Fermilab

3y ago
30 Views
2 Downloads
3.43 MB
25 Pages
Last View : 18d ago
Last Download : 3m ago
Upload by : Lee Brooke
Transcription

IFermilabp Note #366(Revised—June 1984)VAX DATA BASE NA2 {ES FORTHE ANTIPROTON SOURCED. McConnellJune 1984

REVISEDREVISEDREVISEDVAXREVISEDREVISEDREVISEDDATA BASE NAMESFORTHE ANTIPROTON SOURCED.11MCCONNELLJune1984VAX data base names are the names for devices that are used on ACNETparameter pages for accelerator control and data plots.Since manypeople will use(t pe) these names many times a hopefully easilijlearnable naming system that meets or exceeds ACNET requirements hasbeen devised and revised.To meet ACNET requirements1 all device names in the Antiproton sourcemust be an 6 character string that begins with either A:or D:orone of the other beginning letter designators already in use in theAGNET database (like L:B:M:T:5:).For many reasons5the operations group desires to keep the number of beginning letterdesiqnators small. . .All device names in the Antiproton source will fit the following divisionof devices. (‘X” stands for any uppercase letter or digit)A: XXXXXX D: XXXXXXExclusivelyforlocation/numberDebuncher deviceslocation/numberM: XXXXXXM: XXXXXXD: XXXXXXB: XXXXXXB: XXXXXXB: XXXXXXAccumulatordevicesin the ranqe 100 to 614i-sifintherange101to 819Proton line (120—150 0eV) deviceslocation/numberin the range 100 to109Proton line reverse (8Gev)deviceslocation/numberin the range 200 to207Injection line deviceslocation/numberin therange700to733Transfer line deviceslocation/numberin therange800to 807devicesin the range900toExtractionlinelocation/numberBooster test line deviceslocation/numberin the range929100 to 110

For almost all device names, the first two characters followingthe colon contain device type information or information whichdetermines which antiproton source subsystem this device belongsto. (like LLlow level RF)When possible the device location/number is specified as after aparticular quadrupole magnet, but before the next quadrupolemagnet.Detailed(some examples will clarify this)drawingsofthe ringandbeamlinelocation system areavailable.A legend for the device function characters, as wellas an up to date listing of devices and VAX data base names isavailable in the PHAR controls equipment data base.The following are some examples and explanations of device names.A: 5P309BACCUMULATORA:SUBLIMATION PUMP.SPIN SECTOR 303BETWEEN QUAD 9 AND QUAD .0. 09THE SECOND ONEB.A: 13S O7ACCUMULATORA:BDIPOLE.SHUNTIN SECTOR 50BETWEEN QUAD 7 AND QUAD 8.SS07I): HiOBDEBUNCHERHORIZONTALCORRECTION DIPOLEIN SECTOR 10BETWEEN QUAD 6 AND QUAD 9H.08.7I): Q716INJECTION LINE.QUADRUPOLE BUSBEGINNING QUADRUPOLE 16.Q

1): LLkC1DEBUNCHER LOW LEVEL RFROTATION GATE LEVELAND ENABLE.,THE FIRST ONE.D: LL1D: R1A8VDEBUNCHERRF HIGHGRAIDENT SYSTEM.ANODE VOLTAGE FORCAVITY NUMBER 8.D:R1A8VI): DVAW2DEI3UNCHER VEt TICALBETATRON COOLING.1 WATT AMPTHE SECOND ONED:DVAW2I): 3PT011STACK TAILMOMENFUM COOLING5 NSEC TROMBONE LINE.THE ELEVENTH ONEDEBUNCHERD:SPTO11Suggestions to clarify and simplify the device naming system arewelcomed.Also anyone with strong opinions on names for theirde iices should contact Ernie Malamud or Dennis Mcconnell.

