Synthetic Polymer-polymer Composites

3y ago
35 Views
4 Downloads
629.39 KB
15 Pages
Last View : 9d ago
Last Download : 3m ago
Upload by : Sabrina Baez
Transcription

DebesBhattacharyyaStoyko serPublishers, MunichHanserPublications,Cincinnati

ContentsPART IChapterINTRODUCTION1Manufacturing and Processingof Polymer CompositesSchuster, M. ate assembly1.2.4. Process description51.2.3.51.2.5.71.2.1.1.3.6Further . Process 5.1015Introduction181.5.2.LCM processes with single sided toolsDouble sided tool LCM processes23Thermoformingof semifinishedthermoplastic composite sheets1.6.1.Double belt press1.6.2.Continuous compression moldingRoll forming1.6.3.formingCombined1.7.1.1.7.2.forming processesThermoforming and injection/compression moldingPultrusion/impregnation and roll forming1926262627292929Post processing of compositesWelding of thermoplastics30Conclusions and outlook321.8.1.1.9.1018Liquid composite molding1.5.3.1.8.winding and placement 8References:3132

ContentsviiiChapterMelting of Polymer-Polymer Compositesby Particulate Heating Promotersand Electromagnetic Radiation2Bayerl, A. Benedito Borras, J.-I. Andres Gallego,Galiana, P. MitschangT.B. Galindo2.1.2.2.Introduction39State of the art402.2.1.2.2.2.2.3.Selective melting tive melting2.4.1.41heatingMicrowave heatingInduction4348particulate fillers49by inductionby microwave57radiationEffect of different susceptor materials57Influence of60Conceptsforandispersion quality61industrial application62Conclusions and outlookAcknowledgements63References63Further Reading64ChapterInter-Particle Distance and Toughening Mechanismsin Particulate Thermosetting Composites3H. S. Kim3.1.Introduction3.2.Various conditions for fracture surface morphology3.3.Inter-particle/void distanceandTheoretical inter-particle distance3.3.2.3.3.3.Method for inter-particle distance measurementStatistical properties of inter-particle distance3.3.4.Experimental inter-voidTougheningaround6667toughening mechanism3.3.1.3.4.distance and;7481toughnessmechanisms in the presence ofcompressive6869stressparticles/voidsNecessary conditions for cavitation3.4.2. Graphical understanding of compressive stress around particles3.4.3. Creating compressive stress around modifier particlesas a toughening method3.4.1.65;89899091

ixContents3.4.5.Production of mechanical testing specimensMechanical properties of toughened epoxies3.4.6.Fracture surface morphology ty factor influenced by compressive residualcircle analysis for fracture surface morphology3.4.9. Interaction3.5.92stress97100106of'toughening mechanismsHIConclusions112ReferencesPART IIPOLYMER-POLYMER COMPOSITES WITHPREMADE FIBROUS REINFORCEMENTChapterFracture Behavior of Short Carbon Fiber Reinforced4Polymer CompositesS. P. Bao, G. D. Liang, S. C. Tjong1194.1.Introduction4.2.Deformation of SCF-reinforced120composites1204.2.2.Carbon fiber-polymer matrix interfaceFiber length4.2.3.Matrix microstructure1264.2.4.Fiber .Fatigue4.6.Conclusions and outlookhybridization132toughness of SCF-reinforced compositesfailure138141141ReferencesChapter sing, Properties and ApplicationsPegel,T. Villmow. G.Kasaliwal,P. POtschke145IntroductionMicroscopy based characterization of dispersion, distribution,and alignment of nanotubes in polymer matrices5.2.1. Light microscopy5.2.5.2.2.Transmission electronmicroscopy148148149

ContentsX5.3.Dispersion150by melt mixingof nanotubes5.3.1.Theoretical considerations1505.3.2.Small-scale batch compounding1535.3.3.Twin-screw extrusion5.4.Morphology development during shaping5.4.1.5.4.2.5.4.3.5.5.162164165Compression moldingInjection moldingFiber spinning167169170Properties and applications5.5.1.170Mechanical reinforcement1735.5.2. Electrical conductivity5.5.3.5.5.4.5.6.Resistivity changesFire retardancy179due to external stimuli181182Conclusions and hapter6ManufacturingG. D.Liang,S. C.Properties of CarbonPolymer Compositesand ElectricalNanotube ation of carbon nanotubes194Manufacturing carbon nanotube/polymer composites6.3.1. Solution mixing6.3.2. In situ polymerization6.3.3. Melt mixing6.3.5. Aligned carbon nanotube/polymer composites1966.3.6.4.Electrical properties ofpolymer/CNT composites:1961992002022046.4.1.Percolation threshold2046.4.2.CNT/thermoplastic nanocompositesCNT/elastomer nanocompositesAligned CNT/polymer composites2056.4.3.6.4.4.6.5.Conclusion and outlookReferences215216219219

