Quantum Mechanics

3y ago
29 Views
2 Downloads
5.70 MB
57 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Madison Stoltz
Transcription

Quantum MechanicsLuis A. AnchordoquiDepartment of Physics and AstronomyLehman College, City University of New YorkLesson IXApril 9, 2019L. A. Anchordoqui (CUNY)Modern Physics4-9-20191 / 54

Table of Contents1Particle in a central potentialGeneralities of angular momentum operatorSchrödinger in 3DInternal states of the hydrogen atomL. A. Anchordoqui (CUNY)Modern Physics4-9-20192 / 54

Particle in a central potentialGeneralities of angular momentum operatorOperators can be often constructedtaking corresponding dynamical variable of classical mechanicsexpressed in terms of coordinates and momentax x̂replacingp p̂Apply this prescription to angular momentumIn classical mechanics one defines angular momentum by L r pWe get angular momentum operator by replacing:vector r vector operator r̂ ( x̂, ŷ, ẑ)momentum vector p momentum vector operator p̂ i} ( x , y , z ) i / iL. A. Anchordoqui (CUNY)Modern Physics4-9-20193 / 54

Particle in a central potentialGeneralities of angular momentum operatorComplete fundamental commutation relationsof coordinate and momentum operators are:[ x̂, p̂ x ] [ŷ, p̂y ] [ẑ, p̂z ] i}and[ x̂, p̂y ] [ x̂, p̂z ] · · · [ẑ, p̂y ] 0It will be convenient to use following notationx̂1 x̂, x̂2 ŷ, x̂3 ẑ and p̂1 p̂ x , p̂2 p̂y , p̂3 p̂zSummary of fundamental commutation relations[ x̂i , p̂ j ] i}δijKronecker symbol:δij L. A. Anchordoqui (CUNY) 1 if i j0 if i 6 jModern Physics4-9-20194 / 54

Particle in a central potentialGeneralities of angular momentum operatorCommutation relations for components of angular momentum operatorConvenient to get at first commutation relations with x̂i and p̂iUsing fundamental commutation relationsL̂ x ŷ p̂z ẑ p̂y [ x̂, L̂ x ] 0L̂y ẑ p̂ x x̂ p̂z [ x̂, L̂y ] [ x̂, ẑ p̂ x ] [ x̂, x̂ p̂z ] i}ẑsimilarly [ x̂, L̂z ] i}ŷWe can ummarize the nine commutation relations[ x̂i , L̂ j ] i}eijk x̂kand summation over the repeated index k is impliedLevi-Civita tensor 1 if (ijk) (1, 2, 3) or (2, 3, 1) or(3, 1, 2) 1 if (ijk) (1, 3, 2) or (3, 2, 1) or (2, 1, 3)eijk 0 if i j or i k or j kL. A. Anchordoqui (CUNY)Modern Physics4-9-20195 / 54

Particle in a central potentialGeneralities of angular momentum operatorSimilarly we can show[ p̂i , L̂ j ] i}eijk p̂kNow it is straightforward to deduce:[ L̂i , L̂ j ] i}eijk L̂kImportant conclusion from this result:components of L̂ have no common eigenfunctionsMust show that angular momentum operators are hermitianThis is of course plausible (reasonable) since we know thatangular momentum is dynamical variable in classical mechanicsProof is left as exerciseL. A. Anchordoqui (CUNY)Modern Physics4-9-20196 / 54

Particle in a central potentialGeneralities of angular momentum operatorConstruct operator that commutes with all components of L̂L̂2 L̂2x L̂2y L̂2zIt follows that [ L̂ x , L̂2 ] [ L̂ x , L̂2x L̂2y L̂2z ] [ L̂ x , L̂2y ] [ L̂ x , L̂2z ]There is simple technique to evaluate commutator like [ L̂ x , L̂2y ]write down explicitly known commutator[ L̂ x , L̂y ] L̂ x L̂y L̂y L̂ x i} L̂zmultiply on left by L̂yL̂y L̂ x L̂y L̂2y L̂ x i} L̂y L̂zmultiply on right by L̂yL̂ x L̂2y L̂y L̂ x L̂y i} L̂z L̂yAdd these commutation relations to getL̂ x L̂2y L̂2y L̂ x i}( L̂y L̂z L̂z L̂y )Similarly L̂ x L̂2z L̂2z L̂ x i}( L̂y L̂z L̂z L̂y )All in all [ L̂ x , L̂2 ] 0 and likewise [ L̂y , L̂2 ] [ L̂z , L̂2 ] 0L. A. Anchordoqui (CUNY)Modern Physics4-9-20197 / 54