Followingis apartiallistof nemonicsVACUUM DEVICE MNEMONICSBV B AM VALVECC COLD CATHODE1G.-ION GUAGEIP IflN PUMPRP- ROUOHING PUMPRV ROUGH INC VALVESP SUBLIMATION PUMPTC PIRANI—PENNING GUAGETP TURBO PUMPMAGNEr DEVICE MNEMONICSB BENDINC DIPOLEIN RINGD DE FOG USINGF FOCUSING IF EMBEDDEDH HOR 1 ZONTALQ QUADRUPOLES SHUNTT TRIM OR TUNINGV: VERTICALC S CONTROL AND STATUSK) KKICKEROCT OCTUPOLE(NOT A DENAME)SEP SEPTUIISEX SEXTUPOLESTOCHASTIC COOLING DEVICE MNEMONICSSP STACK TAIL MOMENTUMSW.STACK TAIL HORIZONTAL BETATRONSV- STACK TAIL VERTICAL BETATRONCP CQRE MOMENTUMCH CORE HORIZONTAL BETATRONCV CORE VERTICAL BETATRONDH DEBUNCHER HORIZONTAL BETATRONDV DEBUNCHER VERTICAL BETATRONAW ONE WATT AMPALL OW LEVEL AMP2T TWO—THROW SWITCH4T FOUR—THROW SWITCH6T SIX—THROW SWITCH8T EIGHT—THROW SWITCHXT TRANSFER SWITCHT0 TROMBONE LINE5 NSEC T1 TROM8ONE LINE 1. 5 NSECPS PIN SWITCHPA PlN ATTENUATORPM TWT PROTECTION MONITORTC— T!]ERi1OC OUPLEfor AntiprotonSource devices

-RF DEVICE MNEMONICSD:R1 DEBUNCHER HIGH GRADIENT SYSTEMD: R2DEBUNCHER GAP & DIAGNOSTIC SYSTEMD:LLDEBUNCHER LOW LEVEL RFD:RF DEBUNCHER GENERAL RFA:R1ACCMLTR STACKING SYSTEM (IF USED)A: R2 ACCUMULATOR UNSTACKING SYSTEMA:R3 ACCUMULATOR BUNCH NARROWING SYSTEMA:R4 ACCUMULATOR EXTRACTION SYSTEM 7?A:LL ACCUMULATOR LOW LEVEL RFA:RF ACCUMULATOR GENERAL RFF POWER AMPLIFIERL (FINAL)D-DRIVER AMPLIFIERC -CAVITYThTUNING POWER SUPPLYAr-ANODE POWER SUPPLYG GRIDPOWER SUPPLYC CONTROLIF AT ENDS STATUSIF AT ENDT:-TRIGGER OR TIMINGRG--ROTATION GATEDG -DEI3UNCH GATEP H P HASEPS PHASE SHIFTERPW-POWER SUPPLYPGM PG PROGRAMPPG PARAPHASE PROGRAMFB FAN BACKPF POWER FOWARD (RF IN)PR POWER REVERSE (RF OUT)HT- HEATERTP TEMPERATUREV.-- VOLTAGEI

1ARCE STATION DEVICE MNEMONICSD:BS BEAM STOP DEVICESD:SM:TARGETING SEMS DEVICESD: TR-. TARGET DEVICESD:LNLITHIUMD:PMPULSEDD:BDBEAMLENS DEVICESMAGNET DEVICESDUMP DEVICESD:ARTARGET AIR SYSTEII DEVICESX HORIZONTAL POSITIONY VERTICAL POSITIONZ POSITION ALONG BEAMRT ROTATION POSITIONOE OUTER ECCENTRIC POSITIONIE INNER ECCENTRIC POSITIONH HOR I ZONTALV VERTICAL OR VOLTAGEHV HIGH VOLTAGELV LOW VOLTAGEPK PEAK QUANITYBM- QUANITY AT BEAMB MAGNETIC FIELDKPSSTRAIN GUAGE READINGTC TEMPERATURE OR VACUUM GUAGET TIMING OR TRIGGERP AIR PRESSUREM—AIR FLOWARP ARGON PRESSUREWP WATER PRESSUREWM WATER FLOWWN WATER CONDUCTIVI1WRH REI.ATIVITY HUMIDITY.1

AU.1.1EL.JJL. IUSA‘ft3.IaazUi(.2IBISE6C‘aIU.UCCiI ii ft .

