# Chapter 9 Answers - Portal.mywccc

2y ago
25 Views
672.21 KB
10 Pages
Last View : 29d ago
Transcription

Chapter 9 Answers9.Practice 9-11. No; the triangles are not the same size.All rights reserved.2. Yes; thehexagons are the same shape and size.3. Yes; the ovalsare the same shape and size.4a. C and F 4b. CD and C D , DE and D E , EF and E F , CF andC F 5a. M and N 5b. MN and M N , NOand N O , MO and M O 6. (x, y) S (x - 2, y - 4)7. (x, y) S (x - 2, y - 2)8. (x, y) S (x - 3, y - 1)9. (x, y) S (x 4, y - 2)10. (x, y) S (x - 5, y 1)11. (x, y) S (x 2, y 2)12. W (-2, 2), X (-1, 4),Y (3, 3), Z (2, 1)13. J (-5, 0), K (-3, 4), L (-3, -2)14. M (3, -2), N (6, -2), P (7, -7), Q (4, -6)15. (x, y) S (x 4.2, y 11.2)16. (x, y) S (x 13, y - 13)17. (x, y) S (x,y)18. (x, y) S (x 3, y 3)19a. P (-3, -1)19b. P (0, 8), N (-5, 2), Q (2, 3)A Practice 9-21. (-3, -2)2. (-2, -3)3. (-1, -4)4. (4, -2)5. (4, -1)6. (3, -4)y7a.yTB 42 6 4 2 22 4 B T A10.T yT4 6 4 2A11.6 x42 4 4B B A yT 6 xT44L 2 6 4 2 O 2 I 46 xK J B A 4A yB 12.y7b. Pearson Education, Inc., publishing as Pearson Prentice Hall. 8 6 4 2A 268 xBI J O 2 6L 2466 x2 6 4 2 2y4Z A2Y 6 4 22 4W 48b.6xX 13. (-6, 4)1. I7.2. I46x14. (-8, 0)3. I15. (0, -12)4. GH5. G6. STU TP4Y 22 4 BPractice 9-3yX T, T 4 48a. 6 44104K 2W Z 4Geometry Chapter 946xST US Answers35

Chapter 9 Answers(continued)8.Practice 9-41. The helmet has reflectional symmetry.2. The teapothas reflectional symmetry.3. The hat has both rotationaland reflectional symmetry.4. The hairbrush hasPreflectional symmetry.5.O9.P P NQ O 6.Q O P N Q M N L L Q O L M N L M NMLOQQ P line symmetry and 72 rotationalsymmetryP9.N O 11. L 12.E7. This figure has no lines of symmetry.8.P Q M P O line symmetryQ'10.P'SR'Pline symmetry and 90 rotationalsymmetryQ11.R13.P'SQ'line symmetry and 45 rotationalsymmetryPR'12.QXOXR180 rotational symmetry13.line symmetry36AnswersGeometry Chapter 9 Pearson Education, Inc., publishing as Pearson Prentice Hall.10.All rights reserved.N

Chapter 9 Answers(continued)14.12.R Rline symmetry and 45 rotationalsymmetryO15.A180 rotational symmetryA All rights reserved.16.T 13. P (-12, -12), Q (-6, 0), R (0, -6)14. P (-12, 41),311Q (1 4, -4), R (1 4 , 2)15. P (-21, 6), Q (3, 24),R (-6, 6)16. P (-2, 1), Q (-1, 0), R (0, 1)Practice 9-6line symmetry17.18.1. I. D II. C III. B IV. A3.COOK2. I. B II. A III. C IV. DB B B20.HOAX mm4.C CC19.21.m 5.1. L (-2, -2), M (-1, 0), N (2, -1), O (0, -1)2. L (-30, -30), M (-15, 0), N (30, -15), O (0, -15)3. L (-12, -12), M (-6, 0), N (12, -6), O (0, -6)4. 535. 126. 27. yes8. no9. noRAR11.R OT A mJPractice 9-510.JR Geometry Chapter 9A m y6.4E S 2TAJ Pearson Education, Inc., publishing as Pearson Prentice Hall.TT T O 2246 xB Answers37

Chapter 9 Answersyy13.10B T 4B 86 4 2 O 24E S 2 4 2 O4 x24248 x6B T translational symmetryyT 2.S 42 2 OB 216. glide reflection1. 4line symmetry,rotational symmetry,translational symmetry,glide reflectional symmetryE 26 x43.y10.4B T 2translational symmetry 6 4 2 O 2E 44 x24.line symmetry,rotational symmetry,translational symmetry,glide reflectional symmetryS y11.B 25.4 x 6 E 2 O 2line symmetry,rotational symmetry,translational symmetry,glide reflectional symmetry 4S T 6.y12.S 4E 2 2 O 2T 3824 4rotational symmetry,translational symmetry6 x7.8.B AnswersGeometry Chapter 9 Pearson Education, Inc., publishing as Pearson Prentice Hall.9.S Practice 9-72 2 O 26 x415. rotation14. reflection17. translationE S 2 4 E y8.T 2All rights reserved.7.(continued)