Contents7ChapterFabrication, Morphologies and Mechanical Propertiesof Carbon Nanotube Based Polymer NanocompositesT. X.Liu, D. Chen, W.TjiuW.7.1.Introduction2257.2.Carbon nanotubes2267.2.1.What is carbon nanotube?7.2.2.Mechanical properties of carbon nanotubes7.2.3. Functionalization and7.3.Fabrication ofalignment226226of carbon nanotubespolymer/carbon nanotube composites.:'. 2272297.3.1. Melt compounding2297.3.2. Solution blending2307.3.3. In situ polymerization2307.3.4.Other fabrication methods230Mechanical properties of polymer/carbon nanotube composites7.4.7.4.1.Simulation lts231and anufacturing and Properties8ReinforcedZ.of AramidCompositesDenchev, N. Dencheva8.1.Introduction2518.2.Aramid types and manufacturers2528.3.of aramidsSynthesis8.4.Commercial forms of aramids and their physical properties2558.5.Structure and258properties253ofp-aramidfibersProperties of p-aramid fiber reinforced polymer composites8.6.1. p-Aramid FRPs with thermoset matrices2638.6.2.2718.6.8.7.p-AramidConcludingFRPs ents275References275

ContentsxiiChapterLiquid Crystalline Polymers ReinforcedPolymer Composites: The Concept of "Hairy Rods"Molecular9C. Fakirov9.1.281IntroductionAdvanced molecule structure:9.1.5.9.2.Molecular282to excludephase separation9.1.2. Advanced synthesis to obtain a homogeneous blend9.1.3. Homogeneous mixtures by increased enthalpy: strong dipole-dipoleinteraction, hydrogen bonding and ionic interactions9.1.4. Advanced molecular structure, consisting of rigid and flexible segmentsRapid preparation technologies9.1.1.rigidcomposites from podesprepared286Langmuir-Blodgett techniqueSynthesis of "hairy-rod" moleculesvia the9.2.1.287of constructs of internal nanoscale architecture usingPreparationthe Langmuir-Blodgett techniqueSome properties of multilayers of hairy-rod macromolecules9.2.2.9.2.3.288290Construction of nanoscaled devices and functional materials9.2.4.9.3.292294Conclusions and outlook294ReferencesElectrospun Composite NanofibersChapter 10andK.Polymer CompositesMolnar,L. M. Vas30110.1. Introduction10.2.Electrospinningof nanofibers303;305Principles of electrospinning10.2.2. Process optimization for gaining ultrafme nanofibers10.2.1.10.3. Industrializationinahighattempts for producing electrospun materials31210.4. Compositeproducing special electrospunand316321321composite applicationsComposite.modeling the mechanical behavior of nanofibersnanofibers10.4.3. Core-shell nanofiberswith smallerincorporatedprepared by coaxialnanoparticleselectrospinningSynthetic polymer-polymer composites containingonstructuresnanofibers10.4.1. Testingfor312higher outputs10.3.2. Modified collector systems for10.4.2.311volume10.3.1. Modified spinnerets for10.5.284electrospun nanofibersor324327based330

xiiiContents10.5.1. Nanofibersasinterlaminar reinforcement of composites10.5.2. Electrospun nanofibers and their modificationsas330potentialreinforcement of polymer-polymer composites33410.6. Conclusions and outlook341Acknowledgements341References342PART IIIIn situ NANO- AND MICROFIBRILLARPOLYMER-POLYMER COMPOSITESChapterThe11Conceptof Micro-orNanofibrils ReinforcedPolymer-Polymer CompositesS. Fakirov11.1. Introduction:11.2.Preparationabrief historical overview11.2.1. Miscibility and357compatibilityinpolymer11.3. Mechanism of microfibrils formation inof the353of MFCcompatibilizers11.4. Microfibrillaronblends357polymer blends and effectthis process363composites from blends of condensation polymersprepared from blends of condensation polymers36711.4.1. Peculiarities of MFCs11.4.2. Mechanical properties of MFCsof condensation369polymers11.5. Microfibrillarcompositespolyolefinswith368prepared from blends11.6. Nanofibrils reinforcedfrom blends of condensationpolymers371composites from polymer blends37611.6.1. Peculiarities ofpolymer nanocomposites11.6.2. Manufacturing of nanofibrillar polymer-polymer composites37611.6.4. Mechanical379377properties of NFCs11.7. Effect of fibrils orientation on the mechanicalperformanceof MFCs and NFCs11.8.381from the MFC conceptOpportunities arisingpotentials of the MFC concept in the automotive industry11.8.2. Commercial potentials of the MFC concept for commodity purposes11.8.3. Potential of the MFC concept for biomedical applications11.8.1. Commercial387.38838839011.9. Conclusions and outlook393Acknowledgments394References394