4’-’)Cu0’—CuC -N- -‘NC’ 0C’)0CuNInNqC) .CL’)C.-‘CInN— V.CuN.—CIn‘-‘—.—C)CuCU tC’)-40C’)‘-4InIn‘.4 C)C)00 t t0 0‘0‘—CuCuC)0)I.-)Cu4’C’)C)- n0C’)0‘0‘0‘0CCC CC—00000CuC0Cu0- —0t’)ii)0—0CuCu0CCCoo0C)CCC0ooC0r 000C’)CuC0 0000C00C �� CuCu0’Cu4NUC’)00‘ 000C00InCICI1CuCIC)4’u CC)‘-IU)’ICUtCl IC41—N- ��).00o0C0C 0C0’U)00CNCCLi)00’0’0C00NCuNInN �-4C)Cu0-CuC)Cu—Ciai CuCu ?C)‘-40C’)-4InIn4 C)C)ZICC ��)oCCCCCC0C)‘0CC—0Cu000CCuCu0- C’)00.4CC)CCC0C’)C)0—C)0InInC—0InIn0Cu‘ CuCCuCuCuCU—Cu—CCCCC0’C. ‘0C. ‘U-Cu NCCuCIn—In0Cu —C’)‘000’CCu‘ C CNCCC ‘000NCNC0000’LI)- C7’-NN0N0C‘—CuC0’‘—0’CCCu0“12.CoLi 04 UCi)LiiU)WC 440 —CUoZ4C-4‘.‘I—CC’)C—CiiCl)‘ :I- LCI-444UU)r -‘Z0LiiI-4Uo.iiop

Ii1 -Ii:-;——4j——CU)CU)‘ —O 0’CU‘0—0—CU)CU)(U)‘00 ‘ft‘0CU‘0CU0ftCU)0 ft iL——0CU0I:0CLCU)Ci0-ft.-q- CUCUCU‘- UCU0‘0000‘000000-4000U:0000’0’0CUCUCUNN ��000CU)0000—OCU0(U)CUCU ��1o:04!-ft——(U)(U).0CUI 0—.— ‘-ft—C00000000000000——C 0——CU- .4ftCUCU)—CUCU0U)CUCU CU)0CU)CU)—0-CUCU —-ft0-‘-s‘-40—-s(U)—U)CU)(U).00 0‘- �—CU0000000000(U)CU)00000CU)- 000 00000000—-S000000000.0—0CU)00 4!aiU)z,0Di:00:CI—:w0U‘-.N- 0000000‘? 000000C00—0000000 0‘-ft0000 00000 0 I00CU- - 0000(U)CU)CUCUCU0‘000NNCU4 CU t(U)CU)N(U)CU)00- N- 4: !0CU)CU)0N0000UCUCU CU 00’.“ 4U04U040I00000NN0.E00.004004UU0 Di0Di00.0000E0 -4 z0— 0UUU)4U!-4UUWa.004U-.-. Di0Di 41400)4U0000 — U0 Di0)4Di0U40DiU0I0—Z4u.s 004UI-Z 0U00014 - DiUI —ZI000.0a 0U04 I-’0014 -3I’-0I—31-ft 0CU-.4DiZ41100I—Z0UI—0000U049- -.0 ‘.40zDi—1U)01Z0II-. I-U.400DiI—9—0Ia.#4r‘.4U) Di- 0. -19—1Z0U0 I0‘-ft00 E 0000014Z4N-E r000a.a0Z0U0DiCZ-40 1

. lU)q-CU)‘0q.ft‘. 00.‘‘ 00LulOI!I-f0I0000041U)-41 0U)0000 I0419-I00000000900CU)00000000000.ft—41Dl9-I slU) (U)‘0‘-ft .ft‘.40000ZIU) 0U)CU0—ft‘ 0‘0CU‘000CL0CU)—00Lu Lu14?I-!0!9-? !0‘-ftU.!U)10H!4:010U)! I010C)!4!OiOC0 0! CZICIZli Di0ZI- C) CUCUCd00 0Di013!ft- -224IU)ZDi Di1U)I00)0Cd ELu 0 CI)UC Lu109 -Cl)Lu1 9-I-Z0uL E‘A.7.