Chapter 9 Answers(continued)9.–11. Samples:9.10.8.Z YX 11.ZXAll rights reserved.Reteaching 9-412. yes17. no13. yes14. no15. yes16. noReteaching 9-11.–5. Check students’ work.6. A (0, -3), B (1, 1),C (4, -1), D (5, -4)7. A (4, -2), B (5, 2), C (8, 0),D (9, -3)8. A (3, 5), B (4, 9), C (7, 7), D (8, 4)1. two lines of symmetry (vertical and horizontal), 180 rotational symmetry (point symmetry)2. one line ofsymmetry (horizontal)3. one line of symmetry (vertical)4. two lines of symmetry (vertical and horizontal), 180 rotational symmetry (point symmetry)5. one line ofsymmetry (vertical)6. one line of symmetry (vertical)Reteaching 9-51. Check students’ work.y2.4Reteaching 9-2 Pearson Education, Inc., publishing as Pearson Prentice Hall.1.–5. Check students’ work.6. reflection across x-axis:F (-1, -3), G (-5, -1), H (-3, -5); reflection acrossy-axis: F (1, 3), G (5, 1), H (3, 5)7. reflection acrossx-axis: C (2, -4), D (5, -2), E (6, -3); reflection acrossy-axis: C (-2, 4), D (-5, 2), E (-6, 3)8. reflectionacross x-axis: J (-1, 5), K (-2, 3), L (-4, 6); reflectionacross y-axis: J (1, -5), K (2, -3), L (4, -6)2 4 2 O 224 x 4y3.4Reteaching 9-32Y1.–5. 4Z Y XX 24 x 4Zy4.TY6.O 242Z XX Y TZ 12 8 6 4 2 O 2246812 x 47. Sample:YZ SX XY ZGeometry Chapter 9Answers39

Chapter 9 Answers1210y5.line symmetry across thedashed lines, rotationalsymmetry around points,translational symmetry, glidereflectional symmetry642 8 6 22 4 6 8 xEnrichment 9-1 4 6 8 101.3.5.8.(x, y) S (x - 7, y - 2)2. (x, y) S (x 4, y - 7)(x, y) S (x - 10, y 5)4. (x, y) S (x - 3, y - 4)Foster6. yes7. Wilson(x, y) S (x - 7, - 3)9. C 12Enrichment 9-21. (-3, -1)Reteaching 9-61. translation2. reflection3. rotation4. glide reflection5. rotation6. glide reflection7. reflection8. translation2. (-1, 0)3. (5, 3)4. the midpoint formula: M y5.x1 1 x2 y1 1 y2(,22)6LK4Reteaching 9-721.L'J 6 4 2J'All rights reserved.5.(continued)0246 x 2 4K'2. Sample:6. y 12 x 7.12T'line symmetry across the dashedlines, rotational symmetry aroundpoints, translational symmetry,glide reflectional symmetry 6 4 2Q'4206xR'R 6Q 8line symmetry across the dashedlines, rotational symmetry aroundpoints, translational symmetry,glide reflectional symmetry2 S'4 2 43.ySTy -44.rotational symmetry aroundpoints, translational symmetry40AnswersGeometry Chapter 9 Pearson Education, Inc., publishing as Pearson Prentice Hall. 6

Chapter 9 Answers8.6y(continued)12.E'6D'44D2H' 2F'0 6 4 224 8 6 4 2 0H 2 6IG 42 J' 46xJ 6y -xK9.6All rights reserved.I'K'6x 2F 4Eyy4ADA' 6 40B 2C 42C'Enrichment 9-4x 110.M6yNM'2P0 8 6 4 2N'Q 2Q' 4P'6x4 6y -2x - 211.11. (0, -2, 3)2. (-2, -2, 3)3. (-2, -2, 0)4. (0, -2, 0)5. (0, -6, 0)6. (0, -6, 3)7. (-2, -6, 3)8. (-2, -6, 0)9. (2, 0, 3)10. (2, -2, 3)11. (2, -2, 0)12. (2, 0, 0)13. (6, 0, 0)14. (6, 0, 3)15. (6, -2, 3)16. (6, -2, 0)x6B' -12 x -Enrichment 9-3D'2 6 Pearson Education, Inc., publishing as Pearson Prentice Hall.yG'U'V'6yU4Enrichment 9-52W'T' 8 6 4 20 2 4 6y 3x 2Geometry Chapter 91. yes; rotational and point symmetry2. no3. yes;rotational and point symmetry4. yes; rotational and pointsymmetry5. no6. no7. diamonds8. 129. Seven of diamonds; this does not have symmetry becausethe diamond in the middle is toward either the bottom or topof the card, and when you rotate the card 180 , the positionwill be reversed.10. All the face cards have symmetry.11. yes; 2, 4, 1012. No; Sample: When you look at thecard one way, three of the points of the hearts are pointingdown, and five are pointing up. When you rotate the card 180º,five of the points of the hearts are pointing down, and threeare pointing up.13. No; because the number and suit ofeach card are placed in opposite corners, none of the cardshave line symmetry.14. You can add a backward 3 withthe small club below it to the two empty corners to create linesymmetry, or you can remove the 3 with the small club belowit from each of the two corners.V6x4TW1a. (2, 0, 2)1e. (2, 0, 0)2a. (4, 0, 4)2e. (4, 0, 0)3. (0, 0, 0)1b. (0, 0, 2)1c. (0, 2, 2)1d. (2, 2, 2)1f. (0, 0, 0)1g. (0, 2, 0)1h. (2, 2, 0)2b. (0, 0, 4)2c. (0, 4, 4)2d. (4, 4, 4)2f. (0, 0, 0)2g. (0, 4, 0)2h. (4, 4, 0)4. 25. Each edge in the image is doublethat in the preimage.6. Samples: Three faces arecoplanar for image and preimage; three faces are parallel;each face in the image has two times the perimeter and fourtimes the area of the corresponding face in the preimage.7. Surface area of image 96 sq. units; surface area ofpreimage 24 sq. units; the ratio of the surface areas is 4 : 1.Answers41

