Asphalt 101: An Introduction To Hot Mix Asphalt

2y ago
82 Views
2 Downloads
4.42 MB
170 Pages
Last View : 5d ago
Last Download : 11m ago
Upload by : Nixon Dill
Transcription

Asphalt 101:An Introduction toHot Mix AsphaltMaterials-Part IAsphalt andModified Asphalts1

Asphalt 101:An Introduction toHot Mix AsphaltMaterials-Part IAsphalt andModified AsphaltsScott ShulerCSU1

2

Glue:Scott ShulerSticky Glue:Marshall Shackelford2

Why Study Asphalt?3

Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)3

Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)100,000ConcreteEarthGravelAsphalt3

Why Study Asphalt?of all the ROADS IN THE U. S. A.(miles)100,000Concrete400,000EarthGravelAsphalt3

Why Study Asphalt?of all the ROADS IN THE U. S. lAsphalt3

Why Study Asphalt?2,200,000of all the ROADS IN THE U. S. velAsphalt95%3

Why Study Asphalt?4

Why Study Asphalt? Highway Expenditures in 2008– 140 Billion4

Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion4

Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion Employment– 300,000 directly– 600,000 additionally4

Why Study Asphalt? Highway Expenditures in 2008– 140 Billion Hot Mix Asphalt Placed Annually– 500 Million Tons– 10.5 Billion Employment– 300,000 directly– 600,000 additionally Asphalt is Largely Empirical– “Old Timers” Retiring4

What Are Asphalt Pavements ?5

What Are Asphalt Pavements ? Rocks Glued Together With Asphalt5

What Are Asphalt Pavements ? Rocks Glued Together With Asphalt5

What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumenRocksAbout 86%5

What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumennRocksAbout 86%Asphalt About 10%5

What Are Asphalt Pavements ? Rocks Glued Together With AsphaltVolumennRocksAbout 86%Asphalt About 10%nAir4%5

Let’s Consider the Glue6

Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC6

Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC6

Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC6

Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC– Bible References Noah’s Arc Waterproofed with “Pitch” Genesis 6:14.20Moses’ Basket Coated with “Bitumen” and “Pitch” Exodus 2:3.246

Let’s Consider the Glue Among the Oldest Engineering Materials– Waterproofing of Ships Sumeria-6000 BC– Waterproofing of Baths and Tanks “Earth Butter” Mohenjo-Daro Indus Valley-3000 BC– Mummies Egypt-2600 BC– Bible References Noah’s Arc Waterproofed with “Pitch” Genesis 6:14.20Moses’ Basket Coated with “Bitumen” and “Pitch” Exodus 2:3.24– Roman Buildings Waterproofed and Cemented Romans called the source Lacus Asphaltites6

So It Will Work!7

So It Will Work!7

So It Will Work!7

So It Will Work!7

Reed Boat, aka Gufa8

9

Bitumen9

BitumenAsphaltsTars9

BitumenTarsAsphaltsNaturalPetroleumCoal9

Asphalts10

AsphaltsNaturalPetroleum10

AsphaltsNaturalPetroleumLake10

AsphaltsNaturalPetroleumTrinidadLake10

AsphaltsNaturalPetroleumTrinidadLa BreaLake10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeRock10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRock10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTX10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXAB10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXABAsphaltites10

AsphaltsNaturalPetroleumTrinidadLa BreaLakeKYRockTXABAsphaltitesUT-Gilsonite10

AsphaltsNaturalPetroleumTrinidadLa onite10

AsphaltsNaturalPetroleumTrinidadLa sphaltitesUT-Gilsonite10

Crude Oil Variations11

Crude Oil VariationsVenezuelanNigerian Light11

Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%11

Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Kerosene20%11

Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Gas Oil 33%Kerosene20%Gas Oil 46%11

Crude Oil VariationsVenezuelanNigerian LightGasoline 3%Gasoline 33%Kerosene 6%Gas Oil 33%Residuum58%Kerosene20%Gas Oil 46%Residuum 1%11

Refining Methods12

Refining Methods Distillation– Atmospheric– Vacuum12

Refining Methods Distillation– Atmospheric– Vacuum Solvent Deasphalting– Propane and Butane Extraction of Lube Oils– Result is Very Hard Precipitate AC12

