Vorfahrt von rechts 103 Kurve (rechts) 105 Doppelkurve (zunächst rechts)
2. Introduction Figure 1. Locations of historic Kentucky rock-asphalt mines and quarries and the formations they developed. (A) Locations of mines and quarries are numbered and the rock-asphalt zones in outcrop are color-coded. Red areas developed rock-asphalt deposits in the Big Clifty Sandstone and blue area is the developed rock- asphalt deposits in the Caseyville Formation.
3/04 Mineral Products Industry 11.1-1 11.1 Hot Mix Asphalt Plants 11.1.1 General1-3,23, 392-394 Hot mix asphalt (HMA) paving materials are a mixture of size-graded, high quality aggregate (which can include reclaimed asphalt pavement [RAP]), and liquid asphalt cement, which is heated and mixed in measured quantities to produce HMA.
nonabsorbed asphalt would behave much differently than the original asphalt as a binder. Little is known about selective absorption. In terms of mixture performance, the nonabsorbed bulk asphalt (effective asphalt) may be the weak link because selective absorption may promote extraction of cer
of tank wall, which would be required by each design method for this example tank. The API 650 method is a working stress method, so the coefficient shown in the figure includes a factor of 2.0 for the purposes of comparing it with the NZSEE ultimate limit state approach. For this example, the 1986 NZSEE method gave a significantly larger impulsive mode seismic coefficient and wall thickness .