1Lk‘44I-.I4J4.121041-4U)!3ir04,.4 0)10 0)0.DiLU)‘.40)4.0)0)4C!0414.HI -4.0)4-4’L.b-.4001:0)9-i’0!H,30EZ0 4 0)30Z10 43DZ3DZ2:0.4‘.ft10)Uft10 ��00oN3Dz 0)0)4.C)‘03Dz30zoCUU)U)30z30z3Dzo0000U)- 0444Di140’.1 : :ft-- - 2:Z )3Di0.02:1LU04‘4 0Z42:Di -30LuLU2:40002:2:00000404Di0.0z 0)2:2:3Di0.0z2:400002LuU)33D -I0DiDi0)02:40002:4o00—1004.00P N- ‘-00)-40)‘- Cd0)—00--4-.- -) 2:HZ—I24Di00IZ4Di

QapL J1i q0)90)—412:10.14IH0ZC!4.0)Zq0)4.0)C!0 4 - 2:0.4U)U)U)U)U)‘.4.4-4.4034.0)44.0)3C! 402.4.0)2:4.0)42:0.4U)U)0.a.2:1330zft ?0. IZLuU)—4.4.0)0)0)C!C!44C! 0)0)H0LU0ozH0oz‘:1-: 4.4.4.0)C!0LUI44.4.4.0)0)0)0)43I4.0)4.4. 0244.4.0)0-40)HI(I)l4.9 -4 45-44.0)4. 0)2:Z00.4 -)-.44r 4.0)4.0)C!0 0)4.4.2020I2- -,U)U)020‘-ft0)0)00- )Ow‘v s10IC1’04?CU0)0)‘0IO4.0)00‘- ‘00C)4.00U)000‘.‘. 000CU00U)CUHI.4121N‘.4‘2:) —‘ C12:2:000040U)I0WI2:?C! 02:04- LuC! 0C,0C!2:0H0H0LU(I)C!44400U)ILUI2:40) 40 - 0LuLu0)0LULU0) I000LU02:40 -41Lu2:C!4002:.4002:0LU I0LULu0) I0LuLU0)00U)0.02:402:42oHU)—Z402:40Hz00DiI. 9-o0).4C!0LU02 -)-o0LUU)020Z.45- ‘r00HHHH33 ft004 H0)ICU - - —Z40Lu0LuZ4LUU)2:DiLu0)Lu0)2:Di 400420II2:LUI102:HLUI000LZ04Di0004H. C!01HHH0)14.0)I0)ILu10.E2:.4.4U)XzZOE 0 2‘.4424- ft’i ‘.44.ILU2U)242:4.1Lu04‘4)C!4N‘ C!2:LuC!2:LU 410 0102:LUHHI4LuI0.HI0I 2:2:0H0I02:)(0(I)I0I—0)2:Z00 C!0.110)424Ea.0)E0.0)HZ002:2:2a.