Particle in a central potentialGeneralities of angular momentum operatorSummary of angular momentum operator ˆ Lˆ rˆ pˆ i} rˆ L̂ xL̂yL̂z(1)in cartesian coordinates ŷ p̂z p̂y ẑ i} y z z y ẑ p̂ x p̂z x̂ i} z x x z x̂ p̂y p̂ x ŷ i} x y y x(2)commutation relations[ L̂i , L̂ j ] i} ε ijk L̂kand[ L̂2 , L̂ x ] [ L̂2 , L̂y ] [ L̂2 , L̂z ] 0(3)L̂2 L̂2x L̂2y L̂2zL. A. Anchordoqui (CUNY)Modern Physics4-9-20198 / 54

Particle in a central potentialSchrödinger in 3DPrescription to obtain 3D Schrödinger equation for free particle:substitute into classical energy momentum relationE p 22m(4)differential operatorsE i} t and p i} (5)resulting operator equation }2 2 ψ i} ψ2m t(6)acts on complex wave function ψ( x, t)Interpret ρ ψ 2 as probability density ψ 2 d3 x gives probability of finding particle in volume element d3 xL. A. Anchordoqui (CUNY)Modern Physics4-9-20199 / 54

Particle in a central potentialSchrödinger in 3DContinuity equationWe are often concerned with moving particlese.g. collision of particlesMust calculate density flux of particle beam From conservation of probabilityrate of decrease of number of particles in a given volumeis equal to total flux of particles out of that volume tZVρ dV ZS · n̂ dS ZV · dV (7)(last equality is Gauss’ theorem)Probability and flux densities are related by continuity equation ρ · 0 tL. A. Anchordoqui (CUNY)Modern Physics(8)4-9-201910 / 54

Particle in a central potentialSchrödinger in 3DFluxTo determine flux. . .First form ρ/ t by substracting wave equation multiplied by iψ from the complex conjugate equation multiplied by iψ} ρ ( ψ 2 ψ ψ 2 ψ ) 0 t2m(9)Comparing this with continuity equation probability flux density i} (ψ ψ ψ ψ )2m(10)Example free particle of energy E and momentum pψ Nei p· x iEt(11)has ρ N 2 and N 2 p/mL. A. Anchordoqui (CUNY)Modern Physics4-9-201911 / 54

Particle in a central potentialSchrödinger in 3DTime-independent Schrödinger equation for central potentialPotential depends only on distance from originV ( r ) V ( r ) V (r )(12)hamiltonian is spherically symmetricInstead of using cartesian coordinates x { x, y, z}use spherical coordinates x {r, ϑ, ϕ} defined by p 222 x r sin ϑ cos ϕ r x y pz y r sin ϑ sin ϕ ϑ arctan z/ x2 y2 z r cos ϑϕ arctan(y/x )(13)Express the Laplacian 2 in spherical coordinates 21 1 1 2 2r2 2sin ϑ 2 2(14)r r rr sin ϑ ϑ θr sin ϑ ϕ2L. A. Anchordoqui (CUNY)Modern Physics4-9-201912 / 54

Particle in a central potentialSchrödinger in 3DTo look for solutions.Use separation of variable methods ψ(r, ϑ, ϕ) R(r )Y (ϑ, ϕ) }2 Y d 2 Y R YR2 dR r sinϑ V (r ) RY ERY2m r2 drdr ϑr2 sin ϑ ϑr2 sin2 ϑ ϕ2Divide by RY/r2 and rearrange terms }2 1 ddR}21 Y1 2 Y r2 r 2 (V E ) sin ϑ 2m R drdr2mY sin ϑ ϑ ϑsin2 ϑ ϕ2} l ( l 1)Each side must be independently equal to a constant κ 2m2Obtain two equations1 dR dr r2 dRdr 2mr2(V E ) l ( l 1)}2 (15)1 2 Y l ( l 1 )Ysin2 ϑ ϕ2What is the meaning of operator in angular equation?1 sin ϑ ϑL. A. Anchordoqui (CUNY) Ysin ϑ ϑModern Physics(16)4-9-201913 / 54