Refining Methods Distillation– Atmospheric– Vacuum Solvent Deasphalting– Propane and Butane Extraction of Lube Oils– Result is Very Hard Precipitate AC Solvent Extraction (ROSE)– Separates AC into Asphaltenes/Resins/Oils– Result is Blended to Produce Spec AC12

Petroleum Asphalts13

Petroleum AsphaltsOil Well13

Petroleum AsphaltsOil WellCrudeStorage13

Petroleum AsphaltsOil WellAtmos StillCrudeStorage60-700F13

Petroleum AsphaltsOil WellCondenserAtmos StillCrudeStorage60-700F13

Petroleum Asphalts60-325FOil WellCrudeStorageCondenserAtmos Still325-500FGasolineKerosene60-700F13

Petroleum Asphalts60-325FOil WellCrudeStorageCondenserAtmos Still325-500FGasolineKerosene60-700F13

Petroleum Asphalts60-325FOil WellCrudeStorageVacuum StillCondenserAtmos Still325-500FGasolineKerosene60-700F13

Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850F650-1050F13

Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850FAsphaltCements650-1050F13

Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850FH 2OEmulsionsAsphaltCements650-1050F13

Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas Oil60-700FVacuum StillCondenserAtmos Still650-850F650-1050FH 2OAsphaltCementsEmulsionsGaKe s/roCutbacks13

Petroleum Asphalts60-325FOil WellCrudeStorageGasolineKerosene325-500FGas OilVacuum StillAsphaltCementsr650-1050FH 2OEmulsionsGaKe s/roAi60-700FCondenserAtmos Still650-850FRoofingAsphaltsCutbacks13

Asphalt Types14

Asphalt Types Asphalt Cement14

Asphalt TypesAsphalt Cement Liquid Asphalts – Emulsified Asphalts– Cutback Asphalts14

Behavior of Asphalt Cements15

Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures15

Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures15

Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures Silly Putty is Viscoelastic– Pull it Slowly- It stretches – same as high temperature15

Behavior of Asphalt Cements Asphalt is Viscoelastic– Viscous (Flows) at High Temperatures– Elastic at Low Temperatures Silly Putty is Viscoelastic– Pull it Slowly- It stretches – same as high temperature– Pull it Rapidly – It breaks – same as low temperature15

Asphalt Performance dependson Environment and Traffic16

Asphalt Performance dependson Environment and Traffic16

17

17Hot Behavior

Hot BehaviorWeak Behavior17

Hot BehaviorWeak BehaviorCold Behavior17

Temperature Effects18

Temperature Effects1 Hour100 F18

Temperature Effects1 Hour100 F30 F18

Temperature Effects1 Hour100 F10 Hours30 F18

Temperature Effects1 Hour100 F10 Hours30 F18

Material Effects19

Material Effects1 Hour30 F19

Material Effects1 Hour30 FHard AsphaltSofter Asphalt19

20

Achieving20

SUPERPAVETo The Rescue !20

SUPERPAVETo The Rescue !20

SPECIFYING PERFORMANCEBased on Climate21

SPECIFYING PERFORMANCEBased on ClimatePG 64 - 2221

SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGrade21

SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGradeAverage 7-day maxpavement temperature, C21

SPECIFYING PERFORMANCEBased on ClimatePG 64 - 22PerformanceGradeMin pavementtemperature, CAverage 7-day maxpavement temperature, C21

Tests in PG meterRotationalViscometer22

)Courtesy of FHWAPermanent Deformation (Caused by Warm Weather, Traffic and Wrong Mixture23

High Temperature or,Slow Loading Behavior, aka Rutting High Pavement Temperature– Desert climates– Summer temperatures Sustained loads– Slow moving trucks– Intersections24

High Temperature or,Slow Loading Behavior, aka Rutting High Pavement Temperature– Desert climates– Summer temperatures 1 Hour100 FSustained loads– Slow moving trucks– Intersections24

Thermal CrackingCourtesy of FHWACaused by Low Temperatures, Rapid Loads, Hard Binder25

