Rail-to-rail, Wide-band, Low-power Operational Amplifiers

2y ago
39 Views
2 Downloads
601.26 KB
33 Pages
Last View : 2m ago
Last Download : 2m ago
Upload by : Gideon Hoey
Transcription

TSH70,71,72,73,74,75Rail-to-Rail, Wide-Band, Low-Power Operational Amplifiers 3V, 5V, 5V specifications 3dB bandwidth: 90MHz Gain bandwidth product: 70MHz Slew rate: 100V/msPin Connections (top view)TSH70 : SOT23-5/SO8Output 1VCC - 2 Output current: up to 55mA Input single supply voltage Output rail-to-rail Specified for 150Ω loads Low distortion, THD: 0.1% Non-Inv. In. 3NC 15 VCC 4 Inv. In.8 NCInv. In. 27 VCC Non-Inv. In. 3 6 Output -5 NCVCC - 4TSH71 : SO8/TSSOP8NC 18 STANDBYInverting Input 27 VCC Non Inverting Input 3 6 OutputVCC - 4SOT23-5, TSSOP and SO packages5 NCTSH72 : SO8/TSSOP8DescriptionOutput1 1The TSH7x series offers single, dual, triple andquad operational amplifiers featuring high videoperformances with large bandwidth, low distortionand excellent supply voltage rejection.8 VCC Inverting Input1 2Non Inverting Input1 3 VCC - 47 Output26 Inverting Input2 5 Non Inverting Input2TSH73 : SO14/TSSOP14STANDBY1 1Running with a single supply voltage from 3V to12V, these amplifiers feature a large outputvoltage swing and high output current capable ofdriving standard 150Ω loads. A low operatingvoltage makes TSH7x amplifiers ideal for use inportable equipment.14 Output3STANDBY2 213 Inverting Input3STANDBY3 3 12 Non Inverting Input3 10 Non Inverting Input2VCC 4Non Inverting Input1 5Inverting Input1 611 VCC Output1 78 Output2TSH74 : SO14/TSSOP14The TSH71, TSH73 and TSH75 also featurestandby inputs, each of which allows the op-ampto be put into a standby mode with low powerconsumption and high output impedance. Thisfunction allows power saving or signalswitching/multiplexing for high-speed applicationsand video applications.Output1 114 Output4Inverting Input1 213 Inverting Input4Non Inverting Input1 3 12 Non Inverting Input4 10 Non Inverting Input3VCC 4Non Inverting Input2 5Inverting Input2 611 VCC -Output2 78 Output3Output1 116 Output4Inverting Input1 215 Inverting Input4Non Inverting Input1 3 14 Non Inverting Input4 12 Non Inverting Input3VCC 4ApplicationsNon Inverting Input2 5Inverting Input2 6Video buffers ADC driver Hi-fi applicationsMay 20069 Inverting Input3TSH75 : SO16/TSSOP16To economize both board space and weight, theTSH7x series is proposed in SOT23-5, TSSOPand SO packages. 9 Inverting Input2Output2 7STANDBY 8Rev. 313 VCC -11 Inverting Input310 Output39 STANDBY1/33www.st.com33

Order Codes1TSH70,71,72,73,74,75Order CodesPart Tape & ReelK301TSH70CD/CDTSO-8Tube or Tape & Reel70CTSH71CD/CDTSO-8Tube or Tape & Reel71CTSSOP8 (Thin Shrink Outline Package)Tape & Reel71CSO-8Tube or Tape & Reel72CTSSOP8 (Thin Shrink Outline Package)Tape & Reel72CSO-14Tube or Tape & Reel73CTSSOP14 (Thin Shrink Outline Package)Tape & Reel73CSO-14Tube or Tape & Reel74CTSSOP14 (Thin Shrink Outline Package)Tape & Reel74CSO-16Tube or Tape & Reel75CTSSOP16 (Thin Shrink Outline Package)Tape & Reel75CTSH70CLTTSH71CPTTSH72CD/CDTTSH72CPT0 C to 70 TSH75CPT2/33