xivContentsChapterMicrofibril Reinforced12Polymer-PolymerComposites via Hot Stretching: Preparation,Structure and PropertiesY. H.Chen,G. J.Zhong,Z. M. Li12.1. Introduction40112.2. Fabrication of microfibril . Threepolymer-polymer compositesdispersed phasefundamental for deformation ofof microfibril reinforcedprimary factors affectingin 40612.3.1. Composition40712.3.2. Hot stretch ratio40912.3.3.410Viscosityratioproperties of microfibril reinforcedpolymer-polymer composites12.4. Mechanical411Rheological properties of microfibril reinforcedpolymer-polymer composites12.5.1. Rheology-composition relationship of microfibril reinforcedpolymer-polymer composites12.5.2. Rheology-morphology relationship of microfibril reinforcedpolymer-polymer composites12.5.Crystallization property and crystalpolymer-polymer composites12.6.1. Crystallization kinetics of microfibril reinforced12.6.3.415418structure of microfibril reinforced12.6.12.6.2.415419polymer-polymer composites419Crystal structures of microfibril reinforcedpolymer-polymer compositesCrystalline morphology and aggregates of microfibril reinforced421polymer-polymer composites42312.7. Applicationof microfibril reinforced12.7.1. Recyclingof12.7.2. Suppressionthermoplasticpolymer-polymer composites conceptblendsof skin-core structure inparts via in situ microfibrils426426injectionmoldedpolymer43012.8. Conclusions432Acknowledgements433References433

xvContentsChapter13Microfibril Reinforced Polymer-Polymervia Hot Stretching:CompositeElectrically Conductive FunctionalizationZhang, Z.Y. C.M. Li13.1. Introduction43713.2.Isotropically conductive polymer compositeIsotropic i-CB/PET/PE13.2.2. Isotropic y conductive polymer compositePreparation and typical morphology13.3.2. The percolation behavior13.3.3. The resistivity-temperature behavior13.3.1.45145245413.4. er14Preparation, Mechanical Properties and StructuralCharacterization of Microfibrillar Composites Basedon Polyethylene/Polyamide BlendsZ.Denchev,N. Dencheva14.1. Introduction46514.2.468Preparation and morphology of microfibrillar compositesPE/PA microfibrillar compositesHDPE/PA6 systems14.3. Mechanical characterization of14.3.1. Tensile tests with14.3.2. The flexural tests14.3.3. The14.3.4. Abetween the mechanical482propertiesof PA6andPA12 MFCs14.4.Structure-properties relation in microfibrillar compositesMicroscopy studies of HDPE/PA6 and HDPE/PA12 systems14.4.2. Synchrotron X-ray studies of HDPE/PA6 and HDPE/PA12 9914.5. Conclusions and outlook517Acknowledgements518References519

ContentsxviMicrofibrils Reinforced Composites Based on PPand PET: Effect of Draw Ratio on Morphology,Chapter 15Static andDynamicMechanicalProperties,Crystallization and RheologyJayanarayanan, K. Joseph,K.S. Thomas52515.1. Introduction15.2.Experimental details: acterization532Morphology development15.3.2. Static mechanical properties15.3.3. Dynamic mechanical analysis15.3.4.15.3.5. 537539545CrystallizationDynamic rheology55115.4. Conclusions and outlook555References557Structural and Mechanical Characterizationof the Reinforcement and Precursors of Micro- andNanofibrils Reinforced Polymer-Polymer CompositesChapter 16N. Stribeck, D.Bhattacharyya, S.Fakirov56316.1. Introduction16.1.1.Monitoringstructure variation inpolymer-polymer compositesProgress in X-ray scattering16.1.3. Progress in methods for the analysis of scattering data16.1.2.16.2. Practice ofexperiment16.3. WAXD fiberand data565565566mapping16.3.1. Motivation and method16.3.2. Actions required by the16.3.3. Automated Application16.4. X-ray scattering fibertomography56916.4.1. Motivation56916.4.2. Introduction of the method57116.4.3.574Applications16.5. SAXSmonitoring ofmechanical tests16.5.1. Motivation and method16.5.2. Resultsdevelopment576576576