Particle in a central potentialSchrödinger in 3DChoose polar axis along cartesian z directionAfter some tedious calculation angular momentum components L̂ x i} sin ϕ cot ϕ cos ϕ θ ϕ cot ϑ sin ϕL̂y i} cos ϕ ϑ ϕ L̂z i}(17) ϕForm of L̂2 should be familiar 1 1 2L̂2 }2sin ϑ sin ϑ ϑ ϑsin2 ϑ ϕ2(18)Eigenvalue equations for L̂2 and L̂z operators:L̂2 Y (ϑ, ϕ) }2 l (l 1)Y (ϑ, ϕ)L. A. Anchordoqui (CUNY)andModern PhysicsL̂z Y (ϑ, ϕ) }mY (ϑ, ϕ)4-9-201914 / 54

Particle in a central potentialSchrödinger in 3DWe can always know:length of angular momentum plus one of its componentsE.g. choosing the z-component3 2 - -2 -3 presentation of the angular momentum, with fixed Lz and L2 , but complete uncerL. A. Anchordoqui (CUNY)Modern Physics4-9-201915 / 54

Particle in a central potentialSchrödinger in 3DSolution of angular equation1 sin ϑ ϑ Y m (ϑ, ϕ)sin ϑ l ϑ 1 2 Ylm (ϑ, ϕ) l (l 1)Ylm (ϑ, ϕ) ϕ2sin2 ϑUse separation of variables Y (ϑ, ϕ) Θ(ϑ )Φ( ϕ)By multiplying both sides of the equation by sin2 ϑ/Y (ϑ, ϕ) 1ddΘ1 d2 Φ(19)sin ϑsin ϑ l (l 1) sin2 ϑ Θ(ϑ )dϑdϑΦ( ϕ) dϕ22 equations in different variables introduce constant m2 :d2 Φ m2 Φ ( ϕ )dϕ2 dΘdsin ϑsin ϑ [m2 l (l 1) sin2 ϑ]Θ(ϑ)dϑdϑL. A. Anchordoqui (CUNY)Modern Physics4-9-2019(20)(21)16 / 54

Particle in a central potentialSchrödinger in 3DSolution of angular equationFirst equation is easily solved to give Φ( ϕ) eimϕImposing periodicity Φ( ϕ 2π ) Φ( ϕ) m 0, 1, 2, · · ·Solutions to the second equation Θ(ϑ ) APlm (cos ϑ )Plm associated Legendre polynomialsNormalized angular eigenfunctionss(2l 1) (l m)! mP (cos ϑ )eimϕYlm (ϑ, ϕ) 4π (l m)! l(22)Spherical harmonics are orthogonal:Z π Z 2π0L. A. Anchordoqui (CUNY)00Ylm (ϑ, ϕ) Ylm0 sin ϑdϑdϕ δll 0 δmm0 ,Modern Physics(23)4-9-201917 / 54