TSH70,71,72,73,74,752Typical Application: Video DriverTypical Application: Video DriverA typical application for the TSH7x family is that of video driver for driving STi7xxx DACoutputs on 75-ohm lines.Figure 1 show the benefits of the TSH7x family as single supply drivers.Figure 1.Benefits of TSH7x family: 3V or 5V single supply solution 5VVideo DAC’s outputs:Bottom ofsynchronization tiparound 50mVVOH 4.2Vmin.(Tested)Vcc 5VVcc 3V2Vp-pGain 2GNDVOH 2.45Vmin.(Tested)2.1V2.1V 1Vp-p 3V2Vp-p50mVVOL 40mVmax.(Tested)GND100mVGND1kΩVOL 30mVmax.(Tested)GND100mV1kΩ-5VGNDVideoDACY,G 5VReconstructionFilteringLPF75Ω 75Ω eringLPF75Ω 75Ω lteringLPF75Ω 75Ω Cable0.7Vpp75Ω1.4VppTSH73GND3/33

Absolute Maximum Ratings & Operating Conditions3TSH70,71,72,73,74,75Absolute Maximum Ratings & Operating ConditionsTable 1.Absolute maximum ratings (AMR)SymbolVCCVidViParameterUnit14V 2V 6V0 to 70 C-65 to 150 C150 CSupply Voltage (1)Differential Input VoltageInput Voltage(2)(3)ToperOperating Free Air Temperature RangeTstgStorage TemperatureTjValueMaximum Junction Temperature(4)RthjcThermal resistance junction to aThermal resistance junction to ambient uman Body Model80282235373235 C/W250157125110130110110 C/W2kV1. All voltages values, except differential voltage are with respect to network ground terminal2. Differential voltages are non-inverting input terminal with respect to the inverting terminal3. The magnitude of input and output must never exceed VCC 0.3V4. Short-circuits can cause excessive heatingTable 2.Operating conditionsSymbolVCCVICStandby4/33ParameterSupply VoltageCommon Mode Input Voltage RangeVCC-ValueUnit3 to 12Vto-)(VCC -1.1)V )V(VCC to (VCC

TSH70,71,72,73,74,75Electrical Characteristics4Electrical CharacteristicsTable 3.VCC 3V, VCC- GND, VIC 1.5V, Tamb 25 C (unless otherwise specified)SymbolParameterTest ConditionsMin.Typ.Max.Unit1012mV V io Input Offset VoltageTamb 25 CTmin. Tamb Tmax.1.2 VioInput Offset Voltage Drift vs. Temp.Tmin. Tamb Tmax.4IioInput Offset CurrentTamb 25 CTmin. Tamb Tmax.0.13.55µAIibInput Bias CurrentTamb 25 CTmin. Tamb Tmax.61520µACinInput CapacitanceSupply Current per OperatorTamb 25 CTmin. Tamb Tmax.7.2CMRRCommon Mode Rejection Ratio(δVIC/δVio) 0.1 VIC 1.9V & V out 1.5VTamb 25 CTmin. T amb T max.656490SVRRSupply Voltage Rejection Ratio(δVCC/δVio)Tamb 25 CTmin. Tamb Tmax.666574PSRRPower Supply Rejection Ratio(δVCC/δVout)Positive & Negative RailLarge Signal Voltage GainRL 150Ω to 1.5V, Vout 1V to 2VTamb 25 CTmin. T amb T max.Output Short Circuit Current SourceTamb 25 C,Vid 1, Vout to 1.5V,Vid -1, Vout to 1.5V Source SinkTmin. Tamb Tmax.Vid 1, Vout to 1.5VVid -1, Vout to 1.5V Source SinkICCAvdIo0.2Tamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GNDVOHHigh Level Output VoltageµV/ CRL RL RL RL 150Ω to 1.5V600Ω to 1.5V2kΩ to 1.5V10kΩ to 1.5VTmin. Tamb Tmax.RL 150Ω to GNDRL 150Ω to 02.872.912.932.652.772.902.922.93V2.42.65/33