Iit,.--“UfJJ0iAJ /14.0)C!044100‘-4U)IHU)IH0 0CU)ICUCU)ICUZ0.Di2:0.44‘sO04’0)200.0 os1-014-’1-00o’0as 4.0E 010130Z‘00UU?0101--SIn4-4;.;0‘.444-—n014.404 44 .0 301001-0.004.4HI2:!300oZ2:Di2:2:60c2:CU) s(U)U)0rU)UI-U!I-.00J-- 001.0 LI 0 .4.’.4. 04 01 LI--4 . E 0130‘0 0Z 01 ,00‘0‘I4.010.-4 4’.0I0 014401001-.O01-44.4.0‘0—ft0 4400-4000-— 01 0 Di .V ‘.4OO140100E 4- I-U4 ft41)00- I00C0)00-4N0C)4.C)U)0C)00.04. ‘N“CL0)CU)000IDiOU)1-2;4 LU01I001’00 .-.0‘OHS-J2:01-2:—3‘U22:Lu.1.102:22 Z0Z.4 4.C)‘oCUCU0)0CUCUr4.4 02: 2:2:‘J) ) 02:. -.00.1Lu4Lu.42:HU)I02:HZ00CI)9 .2: H2: .-.00EUow 1-4uD 0 u ’1-4‘04-4 1 004 H4- 04.00 UO.0Hr3 -0Di LU‘‘.‘CU4.CU)OU4.4C!012-.‘4.010WLu2:CU CU) —-4-4Di—or‘00 0W0)— UO0E1.-s.-44 ft4.’4. 44444-4ZZ000150)4’s-s0HHHHHC! 0’0.5.4I- E0 01.4H0H04.4.U)U)US—0Q’OCI)00.00-j00000001.4.4 U?.4.44 014II4-.0C!4I0II000000(.44-44 01‘-ftE4ft0.0;.4?‘0;.:144.0 U?4.4 4. 4.1-0O.4.’44-— 2: ‘0WOECI:100‘0.0 4.440001 0.1.4 01 44 U?ZI.00100101-2:Co000 00000OCU4.U)U)CU—.0‘04 ’.0001.01100Zo.44.4.41-001 0HOu.02:00000044444.4444444000000r-- iLL

EXPLAINATION OF12—BIT MADC COUNTAt presents the allocation of MADC channels for beamline magnetpower supplies ring and beamline correction elements and shuntsdoes not include reference(digitizing the dac output) channels.Since these supplies are not ramped supplies it is expected thatreference channels will find littel utility.Experience from theoperation of similar equipment in Switchyard shows that the controlroom procedurewhen a problem with a power supply exists is todrive out to the supply with a replacement camac card and changethe card, and then see if the problem is corrected.The following table summarizes MADC usage:-CATAGORYLOCATION 0-11UNKNOWN0—1APTB0———11021UNITS000-00002 203 UNITSreferencee x pa ii s i on2——3 -2—262 SPARES 26 UNITSTAI LE NOTES(1)Diagnosticcataqoryhas 108 distributed(BPM/BLM System)channels counted in the Maqnet and RF cataqories.( )Stochastic60 channelsU3)coolinguseof MADCchannelsin APlO and 20 channelsi-sformadcthermocouples5in AP3O.As per Dixon Boqert request5 3 MADC units(other catagoryY areincluded in the count should the need ever arise to providere- erence channels.rhe required capacity easily exists in theTarget building5 F234 F275 and 3SF.One unit would be requiredin buildings 10,30, and 50, thus the 3 “other” units.

—UTILITY MONITORING FORDennis11THE ANTIPROTONL.LJ.ILC-SOURCEMcConnellJune1964The purpose of the utility portion of the FIRUS system is toalert humans in the main control room, at Phillips farm, andinbuilding 10 control room when either environmental conditionsare unhealthy for antiproton source devices, or electrical ormechanical equipment is malfunctioning.When first envisioned,the FIRUS system consisted of the following equipment:(1)(2)(3)(4)(5)(6)(7)2 FIRUS mini—computers (wall mounted, 1 fire, 1 utility)emergency power supply (also wall mounted)coax hardline communication cablejunction boxescontact points and analog transducersthree—pair 18 gage shielded cablesilent printerEach mini can monitor 16 contact points or 15 analog points ora combination of contact and analog points.Each contact pointcan be more than one physical point if the points are wired inseries.An alarm then indicates any one of a group of pointshas opei ed.The following devices/quantities are proposedby the utility portion of the FIRUS system: (2)(3)sump pumpsLCW (Low Conductivitytobe monitoredWater)auxiliary generator(4) service building nelthe numbertemperaturehumidittjof quantitiesto be monitored*(seetableI)wasdetermined, it was found that two or three minis would be required or a FIRUS crate could be used. A FIRUS crate is an “old beamtransfer crate” with 25 slots which hold cards to either monitor16 contact points or 15 analog points. The space requirement forthe crate system is about half a relay rack.The emerqency powersupply could remain wall mounted or it could be rack mounted withthe firus crate.Conversations with Al Franck and Rich Mahlerconcerning availability expandability,cabling, and cost indicatethat the FIRUS crate is the preperable option for the antiprotono ui t Iwo contact sets per sump pump would be used.The first openswhen a controlling float reaches a high water positions and thesecond opens upon loss of 120 VAC power .to the pump.