1385Cuando ℓ 0, tenemos m 0. Ahora PY 1#φ)y la constantenormalización# de0,0(θ, ( 1 9 cos2 θ) sen3 θe3 i φParticlecentralSchrarmóödinger in 3D32potentialuaciónrepresentamoslas superficiesr5,3in a#Yφ)π# para estosl,m (θ,es c0,0 1/ 4π . Por tanto,TABLE I: Associated Legendre polynomials.éricosCuya representación es@m012Siendo las correspondientes gráficasl @1Y0,0 (θ, φ) .4π0P00 1 DiferencialesEcuacionesII011P1 cos #2P20 es(3 cos2 #La gráfica correspondiente3P30 (5 cos31)/21463 cos #)/2#P313P1 sin # Ecuaciones Diferenciales IIP21 3 cos # sin #P22 3 sin2 #Métodosy desarrolloautofunciones 3(5 cos2de#separación1)/2 desinvariables#P32 15encos# sin2 #We can then write the eigenvalue equations for these two operators: andl0 (#, ')L̂2 Y (#, ') }2 l(ll 1)Y[Capítulo3 sin3P33 15#ℓ 1 1L̂z Y (#, ') }mY (#, ')and(412)3.4.2.usedResoluciónla theyecuaciónwhere we alreadythe fact dethatshareradialcommon eigenfunctions. Then, by its very nature we can label theseeigenfunctions byl and m, i.e. Yl,m (#,según'). k sea nulo o no.Distinguimos dos casos§3.4]La ecuación de Helmholtz en coordenadas esféricas 122Y1 such(#, ')that l 0, 1, 2, · · · and0 that radialSi k 0ShowlaEXERCISE 10.142 z are integersY0ecuación(#, ') the allowed values for!0l and ! m!!!Y1, 1 (θ, φ)!Y1!the')Y(#,φ)!1,0 (θ,mz l, · · · , l 1, l. [Hint: This result can2 beinferredfromcommutationrelationship.]′′′r R 2rℓR 2 ℓ(ℓ 1)R 0Si ℓ 1 podemos tener tres casos: m 1, 0, 1. Debemos evaluar las funcionesWe Pnowgo back to the Schrödinger equation in spherical coordinatesde Legendre1,0 y P1,1 . Acudiendo a la fórmula (3.17) obtenemosl 2 Diferenciales IIEcuaciones147and we consider the angular and radiald(ξ 2 1) 2ξ,dξ!2dP1,1 (ξ) 1 ξ 2(ξ 2 1) 2 1 ξ 2Para. ℓ 2 es fácil obtenerd ξ2!2!!Y2,2 (θ, φ)!Y2 2(#, ')!!!!2!!!Y2,1 (θ,!2Y(θ,φ)2,0Y2 1φ)(#, ')Y20 (#, ')P1,0 (ξ) !Por ello,Y1,0 (θ, φ) Y1,1 (θ, φ) "3sen θ ei φ ,8π"Y1, 1 (θ, φ) Y2,0 (θ, φ) ""38πPor último, como ejercicio dejamos el cálculo deL. A. Anchordoqui (CUNY)"5( 1 3 cos2 θ),16π"1515iφY2,1 (θ, φ) sen θ cos θ e , Y2, 1 (θ, φ) sen θ cos θ e i φ ,8π8π"" iφ1515sen Yθ2,2e(θ,.22iφφ) sen θ e, Y2, 2 (θ, φ) sen2 θ e 2 i φ .32π32π3cos θ,4πModern Physics"4-9-201918 / 54

Particle in a central potentialSchrödinger in 3DSolution of radial equation d2mr22 dR (r )r 2 (V E ) l ( l 1) R (r )drdr}(24)to simplify solution u(r ) rR(r ) }2 d2 u} l ( l 1) V u(r ) Eu(r )2m dr22m r2(25)define an effective potentialV 0 (r ) V (r ) }2 l ( l 1 )2m r2(26)(25) is very similar to the one-dimensional Schrödinger equationWave function need 3 quantum numbers (n, l, m)ψn,l,m (r, ϑ, ϕ) Rn,l (r )Ylm (ϑ, ϕ)L. A. Anchordoqui (CUNY)Modern Physics(27)4-9-201919 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomWe start with the equation forthe relative motion of electron and proton222rV r U rEH U rWe use the spherical symmetry of thisequationand change to spherical polar coordinatesFrom now on, we drop the subscript r in theoperator 2L. A. Anchordoqui (CUNY)Modern Physics4-9-201920 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomIn spherical polar coordinates, we have21r22r rr112r sinsin1sin 222where the term in square bracketsLˆ2 / 2 we introducedis the operator 2 ,in discussing angular momentumKnowing the solutions to the angular momentum problemwe propose the separationU rL. A. Anchordoqui (CUNY)R r Y,Modern Physics4-9-201921 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomThe mathematics is simpler using the form1U rr Y ,rwhere, obviouslyr rR rThis choice gives a convenient simplification of theradial derivatives2rr112r22r rr rrrL. A. Anchordoqui (CUNY)Modern Physics4-9-201922 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomHence the Schrödinger equation becomes22rr 1 ˆ21Y ,LY ,Y232rrr 2EH2Dividing byr Y , / 2 r3and rearranging, we haver2r2L. A. Anchordoqui (CUNY)rr2r222EH V rModern Physics121Y ,,V r1rLˆ2Yr Yrr,,4-9-201923 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomIn2rr2211r 2 2 EH V rLˆ2Y ,l l 12rr2Y ,in the usual manner for a separation argumentthe left hand side depends only on rand the right hand side depends only on andso both sides must be equal to a constantWe already know what that constant is explicitly2i.e., we already know that Lˆ2Ylm ,l l 1 Ylm ,so that the constant is l l 1L. A. Anchordoqui (CUNY)Modern Physics4-9-201924 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomHence, in addition to the L̂2 eigenequationwhich we had already solvedfrom our separation above, we also have2rr22r 2 2 EH V rl l 12rror, rearranging22d2 rl l 1Vrr EH22dr2r2rwhich we can write as an ordinary differential equationAll the functions and derivatives are in one variable, rL. A. Anchordoqui (CUNY)Modern Physics4-9-201925 / 54