Electrical CharacteristicsTable 3.TSH70,71,72,73,74,75VCC 3V, VCC- GND, VIC 1.5V, Tamb 25 C (unless otherwise specified)SymbolParameterTest ConditionsMin.Tamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GNDVOLLow Level Output VoltageRL RL RL RL 150Ω to 1.5V600Ω to 1.5V2kΩ to 1.5V10kΩ to 1.5VTyp.Max.1011111130140906857300Tmin. Tamb Tmax.RL 150Ω to GNDRL 150Ω to 1.5VUnitmV40350Gain Bandwidth ProductF 10MHzAVCL 11AVCL -106555MHzBwBandwidth @-3dBAVCL 1, RL 150Ω to 1.5V87MHzSRSlew RateAVCL 2, RL 150Ω // CL to 1.5VCL 5pFCL 30pF8085V/µsGBP45φmPhase MarginRL 150Ω // 30pF to 1.5V40 enEquivalent Input Noise VoltageF 100kHz11nV/ HzTHDTotal Harmonic DistortionAVCL 2, F 4MHz, RL 150Ω //30pF to 1.5VVout 1VppVout 2Vpp-61-54IM2AVCL 2, Vout 2VppRL 150Ω to 1.5VSecond order intermodulation productFin1 180kHz, Fin2 280KHzspurious measurements @100kHz-76dBcIM3Third order inter modulation productAVCL 2, Vout 2VppRL 150Ω to 1.5VFin1 180kHz, Fin2 280KHzspurious measurements @400kHz-68dBc GDifferential gainAVCL 2, RL 150Ω to 1.5VF 4.5MHz, V out 2Vpp0.5%DfDifferential phaseAVCL 2, RL 150Ω to 1.5VF 4.5MHz, V out 2Vpp0.5 GfGain FlatnessF DC to 6MHz, A VCL 20.2dBF 1MHz to 10MHz65dBVo1/Vo2 Channel Separation6/33dB

TSH70,71,72,73,74,75Table 4.SymbolVCC 5V, VCC- GND, VIC 2.5V, Tamb 25 C (unless otherwise specified)Parameter Vio Input Offset Voltage VioInput Offset Voltage Drift vs. Temp.IioInput Offset CurrentIibInput Bias CurrentCinInput CapacitanceICCElectrical CharacteristicsSupply Current per OperatorTest ConditionsTamb 25 CTmin. Tamb Tmax.Tamb 25 CTmin. Tamb Tmax.0.13.55µA61520µATamb 25 CTmin. Tamb Tmax. 0.1 V IC 3.9V & Vout 2.5VTamb 25 CTmin. Tamb Tmax.8.2727197686775Supply Voltage Rejection Ratio(δVCC/δVio)Tamb 25 CTmin. Tamb Tmax.PSRRPower Supply Rejection Ratio(δVCC/δVout)Positive & Negative RailLarge Signal Voltage GainRL 150Ω to 1.5V,Vout 1V to 4VTamb 25 CTmin. Tamb Tmax.Output Short Circuit Current SourceTamb 25 C,Vid 1, V out to 1.5V,Vid -1, Vout to 1.5V Source SinkTmin. Tamb Tmax.Vid 1, V out to 1.5VVid -1, Vout to 1.5V Source SinkTamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GNDHigh Level Output Voltage1012RL 150Ω to 2.5VRL 600Ω to 2.5VRL 2kΩ to 2.5VRL 10kΩ to 2.5VTmin. Tamb Tmax.RL 150Ω to GNDRL 150Ω to 2.5V7575708435335555mVµV/ C30.3SVRRVOHUnit1.1Common Mode Rejection Ratio(δVIC/δVio)IoTyp. Max.Tamb 25 CTmin. Tamb Tmax.Tmin. Tamb .854.904.934.54.664.904.924.93V4.14.47/33

Electrical CharacteristicsTable 4.VCC 5V, VCC- GND, VIC 2.5V, Tamb 25 C (unless otherwise w Level Output VoltageTest ConditionsMin.Typ. Max.Tamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GND2023232340RL 150Ω to 2.5VRL 600Ω to 2.5VRL 2kΩ to 2.5VRL 10kΩ to 2.5V2201057661400Tmin. Tamb Tmax.RL 150Ω to GNDRL 150Ω to 2.5VUnitmV60450Gain Bandwidth ProductF 10MHzAVCL 11AVCL -106555MHzBandwidth @-3dBAVCL 1, R L 150Ω to 2.5V87MHzSRSlew RateAVCL 2,RL 150Ω // CL to 2.5VCL 5pFCL 30pF104105φmPhase MarginRL 150Ω // 30pF to 2.5V40 enEquivalent Input Noise VoltageF 100kHz11nV/ HzTHDTotal Harmonic DistortionAVCL 2, F 4MHzRL 150Ω // 30pF to 2.5VVout 1VppVout 2Vpp-61-54IM2AVCL 2, V out 2VppRL 150Ω to 2.5VSecond order intermodulation productFin1 180kHz, Fin2 280kHzspurious measurements @100kHz-76dBcIM3Third order inter modulation productAVCL 2, V out 2VppRL 150Ω to 2.5VFin1 180kHz, Fin2 280KHzspurious measurements @400kHz-68dBc GDifferential gainAVCL 2, R L 150Ω to 2.5VF 4.5MHz, V out 2Vpp0.5%DfDifferential phaseAVCL 2, R L 150Ω to 2.5VF 4.5MHz, V out 2Vpp0.5 GfGain FlatnessF DC to 6MHz, A VCL 20.2dBF 1MHz to 10MHz65dBGBPBwVo1/Vo2 Channel Separation8/3360V/µsdB