‘the LCLJ cooling system for the rings enclosure will be derivedfrom new equipment in the Central utility building (CUL3).Onetransducer for water pressure and one transducer for watertemperature will located just downstream of the lOOOgpm,lSopsipump in CUB.The LCW cooling system for the antiproton target halland pretarget enclosure will be extended from the main ring LCWsystem at service building F—23.Since the main ring LCW systemis already monitored by FIRUS, no additional monitoring isnecessary. as is true of the hot water (HTW) and chilled water (CHW)systems used for heating and airconditioningThe auxiliary power generator (to be located outside servicebuilding 50) has a panel (to be located inside service building50) with 8 monitors of contacts.A FIRUS contact will be wiredsuch that if any one of these 8 monitors trips1 the FIRUS contactwill open,indicating trouble with the auxiliary power system.Service building temperatures are proposed to be monitored witheither one to three distributed contacts that open upon a hightemperature limit and one contact that opens upon- a low temperaturelimit or two distributed analog temperature sew s rs with FIRUSsoftware set limits.The service buildings are heated andairconditioned, so temperature monitoring provides a check on thecorrect operation of the air handling units.The high temperaturelimit will insure a healthy environment for the electronic equipment,and the low temperature limit will protect water pipes from freezingin winter.An analog temperatureproposed for the stubsensor with FIRUS software set limits isrooms.Human access to the antiprotonrings enclosure will be prohibited if a beam is present. Remotemonitoring of environmental temperature allows an.operator tocomfortably assess any long term danger to electronic equipmentan d decide if and when an access should be preformed to investigatea high temperatureindication.Also, during bakeout of theaccumulator,access to the rings enclosure will b5.e possible5 butnot comfortable.The high temperature limit for electronics ishigher when the electronics are not operating5 and the flexibilityof a analog temperature sensor would be very useful.The rings enclosure is heated and indirectly airconditioned byservice building forced air ventilation.The possibility ofelectrical equipment damage due to condensation e,ists in thesua iner when warms humid air could be cooled in the nearlyconstant temperatures below ground rings enclosu9’e.An analoghumiditu sensors with a FIRUS software set limit is proposed insselected stubrooms to provide a check on the ventilation system.I ecause of the limited access to the rings enclosures theselection of temperature and humidity transducers to belocated there should emphasize hiqh reliabilitu and nope’i’iodic maintenance or calibration.Fol]owing is a list of monitor points (table I) ,ensor hardware(tableII).and alistof

FIR USROOMPASILENTPRiMTEE? i T Wi 1L 4 AJivet.

T,q, g T,qM7Y P1 Qx7v,V -IT/Z./77rYPs , Cde&LA/ce /vT 4c7)0c2hVZ /Ty,” sse-I-s.p-.2sdo—z u m:f1-3Sp-3SP--3AT k/c, ’/ s-i,rE, A-Rio7 -JM46iJ JM A IMPAT 4o5J 12.o L/ACAAW 7 .4V,V4 S JMP 4/A1J A-P 44 TS M1A?iTh1Nw42 4p 6I’sp- I,I,IfI’2 i8-ez13zos e-iz2 ”l 8-132o1 -izSP-8I,ff‘Isp-.9tSf j qiii-Ic’I-ic’4.-Il1/(1iiiiCCCC5-‘IV/1-s.2ot -I,4At (/ TA4dVM 2CCCs-p-I,STjO j/se-i;’7)9 QG -7 St -Tio4‘II’(1SP-q3‘I -I2K21-7 L.CkV-Ti 2f- L V- ,‘JL-JX-P ’VCs-fl?1)I)II1)111/CI)CC61fIt1/I’1/ii‘ gOc -OCCCCCC1)1/1/CCCCC1/LC’vLCSr 1/C7 M Pi ’47 k6’46 N A7&