Particle in a central potentialInternal states of the hydrogen atomInternal states of the hydrogen atomHence we have mathematical equation2d22drr22V r2l l 1r2rEHrfor this radial part of the wavefunctionwhich looks like a Schrödinger wave equationwith an additional effective potential energyterm of the form2l l 12L. A. Anchordoqui (CUNY)r2Modern Physics4-9-201926 / 54

Particle in a central potentialInternal states of the hydrogen atomCentral potentialsNote incidentally thatthough here we have a specific form for V rin our assumed Coulomb potentiale2V re rp4 o re rpthe above separation works for any potentialthat is only a function of rsometimes known as a central potentialL. A. Anchordoqui (CUNY)Modern Physics4-9-201927 / 54

Particle in a central potentialInternal states of the hydrogen atomCentral potentialsThe precise form of the equation2d2r2l l 1r EH2dr2r2will be different for different central potentialsbut the separation remainsWe can still separate out the L̂2 angularmomentum eigenequationwith the spherical harmonic solutions2L. A. Anchordoqui (CUNY)V rModern Physicsr4-9-201928 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsUsing a separation of the hydrogen atom wavefunctionsolutions into radial and angular partsU r R r Y ,and rewriting the radial part usingr rR rwe obtained the radial equation2d2dr2r2e242or2l l 1r2rEHrwhere we know l is 0 or any positive integerL. A. Anchordoqui (CUNY)Modern Physics4-9-201929 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsWe now choose to write our energies in the formRyEHn2where n for now is just an arbitrary real numberWe define a new distance unitsrwhere the parameter is2naoL. A. Anchordoqui (CUNY)2Modern Physics22EH4-9-201930 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsWe therefore obtain an equationl l 1 n 1d2ds 2s2s 4Then we writes s l 1 L s exp s / 2so we getsd 2Lds 2L. A. Anchordoqui (CUNY)s 2 l 1dLdsnModern Physics0l 1 L04-9-201931 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsThe technique to solve this equationd 2LdLs 2s 2 l 1n l 1 L 0dsdsis to propose a power series in sThe power series will go on foreverand hence the function will grow arbitrarilyunless it “terminates” at some finite powerwhich requires thatn is an integer, andn l 1L. A. Anchordoqui (CUNY)Modern Physics4-9-201932 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsThe normalizable solutions ofd 2LdLs 2s 2 l 1n l 1 L 0dsdsthen become the finite power seriesknown as the associated Laguerre polynomialsn l 1n l !qL2nl l1 1 s1sqn l q 1 ! q 2l 1 !q 0or equivalentlypp j !qLjp s1sqp q ! j q !q !q 0L. A. Anchordoqui (CUNY)Modern Physics4-9-201933 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutionsNow we can work back to construct the whole solutionIn our definitions s l 1 L s exp s / 2we now insert the associated Laguerre polynomialss s l 1 L2nl l1 1 s exp s / 2where s (2 / nao )rSince our radial solution was r rR rwe now have1 l 1 2l 1R r nao s / 2s Ln l 1 s exp s / 2rs l L2nl l1 1 s exp s / 2L. A. Anchordoqui (CUNY)Modern Physics4-9-201934 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutions - normalizationWe formally introduce a normalization coefficient A so1 l 2l 1R r nao s / 2s Ln l 1 s exp s / 2AThe full normalization integral of the wavefunctionU r R r Y ,would be22 21R r Y ,r sin d d drr 000but we have already normalized the spherical harmonicsso we are left with the radial normalizationL. A. Anchordoqui (CUNY)Modern Physics4-9-201935 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial equation solutions - normalizationRadial normalization would be 1R 2 r r 2 dr0We could shows2l2l 1n l 1Ls2exp0s s 2 ds2n n l !n l 1!so the normalized radial wavefunction becomesR rn l 1!22n n l ! naoL. A. Anchordoqui (CUNY)3 1/22rnaoModern PhysicslL2nl l1 12rexpnaornao4-9-201936 / 54