TSH70,71,72,73,74,75Table 5.SymbolElectrical CharacteristicsVCC 5V, VCC- -5V, VIC GND, Tamb 25 C (unless otherwise specified)ParameterTest ConditionsMin.Typ. Max.Unit V io Input Offset VoltageTamb 25 CTmin. Tamb Tmax.0.8 VioInput Offset Voltage Drift vs. Temp.Tmin. Tamb Tmax.2IioInput Offset CurrentTamb 25 CTmin. Tamb Tmax.0.13.55µAIibInput Bias CurrentTamb 25 CTmin. Tamb Tmax.61520µACinInput CapacitanceSupply Current per OperatorTamb 25 CTmin. Tamb Tmax.9.8CMRRCommon Mode Rejection Ratio(δVIC/δVio)-4.9 VIC 3.9V & Vout GNDTamb 25 CTmin. Tamb T max.8180106SVRRSupply Voltage Rejection Ratio(δVCC/δVio)Tamb 25 CTmin. Tamb Tmax.717077PSRRPower Supply Rejection Ratio(δVCC/δVout)Positive & Negative RailLarge Signal Voltage GainRL 150Ω to GNDVout -4 to 4Tamb 25 CTmin. Tamb T max.Output Short Circuit Current SourceTamb 25 CVid 1, Vout to 1.5VVid -1, Vout to 1.5V Source SinkTmin. Tamb Tmax.Vid 1, Vout to 1.5VVid -1, Vout to 1.5V Source SinkICCAvdIoVOHVOLHigh Level Output VoltageLow Level Output Voltage1012µV/ C0.7Tamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GNDTmin. Tamb Tmax.RL 150Ω to GNDTamb 25 CRL 150Ω to GNDRL 600Ω to GNDRL 2kΩ to GNDRL 10kΩ to GNDTmin. Tamb Tmax.RL 150Ω to 3

Electrical CharacteristicsTable 5.VCC 5V, VCC- -5V, VIC GND, Tamb 25 C (unless otherwise erTest ConditionsGain Bandwidth ProductF 10MHzAVCL 11AVCL -10Bandwidth @-3dBAVCL 1RL 150Ω // 30pF to GNDSlew RateAVCL 2,RL 150Ω // C L to GNDCL 5pFCL 30pFMin.68Typ. Max.Unit6555MHz100MHz117118V/µsφmPhase MarginRL 150Ω to GND40 enEquivalent Input Noise VoltageF 100kHz11nV/ HzTHDTotal Harmonic DistortionAVCL 2, F 4MHzRL 150Ω // 30pF to GNDVout 1VppVout 2Vpp-61-54IM2AVCL 2, Vout 2VppRL 150Ω to GNDSecond order intermodulation productFin1 180kHz, Fin2 280KHzspurious measurements @100kHz-76dBcIM3Third order intermodulation productAVCL 2, Vout 2VppRL 150Ω to GNDFin1 180kHz, Fin2 280KHzspurious measurements @400kHz-68dBc GDifferential gainAVCL 2, RL 150Ω to GNDF 4.5MHz, Vout 2Vpp0.5%DfDifferential phaseAVCL 2, RL 150Ω to GNDF 4.5MHz, Vout 2Vpp0.5 GfGain FlatnessF DC to 6MHz, AVCL 20.2dBF 1MHz to 10MHz65dBVo1/Vo2 Channel Separation10/33dB