xviiContents16.6.Combining time resolutionand582spatial resolution16.7. Conclusions and n Opportunities of theReinforced Composite Concept17ChapterR. J.Shields, D. Bhattacharyya,MicrofibrilS. Fakirov58917.1. Introductionblends andcompositesproperties of polymer17.2.1. Theoretical aspects of permeability17.2.2. How crystallinity affects permeability17.2. Barrier17.3. MFCapplication opportunitiespropertiesas59659617.4.1.Experimental setup17.4.2. Preliminary permeation experiments17.4.3. MFC permeability investigation17.4.4. Mechanical properties17.7.598604604in vehiclemanufacturingapplicationsRecycling of blended plastic609611purposes620of the MFC concept17.8. Other17.8.1.596permeability modelingApplication opportunitiesApplications for biomedical59459517.4. MFC permeation experiments17.6.593packaging with improvedbarrier17.5. MFC592620waste streams62117.8.2. Electroconductive materials17.9. Conclusions and olylactide Based Bio-Resorbable Bone Nails:Improvements of Strength and Stiffnessby Microfibrillar Reinforcement18K. Friedrich, J. Hoffmann, A. A.Almajid, M. Evstatiev18.1. Introduction62718.2. Materials, preparation, and characterization18.2.1. Materials used62918.2.2.Specimen18.2.3. MFCcharacterizationpreparation629630630

xviiiContents18.3.635Morphology and mechanical properties18.3.1. Morphology of the samples18.3.2. Mechanical properties63563718.4. Conclusions640Acknowledgements640References640PART IVChapterSINGLE POLYMER COMPOSITES19Micro- and NanofibrillarM.P.S.Duhovic,Mitschang,Single Polymer 1. Introduction19.2.Producing polymeric644micro- and nanofibers64519.2.1. Melt blowing64619.2.2. Electrospinning19.2.3. Bicomponent19.3. Mechanicalmelt647spinningproperties of polymer micro- and nanofibersmodeling of the mechanical properties19.3.1. Characterization and19.4.Manufacturingroutes for micro- andnano-SPC materials649649650micro- and nanofibrils65119.4.2. Reactive process in situ copolymerization method19.4.3. Hot-compaction method65319.4.4. Film65619.4.1. In situ creation ofstackingpolymer655method19.4.5. Resin infusion method65619.4.6. Overheating method65619.4.7. Co-extrusion method65619.5.657Commercially available SPC materials65719.5.1. Curv 19.5.2.19.5.3.PURE PARA-LITE 659PP65919.5.4. Armordon 19.5.5.659Kaypla 66019.5.6. Comfil SPCs and injection moldable SPC pellets(ESPRI project)66066119.6. Case studiesin situ creation of nanofibrils and hot19.6.1. SPCsby19.6.2. SPCsby melt spinning andin situcompactioncopolymerization66166519.7. Summary and outlook667References667

ty-BasedSingle Polymer CompositesJ.Karger-Kocsis, S. Fakirov20.1. Introduction67320.1.1. Definitions20.2.Preparation of674single polymer composites675Stereoregularity, crystallization and polymorphism in polymers.!67720.1.2.20.2.1. Stereoregularity of macromolecules67820.2.2. Crystallization of polymers67920.2.3. Polymorphism in polymers68020.3. Amorphous matrix with amorphous reinforcement20.3.1.20.3.2.682682Single polymer microcompositesSingle polymer nanocomposites68320.4. Amorphous matrix with semicrystalline reinforcement68320.4.1.Single polymer microcomposites68420.4.2.Single polymer nanocomposites68420.5. Semicrystalline matrix with semicrystalline reinforcement20.5.1.20.5.2.685685Single polymer microcompositesSingle polymer nanocomposites69120.6. Applications of SPCs69420.7. Outlook and future Layered Polymer-Polymer CompositewithNanocompositeW. H. Ruan, T.M. Z. Rong, M.asReinforcementCzigany, T. Barany,Q. Zhang69921.1. Introduction21.2. Graftpolymerizationontonanoparticles21.3. Oriented PP reinforcements filled with21.4.nano-Si02700702Manufacturing and characterization of PP homopolymer-PP copolymercomposite with nanocompositeasreinforcement71121.5. Conclusions715Acknowledgement716References716