Low Temperature,or Fast Loading Behavior-aka Cracking26

Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter26

Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter Rapid Loads– Fast moving trucks26

Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter Rapid Loads– Fast moving trucksσε26

Low Temperature,or Fast Loading Behavior-aka Cracking Low Temperature– Cold climates– Winter CrackingFailureRapid Loads– Fast moving trucksσε26

Aging Asphalt reacts with oxygen– Becomes harder, more brittle– More Elastic, Less Viscous Short term– During Mixing with Aggregates (280F-330F) Long term– In Pavement– Air, Water, Sun27

Asphalt Plant and Construction Aging Rolling Thin Film Oven (RTFO)FanRotatingBottleCarriageBlowing Air28

Pressure Aging VesselPressure AgingVessel29

Pressure Aging Vessel50 grams of Asphalt inEach PanPressure AgingVessel29

Pressure Aging VesselCourtesy of FHWA30

Rutting, Hardening and FatigueDSRBBRRV31

1 cycle32

Fixed Lower Plate1 cycle32

Oscillating Upper PlateFixed Lower Plate1 cycle32

Oscillating Upper PlateBCAFixed Lower Plate1 cycle32

Asphalt Glued InBetweenOscillating Upper PlateBCAFixed Lower Plate1 cycle32

Asphalt Glued InBetweenOscillating Upper PlateBCAFixed Lower PlateTime1 cycle32

Asphalt Glued InBetweenOscillating Upper PlateBCFixed Lower PlateABAAATimeC1 cycle32

Asphalt Glued InBetweenOscillating Upper PlateBCFixed Lower PlateABAAANow, Measure theForce Required toRotate the UpperPlateAnd, Measure WhenMovement Occurs inthe BinderTimeC1 cycle32

33

ElasticTime33

ElasticBStressStrainAAATimeCStrain Occurs With Stressδ 0o33

ElasticViscousBStressStrainAAATimeCStrain Occurs With Stressδ 0o33

ElasticViscousBBStressStrainAAACTimeAAACStrain Occurs With Stressδ 0o33

ElasticViscousBBStressStrainAAACStrain Occurs With Stressδ 0oTimeAAACStrain Lags Stressδ 90o33

δ34

δElastic, G’34

Viscous, G”δElastic, G’34

Viscous, G”CMxlepomodsulu*G,δElastic, G’Complex Modulus isthe vector sum ofElastic and Viscous Components34

Controlling RuttingHeavy Trucks Early part ofpavement life35

Controlling RuttingAddressed by:G*/sin δ on Unaged binder 1.00 kPaG*/sin δ on Lab Aged binder 2.20 kPaHeavy Trucks Early part ofpavement life35

Fatigue Cracking36

Caused by repeated traffic loads in wheel pathsFatigue Cracking36

Fatigue Cracking Addressed by intermediatetemperature stiffness– G*sin δ on RTFO & PAVaged binder 5000 kPa Later part ofpavement service life37

ThermalCrackingRVDSRBBR38

Bending Beam RheometerDeflection TransducerComputerLoad CellFluid Bath39

BBR Measures Stiffness at LowTemperatures using Beam Theory40

BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness att 60 secsS(t) PL34 bh3 δ (t)40

BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramst 60 secsS(t) PL34 bh3 δ (t)40

BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)40

BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)Beam Width, 12.5 mmBeam Thickness, 6.25 mm40

BBR Measures Stiffness at LowTemperatures using Beam TheoryCreep stiffness at100 gramsClear Span of Beam, 102 mmt 60 secsS(t) PL34 bh3 δ (t)Deflection at t 60 secsBeam Width, 12.5 mmBeam Thickness, 6.25 mm40

Bending Beam Rheometer41

Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope 41

Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041

Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041

Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041

Bending Beam RheometerCreep Stiffness Stiffness v. Time SlopeLog CreepStiffness, S(t) 8153060120Log Loading Time, t (sec)24041

Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope Log CreepStiffness, S(t)m8153060120Log Loading Time, t (sec)24041

Bending Beam RheometerCreep Stiffness Stiffness v. Time Slope Log CreepStiffness, S(t)m8153060120Log Loading Time, t (sec)24041