-I-1TAA’2 2po,,vrM4A16Lo( 4? r ’/V2 I,4910-TIAelo2-Z2.32-42-S2-92-62-92-102-112-4 22- 3-4Li 4Pw- TZ ,4P10 — Ai4A IO 41? 4jOj7QA d ‘frji2-T4bP. 7Z3 A’-P?Q A34,404?LTh A3’14 PX’-714 PS C,-T2 ,4.-PsVASI4Pst’-734gOTi . 114prt- r2A9rt—G1 7 ei r/OVIf‘II,ifiiIi3-2 T—TtA ti1lC2T- 1T- 3T-T /11/1/Iii‘I-UCiiCC‘ICii1’IIIfCI,C.111/C .kr1 AT&’1 pj i4q-’ieL 010 TLJ8‘II,I—7 JMM6L.STA/ 6’C11II 14’QIIliI’DIC ‘/1I,F27—TrT--t167-7 2 .Th7,nPE 4 TiJ, IIAPt8- 84’F23-rTYA Ai A-ij A &n zsA, 47LJ,e LiAw A/ O ThjMV L‘4/kAA-?O4II ,A’‘4-,4 Q STI-le5ftft.AJ4 s7s4e, 1s JA#l /0/77I

N“4N0IJj( v II4 1z( )Ig(‘IU)C,,(%4‘.4V 41 hv)NbV)-4 ft 4tLt % ia.-J

I—:,.1.

aw one watt amp allow level amp 2t two—throw switch 4t four—throw switch 6t six—throw switch 8t eight—throw switch xt transfer switch t0 trombone line 5 nsec t1 trom8one line 1. 5 nsec ps pin switch pa pln attenuator pm twt protection monitor tc— t!]eri1oc ouple-

Related Documents:

Fermilab services account (ECL) - this is the account you use for service desk tickets, Fermilab email if you have one, etc. And an ECL account Fermilab Kerberos account (ssh/sign into Linux machines) - this is what you need to set up to ssh to Fermilab

Fermilab is one of 17 national laboratories of the U.S. Department of Energy. The Fermilab accelerator complex is a DOE users facility and provides beams for neutrino, muon and other particle physics experiments. Fermilab also serves as the U.S. hub for scientists wo

UCI-HEP-TR-2010-26 FERMILAB-PUB-10-436-T Interpreting Dark Matter Direct Detection Independently of the Local Velocity and Density Distribution Patrick J. Fox,1,2 Graham D. Kribs,1,3 and Tim M.P. Tait4 1Theoretical Physics Department, Fermilab, Batavia, IL 60510 2School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 3Department of Physics, University of Oregon, Eugene .

FERMILAB CONSTRUCTION SUBCONTRACT TERMS AND CONDITIONS Fermi Research Alliance, LLC d/b/a Fermilab 1. Site Investigation and Conditions Affecting the Work 2 2. Payments Under Fixed-Price Construction Subcontracts 2-3 3. Changes 3 4. Differing Site Conditions 4 5. Specifications and Dra

-A Fermilab ID number (sign in with the Users' Office and get a badge with Key and ID if you plan on staying at Fermilab longer than for just a meeting). It's always good to check with the Users' Office first-A Fermilab Services Account (web services: Service Desk

Hazard Communication (HazCom) FN000156/CR Welcome to Fermilab’s class on Hazard Communication. Slide 2 Fermilab New Employee Orientation 1. Learn the purpose for the creation of the Hazard Communication (HazCom) Standard 2. Learn the 5 elements of the HazCom Standard 3. Le

Fermilab's organization and infrastructure continue to evolve primarily in support of hosting the international Long Baseline Neutrino Facility (LBNF) and the Deep Underground Neutrino Experiment (DUNE). By extension, the ongoing build-out of the Proton Improvement Plan-II (PIP-II) accelerator at Fermilab is a top priority for the laboratory.

Installation & Configuration Manual -Docker Release Version 1.0.1 By Fermilab Network Research Group Oct 2016 . 2 About DOE's Advanced Scientific Computing Research (ASCR) office has funded Fermilab and Brookhaven National Laboratory to collaboratively work on the Multicore-Aware