TSH70,71,72,73,74,75Electrical Characteristics4.1Standby modeTable 6.VCC , VCC-, Tamb 25 C (unless otherwise specified)SymbolParameterTest ConditionsMin.Typ.Max.UnitVlowStandby Low LevelVCC-(V CC 0.8)VVhighStandby High Level(V CC- 2)(V CC )V55µAVCC-Current Consumption per OperatorICC STBYwhen STANDBY is ActiveZoutOutput Impedance (Rout//Cout)TonTime from Standby Mode to ActiveModeToffTime from Active Mode to StandbyModepin 8 (TSH71) topin 1,2 or 3 (TSH73) to VCCpin 8 (TSH75) to VCC pin 9 (TSH75) to VCC-20RoutCout1017MΩpF2µs10µsDown to ICC STBY 10µATSH71 STANDBY CONTROL pin 8 (STBY)OPERATOR STATUSVlowStandbyVhighActiveTSH73 STANDBY CONTROLOPERATOR STATUSpin 1(STBY OP1)pin 2(STBY OP2)pin 3(STBY veTSH75 STANDBY CONTROLOPERATOR STATUSpin 8(STBY OP2)pin 9(STBY ve11/33

Electrical ic curves for VCC 3VFigure 2.Closed loop gain and phase vs.frequency (Gain 2, VCC 1.5V,RL 150Ω, Tamb 25 C)10Figure 3.200Overshoot function of outputcapacitance (Gain 2, VCC 1.5V,Tamb 25 0Phase-10Gain (dB)5Phase ( )Gain (dB)0150Ω0-100-15-201E 41E 51E 61E 71E 8-51E 6-2001E 91E 7Frequency (Hz)Figure 4.Closed loop gain and phase vs.frequency (Gain -10, VCC 1.5V,RL 150Ω, Tamb 25 C)Figure 5.200301E 9PhaseClosed loop gain and phase vs.frequency (Gain 11, VCC 1.5V,RL 150Ω, Tamb 25 C)030Phase1502020-50GainPhase ( )5010Gain (dB)GainPhase ( )100Gain (dB)1E 8Frequency (Hz)10-100000-50-101E 41E 51E 61E 71E 8-101E 4-1001E 91E 5Figure 7.10.50.5Vout (V)Vout (V)Large signal measurement positive slew rate (Gain 2,VCC 1.5V, ZL 150Ω//5.6pF)101E 8-1501E 9Large signal measurement negative slew rate (Gain 2,VCC 1.5V, ZL 150Ω//5.6pF)0-0.5-0.5-1-10102030Time (ns)12/331E 7Frequency (Hz)Frequency (Hz)Figure 6.1E 64050600102030Time (ns)4050

TSH70,71,72,73,74,75Small signal measurement - risetime (Gain 2, VCC 1.5V,ZL 150Ω)Figure 9.0.060.060.040.040.020.020Vin, Vout (V)Vin, Vout (V)Figure 8.Electrical CharacteristicsVoutVinSmall signal measurement - fall time(Gain 2, V CC 1.5V, ZL 304050600102030405060Time (ns)Time (ns)Figure 10. Channel separation (Xtalk) vs.frequency (measurementconfiguration: Xtalk 20log (V0/V1))Figure 11. Channel separation (Xtalk) vs.frequency (Gain 11, VCC 1.5V,ZL 150Ω//27pF)-20VIN49.9Ω-30 ---40V14/1output-50150ΩXtalk (dB)100Ω 1kΩ3/1output-60-70-80 49.9Ω-2/1output-90VO100Ω 1kΩ-100150Ω-1101E 41E 51E 61E 7Frequency (Hz)Figure 12. Equivalent noise voltage(Gain 100, VCC 1.5V, No load)Figure 13. Maximum output swing(Gain 11, V CC 5V, RL 150Ω)3054 325Vout10k100Vin, Vout (V)en (nV/ Hz)220151Vin0-1-2-310-450.1110Frequency (kHz)1001000-50.0E 05.0E-21.0E-11.5E-12.0E-1Time (ms)13/33

Electrical CharacteristicsTSH70,71,72,73,74,75Figure 15. Group delay gain 2 (VCC 1.5V,ZL 150Ω//27pF, Tamb 25 C)Figure 14. Standby mode - Ton, Toff(VCC 1.5V, open loop)2VinVin, Vout Toff8E-61E-5Time (s)Figure 16. Third order intermodulation(1)(Gain 2, VCC 1.5V,ZL 150Ω//27pF, Tamb 25 C)0-10-20IM3 1000123Vout peak(V)1. Note on intermodulation products:The IFR2026 synthesizer generates a two tones signal(F1 180kHz, F2 280kHz); each tone having the sameamplitude level.The HP3585 spectrum analyzer measures theintermodulation products function of the output voltage.The generator and the spectrum analyzer are phaselocked for precision considerations.14/3345.87ns