Thermal Cracking Question: How Much Should the AsphaltBe Able to Stretch before Breaking?42

Thermal Cracking Question: How Much Should the AsphaltBe Able to Stretch before Breaking?Answer: at least 1%How: Find the Temperature Where theAsphalt Can Stretch 1% or More42

Direct Tension TestΔ Le43

Direct Tension TestΔ Le43

Direct Tension TestLoadΔLΔ Le43

Direct Tension TestLoadΔLσfΔ LeStrainεf43

Direct Tension TestLoadΔLσfΔ LeStrainεf43

Direct Tension TestLoadStress σ P / AΔLσfΔ LeStrainεf43

But Will it Flow for Mixing ometerBendingBeamRheometer44

Rotational Viscometer(Brookfield)Torque MotorInner CylinderThermoselEnvironmentalChamberDigital TemperatureController45

Spec Requirements Make Sure It’s Not Too Thick– Keep Viscosity Below 3 Pa-sec at 275F (135C)46

47

Why Study Asphalt? Highway Expenditures in 2008 – 140 Billion Hot Mix Asphalt Placed Annually – 500 Million Tons – 10.5 Billion Employment – 300,000 directly – 600,000 additionally Asphalt is Largely Empirical – “Old Timers” Retiring

Related Documents:

Pavement Performance, yrs. Ohio High/Low Asphalt 16 Low Composite 11 High Composite 7 North Carolina ---- Concrete 6 –10 Ontario High Asphalt 8 Illinois Low Asphalt 7 –10 New York ---- Asphalt 5 –8 Indiana Low Asphalt 9 –11 Austria High/Low Asphalt 10 High Concrete 8 Georgia Low Asphalt 10

that the asphalt plant be calibrated as specified in AASHTO M-156. Airport Specification 401-4.2 requires the asphalt plant to conform to ASTM D 995. The Asphalt Institute's Manuals MS-3 Asphalt Plant Manual and MS-22 Principles of Construction of Hot-Mix Asphalt Pavements contain much more information on asphalt plants. Batch Plants

Asphalt Terminology Recycled Asphalt Pavement (RAP): Old asphalt pavement that is incorporated into new asphalt mix. Replacement Binder–recycled asphalt binder from RAS or RAP that is replacing some of the virgin binder in HMA. Performance Grade Asphalt Binderis specified based on performance within a temperature range.

Verkehrszeichen in Deutschland 05 101 Gefahrstelle 101-10* Flugbetrieb 101-11* Fußgängerüberweg 101-12* Viehtrieb, Tiere 101-15* Steinschlag 101-51* Schnee- oder Eisglätte 101-52* Splitt, Schotter 101-53* Ufer 101-54* Unzureichendes Lichtraumprofil 101-55* Bewegliche Brücke 102 Kreuzung oder Einmündung mit Vorfahrt von rechts 103 Kurve (rechts) 105 Doppelkurve (zunächst rechts)

2. Introduction Figure 1. Locations of historic Kentucky rock-asphalt mines and quarries and the formations they developed. (A) Locations of mines and quarries are numbered and the rock-asphalt zones in outcrop are color-coded. Red areas developed rock-asphalt deposits in the Big Clifty Sandstone and blue area is the developed rock- asphalt deposits in the Caseyville Formation.

3/04 Mineral Products Industry 11.1-1 11.1 Hot Mix Asphalt Plants 11.1.1 General1-3,23, 392-394 Hot mix asphalt (HMA) paving materials are a mixture of size-graded, high quality aggregate (which can include reclaimed asphalt pavement [RAP]), and liquid asphalt cement, which is heated and mixed in measured quantities to produce HMA.

nonabsorbed asphalt would behave much differently than the original asphalt as a binder. Little is known about selective absorption. In terms of mixture performance, the nonabsorbed bulk asphalt (effective asphalt) may be the weak link because selective absorption may promote extraction of cer

of tank wall, which would be required by each design method for this example tank. The API 650 method is a working stress method, so the coefficient shown in the figure includes a factor of 2.0 for the purposes of comparing it with the NZSEE ultimate limit state approach. For this example, the 1986 NZSEE method gave a significantly larger impulsive mode seismic coefficient and wall thickness .