Particle in a central potentialInternal states of the hydrogen atomHydrogen atom radial wavefunctionsWe write the wavefunctionsusing the Bohr radius ao as the unit of radial distanceso we have a dimensionless radial distancer / aoand we introduce the subscriptsn - the principal quantum number, andl - the angular momentum quantum numberto index the various functions Rn,lL. A. Anchordoqui (CUNY)Modern Physics4-9-201937 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial wavefunctions - n 1Principal quantum numbern 1Angular momentumquantum numberl 0R1,021.5RR1,010.52exp051015RadiusL. A. Anchordoqui (CUNY)Modern Physics4-9-201938 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial wavefunctions - n 20.8l 0R2,0224expR0.6R2,00.40.2l 1R2,1/2612exp/2R2,10510150.2RadiusL. A. Anchordoqui (CUNY)Modern Physics4-9-201939 / 54

Particle in a central potentialInternal states of the hydrogen atomRadial wavefunctions - n 30.4l 0R3,02 33 227l 1R3,1l 2R3,2296812exp/30.3 R3,00.2R3,10.12342 301215L. A. Anchordoqui (CUNY)R2expexp/30R3,2510150.1/3Modern PhysicsRadius4-9-201940 / 54

Particle in a central potentialInternal states of the hydrogen atomHydrogen orbital probability density1szn 1l 0m 0xx-zcross-sectionat y 00.3 MMZL. A. Anchordoqui (CUNY)Modern Physics4-9-201941 / 54

Particle in a central potentialInternal states of the hydrogen atomHydrogen orbital probability density2szn 2l 0m 0xx-zcross-sectionat y 00.3 MMZL. A. Anchordoqui (CUNY)Modern Physics4-9-201942 / 54

Particle in a central potentialInternal states of the hydrogen atomHydrogen orbital probability density2szn 2l 0m 0xx-zcross-sectionat y 01.2 MMZllogarithmicintensity scaleL. A. Anchordoqui (CUNY)Modern Physics4-9-201943 / 54

Particle in a central potentialInternal states of the hydrogen atomHydrogen orbital probability density2pzn 2l 1m 0xx-zcross-sectiona

Apply this prescription to angular momentum In classical mechanics one defines angular momentum by L r p We get angular momentum operator by replacing: vector r vector operator rˆ (xˆ,yˆ,zˆ) momentum vector p momentum vector operator pˆ i}r r (¶x,¶y,¶z) ¶ i ¶/¶ L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 3 / 54

Related Documents:

1. Introduction - Wave Mechanics 2. Fundamental Concepts of Quantum Mechanics 3. Quantum Dynamics 4. Angular Momentum 5. Approximation Methods 6. Symmetry in Quantum Mechanics 7. Theory of chemical bonding 8. Scattering Theory 9. Relativistic Quantum Mechanics Suggested Reading: J.J. Sakurai, Modern Quantum Mechanics, Benjamin/Cummings 1985

quantum mechanics relativistic mechanics size small big Finally, is there a framework that applies to situations that are both fast and small? There is: it is called \relativistic quantum mechanics" and is closely related to \quantum eld theory". Ordinary non-relativistic quan-tum mechanics is a good approximation for relativistic quantum mechanics

1. Quantum bits In quantum computing, a qubit or quantum bit is the basic unit of quantum information—the quantum version of the classical binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics.

An excellent way to ease yourself into quantum mechanics, with uniformly clear expla-nations. For this course, it covers both approximation methods and scattering. Shankar, Principles of Quantum Mechanics James Binney and David Skinner, The Physics of Quantum Mechanics Weinberg, Lectures on Quantum Mechanics

Quantum Mechanics 6 The subject of most of this book is the quantum mechanics of systems with a small number of degrees of freedom. The book is a mix of descriptions of quantum mechanics itself, of the general properties of systems described by quantum mechanics, and of techniques for describing their behavior.

mechanics, it is no less important to understand that classical mechanics is just an approximation to quantum mechanics. Traditional introductions to quantum mechanics tend to neglect this task and leave students with two independent worlds, classical and quantum. At every stage we try to explain how classical physics emerges from quantum .

EhrenfestEhrenfest s’s Theorem The expectation value of quantum mechanics followsThe expectation value of quantum mechanics follows the equation of motion of classical mechanics. In classical mechanics In quantum mechanics, See Reed 4.5 for the proof. Av

According to the quantum model, an electron can be given a name with the use of quantum numbers. Four types of quantum numbers are used in this; Principle quantum number, n Angular momentum quantum number, I Magnetic quantum number, m l Spin quantum number, m s The principle quantum