TSH70,71,72,73,74,754.3Electrical CharacteristicsCharacteristic curves for VCC 5VFigure 17. Closed loop gain and phase vs.frequency (Gain 2, VCC 2.5V,RL 150Ω, Tamb 25 C)10Figure 18. Overshoot function of outputcapacitance (Gain 2, VCC 2.5V,Tamb 25 Ω//10pFGain (dB)0Phase ( )Gain (dB)5150Ω0-100-10-200-151E 41E 51E 61E 71E 8-51E 61E 91E 7Frequency (Hz)1E 81E 9Frequency (Hz)Figure 19. Closed loop gain and phase vs.frequency (Gain -10, V CC 2.5V,RL 150Ω, Tamb 25 C)30Figure 20. Closed loop gain and phase vs.frequency (Gain 11, VCC 2.5V,RL 150Ω, Tamb 25 C)200Phase030Phase1502020GainPhase ( )50Gain (dB)10-50Phase ( )Gain (dB)100Gain10-100000-50-101E 41E 51E 61E 7-101E 4-1001E 91E 81E 51E 61E 71E 8-1501E 9Frequency (Hz)Frequency (Hz)332211Vout (V)Vout (V)Figure 21. Large signal measurement - positive Figure 22. Large signal measurement slew rate (Gain 2, VCC 2.5V,negative slew rate (Gain 2,ZL 150Ω//5.6pF)VCC 2.5V, ZL 150Ω//5.6pF)00-1-1-2-2-3-3010203040Time (ns)50607080010203040506070Time (ns)15/33

Electrical CharacteristicsTSH70,71,72,73,74,75Figure 24. Small signal measurement - fall time(Gain 2, V CC 2.5V, ZL 150Ω)0.060.060.040.040.020.020VoutVin Vout (V)Vin, Vout (V)Figure 23. Small signal measurement - risetime (Gain 2, VCC 2.5V,ZL 020304050060102030405060Time (ns)Time (ns)Figure 25. Channel separation (Xtalk) vs.frequency (measurementconfiguration: Xtalk 20log (V0/V1))Figure 26. Channel separation (Xtalk) vs.frequency (Gain 11, VCC 2.5V,ZL 150Ω//27pF)-20VIN49.9Ω-30 ---40V14/1output-50Xtalk (dB)100Ω 1kΩ150Ω3/1output-60-70-80 49.9Ω100Ω 1kΩ2/1output-90VO-100150Ω-1101E 41E 51E 61E 7Frequency (Hz)Figure 27. Equivalent noise voltage(Gain 100, VCC 2.5V, no load)Figure 28. Maximum output swing(Gain 11, V CC 2.5V, RL 150Ω)303 252Vout10kVin, Vout (V)en (nV/ Hz)100201510Vin0-1-250.1110Frequency (kHz)16/3311001000-30.0E 05.0E-21.0E-1Time (ms)1.5E-12.0E-1

TSH70,71,72,73,74,75Electrical CharacteristicsFigure 30. Group delay (Gain 2, VCC 2.5V,ZL 150Ω//27pF, Tamb 25 C)Figure 29. Standby mode - Ton, Toff(VCC 2.5V, open loop)Vin3Vin, Vout 64E-6Toff6E-68E-61E-5Time (s)Figure 31. Third order intermodulation(1)(Gain 2, VCC 2.5V,ZL 150Ω//27pF, Tamb 25 C)0-10-20IM3 10001234Vout peak(V)1. Note on intermodulation products:The IFR2026 synthesizer generates a two tones signal(F1 180kHz, F2 280kHz); each tone having the sameamplitude level.The HP3585 spectrum analyzer measures theintermodulation products function of the output voltage.The generator and the spectrum analyzer are phaselocked for precision considerations.17/33