ContentsxxChapter 22Manufacturing of Self-ReinforcedAll-PPCompositesA. Bledzki, H.-P. Heim, D. Pafimann, A. Ries22.1. Introduction22.2. Self-reinforced22.3.719thermoplastic fiber composite materials719721Manufacturing concept and composite structure22.3.1. Primary shaping22.3.2. Semifinished product manufacturing22.3.3. Compaction and molding72122.3.4. Composite72322.4. The722723structureprocessing technologyof hot-compaction72422.4.1. '.Molding strategies22.5.1. Thermoforming hot-compacted semifinished plate products22.5.2. Compression molding in combination with the hot-compactionof semifinished textile products22.5.22.6.Property spectrum22.7. Fields ofof SR-PPapplication727728729compositesfor self-reinforced726organicsheets made of PP73222.8. Conclusions and Single Polymer Composites via Shear ControlledOrientation Injection Molding (SCORIM) orOscillating Packing Injection Molding (OPIM)TechniquesJ. Lei, Z.-M. Li23.1. Introduction73923.2. Self-reinforced polyethylene by SCORIM techniques74323.3. Self-reinforced polypropylene by SCORIM75523.4. Otherpolymer compositesreinforcedtechniquesby SCORIM techniques76423.5. Conclusions and outlook765References765List of769AcknowledgementsAuthor Index781Index785Subject

Synthetic Polymer-Polymer Composites Hanser Publishers, Munich HANSER Hanser Publications, Cincinnati. Contents PARTI INTRODUCTION Chapter 1 Manufacturing and Processing . Properties of p-aramid fiber reinforcedpolymer composites 263 8.6.1. p-Aramid FRPswith thermoset matrices 263 8.6.2. p-AramidFRPswith thermoplastic matrices 271 8.7 .

Related Documents:

as reinforcements for polymer composites. This replacement could be again synthetic, petroleum-based polymer but prepared as fibers, micro- or nanofibrils. Of course, this approach is not as advantageous as using natural fibers that are biodegradable and eco-friendly. At the same time, the synthetic polymer-polymer composites seem to be much

5 NATURAL FIbRE-SYNThETIC poLYMER CoMpoSITES 28 5.1 Wood Plastic Composites 29 5.2 Natural Fibre Injection Moulding Compounds 30 5.3 Non-Woven Natural Fibre Mat Composites 32 5.4 Aligned Natural Fibre-Reinforced Composites 33 6 FULLY bIo-bASEd CoMpoSITES 34 6.1 Natural Fibre-Bio-based Polymer .

Important types of modified polymer systems include polymer composites, poly-mer–polymer blends, and polymeric foams. 1.3.1 Types and Components of Polymer Composites Polymer composites are mixtures of polymers with inorganic or organic additives having certain geometries (fibers, flakes, spheres, particulates). Thus, they consist of

Nowadays the field of synthetic polymer-polymer composites (PPCs) is characterized by very rapid progress. It is because new ideas forming the basis of new technologies often require new materials to be developed. Thus new materials such as nanofibers and nanofiber reinforced

mechanical characteristics and the potential application of hybrid polymer composites. this paper concerned on different 1. Introduction Hybrid polymeric composites are new and more developed composites as compared to the traditional fiber reinforced polymer composites. FRP composite contains on one reinforcing phase in the single matrix but

Microfibrilar Composites Based on Polyethylene/Polyamide Blends 2012 464 Synthetic Polymer-Polymer Composites Editors DEBES BHATTACHARYYA and STOYKO FAKIROV 11 Center of Advanced Composite Materials, University of Auckland, New Zealand 12 ISBN (Book): 978-1-56990-510-4 16 ISBN (E-Book): 978-1-56990-525-8 17 HANSER PUBLISHERS, Munich 18 Chapter 14

Plastics and polymer composites are still essential to a wide range of safety and performance breakthroughs in today’s cars, minivans, pickups and SUVs. In fact, the use of plastic and polymer composites in light vehicles has increased from less than 20 pounds per vehicle in 1960 to 351 pounds per car in 2018.

courts interpret laws, adjudicate dis-putes under laws, and at times even strike down laws as violating the fun-damental protections that the Consti-tution guarantees all Americans. At the same time, millions of Americans transact their day-to-day affairs with-out turning to the courts. They, too, rely upon the legal system. The young