Electrical ic curves for VCC 10VFigure 32. Closed loop gain and phase vs.frequency (Gain 2, VCC 5V,RL 150Ω, Tamb 25 C)10Figure 33. Overshoot function of outputcapacitance (Gain 2, VCC 5V,Tamb 25 /10pFGain (dB)Phase ( )Gain (dB)5150Ω0Phase-100-10-151E 41E 51E 61E 71E 8-51E 6-2001E 91E 71E 81E 9Frequency (Hz)Frequency (Hz)Figure 34. Closed loop gain and phase vs.frequency (Gain -10, V CC 5V,RL 150Ω, Tamb 25 C)Figure 35. Closed Loop Gain and Phase vs.Frequency (Gain 11, VCC 5V,RL 150Ω, Tamb 25 C)20030300PhasePhase1502050-50GainPhase ( )10Gain (dB)100GainPhase ( )Gain (dB)2010-1

May 2006 Rev. 3 1/33 33 TSH70,71,72,73,74,75 Rail-to-Rail, Wide-Band, Low-Power Operational Amplifiers 3V, 5V, 5V specifications 3dB bandwidth: 90MHz Gain bandwidth product: 70MHz Slew rate: 100V/ms Output current: up to 55mA Input single supply voltage Output rail-to-rail Specified for 150 Ω loads Low distortion, THD: 0.1% SOT23-5, TSSOP and SO packages

Related Documents:

Cope & Stick - 500 Series Veneer Doors Miter Frame - 500 Series. Style Band 1 Band 2 Band 3 Band 4 Band 5 101 Glass 10 12 13 16 18 Material Band 1 Band 2 Band 3 Band 4 Band 5 102/104 Glass 12 14 15 18 20 Paint X Notes - PRICES ARE PER SQ/FT Maple Paint X Minimum Dimensions - Doors 7"W x 7"H Natural Soft Maple X

Affairs Group 75: Records of the Osage Agency - Annuity Payment Rolls, 1880-1907 (Roll 1 of 21) Osage Annuity Payment Roll: 1 st and 2nd Quarters of 1880 o Big Chief Band o Joe's Band o Big Hill Band o White Hair Band o Tall Chief Band o Black Dog Band o Saucy Chief Band o Beaver Band o Strike Axe Band o No-Pa-Walla Band

CEFR level: IELTS band: C1 IELTS band: 8 IELTS band: 7.5 IELTS band: 7 B2 IELTS band: 6.5 IELTS band: 6 IELTS band: 5.5 IELTS : 4.5 IELTS band: 4 IELTS band: 5 978-X-XXX-XXXXX-X Author Title C M Cullen, French and Jakeman Y K Pantoene XXX STUDENT'S BOOK with DVD-ROM WITH ANSWERS B1-C1 The

WIKUS BAND SAW BLADES Bimetal band saw blades Diamond coated band saw blades Carbide band saw blades Carbon steel band saw blades Sales units: coils in fixed lengths and manufacturing coils up to 120 m, depending on the band width, welded-to-length band saw blades Band widths: 4 to 125 mm Constant tooth pitches: 0,75 to 18 teeth per inch (tpi)

TD-HSDPA/HSUPA: 2.8Mbps DL, 2.2Mbps UL EDGE: Multi Slot Class 12 236.8 kbps DL & UL GPRS: Multi Slot Class 10 85.6 kbps DL & UL Frequency Bands: LTE Band B1 (2100MHz) LTE Band B2 (1900MHz) LTE Band B3 (1800MHz) LTE Band B4 - AWS (1700MHz), LTE Band B5 (850MHz), LTE Band B7 (2600MHz) LTE Band B8 (900MHz) LTE Band B12 (700MHz) LTE

Mar 20, 2006 · B-BAND A3T SIDEMOUNT PREAMP WITH B-BAND UST OR AST TRANSDUCER This is a basic installation manual and tip sheet. For more information, technical support, and pictures of installations about all B-Band products please check the B-Band website at www.b-band.com or contact your B-Band dealer, distributor or B-Band directly. Date: 5th May 2007 .File Size: 435KBPage Count: 16

Bottom rail, mid & top railS Top Rail Mid-Rail Bottom Rail how to measure mid-rail height When measuring the mid-rail height it is important to measure to the center point of where you would like the mid-rail to be placed. As the mid-rail is the same size as an individual louver, it will be placed approximately /- 1” for the specified height.

appointment issued by the Bank Group, the terms and conditions of the letter of appointment will prevail. . Before accepting an assignment, STC/STT are required to acquaint themselves with the restrictions on relatives’ employment contained in SR 4.01, par. 5.03 and report to HR Operations (Bank and MIGA appointments) or Client Services (IFC appointments) any close relatives working for .