Chapter 9 Answers(continued)8. Volume of image 64 cubic units; volume of preimage 8 cubic units; the ratio of the volumes is 8 : 1.9. Dilationsin three dimensions are proportional to dilations in twodimensions.1.–9. Check students’ work.10. 12-3; rotation; twice11. 13012. 10013. 1608.CC'L'BB'BD'AB'DC C'A, A'9.LC'CAD'D12R YOTATION10. T ( 8, -5), Q (2, -3) and R (4, 0) Checkpoint Quiz 21. line symmetry;rotational; 180 H2. line symmetry;rotational; 180 3. line symmetryActivity 2: Modelinga. Ancient Egyptian ornamentb. Oriental design4. rotational; 180 5. translational; no turns6. rotational; preimage turns7. translational8. rotational, reflectional, translational9. translationalChapter Test, Form Ac. Greek vase design42AnswersAll rights reserved.11 units up7.1.2.3.4.5.P (13, 0), Q (10, -2), R (11, -4), S (13, -6)P (-1, -2), Q (2, -4), R (1, -6), S (-1, -8)P (0, -5), Q (2, -2), R (4, -3), S (6, -5)P (-2.5, 0), Q (-1, -1), R (-1.5, -2), S (-2.5, -3)P (5, 2), Q (2, 0), R (3, -2), S (5, -4)6. P (-11, 3),Q (-8, 1), R (-9, -1), S (-11, -3)7. glide reflection8. translation9. translation10. rotationGeometry Chapter 9 Pearson Education, Inc., publishing as Pearson Prentice Hall.Activity 1: Investigatinga. verticalb. verticalc. bothCheck students’ work.1. No; the figures are not the same size.2. yes3. yes4. (x, y) S (x - 3, y - 2)5. 6 units right and4 units down6. a resultant translation of 4 units right and2C3OR45MEPGPFRLOLEI6ISEDIMIECS7R O T A T I O N A LGIIEMEOOFENNLT10AERR11CLS Y M M E T13P O I N TFIL1415ET R A N S F O R M A T I O NNCIATL16IT E S S E L L A T I O NNOGNChapter ProjectActivity 5: Creating Checkpoint Quiz 1Enrichment 9-7TRANSLAT8I M A GON9L I Na, bActivity 4: Classifyinga. mgb. 12Enrichment 9-61Activity 3: Investigating

Chapter 9 Answers(continued)11.16.B'C'A'PACAll rights reserved.12. line symmetry13. rotational symmetry14a. Any two of the following: ABCDEHIKMOTUVWXY14b. Any two of the following: HINOSXZ15. Translations can be performed on the pieces because theycan slide. Rotations can be performed on the pieces becauseeach piece can be turned. Reflections and glide reflectionscannot be performed on the pieces because the back of apuzzle piece is useless in solving the puzzle. Dilations areimpossible because the pieces cannot change size.16. A17. Sample: glide reflectional, rotational, line,and translational Pearson Education, Inc., publishing as Pearson Prentice Hall.18. L (-3, 6), M (6, 6), N (3, -9)19. L (12, -34),351M (4, 1), N (4, -2)20. L (-18, -18), M (-18, 18),N (0, 0)21. L (3, -2), M (0, -53 ), N (37 , -2)22. Y Z 15 cm; X Z 24 cm; scale factor 7323. X Y 25 in.; Y Z 40 in.; scale factor 5324. (-1, 3)25. (5, 4)26. (-2, -7)27. (2, -7)28. (1, -1)29. (-3, 1)B17. 180 rotational symmetry18. line symmetry19. line symmetry; 180 rotational symmetry20. (-7, 0) 21. (0, -3) 22. (-6, 1) 23. (-9, -4)24. (2, -2) 25. (-5, 11)Alternative Assessment, Form CTASK 1: Scoring Guide20; 200 cm; all distances are magnified 20 times.Chapter Test, Form B1. Yes; the figures are the same shape and size. 2. No;the figures are not the same size. 3. Yes; the figures are thesame shape and size. 4. (x, y) S (x - 6, y 1)5. (x, y) S (x 3, y - 7) 6. A9(0, -3), B9(-4, 0),C9(-6, -4), D9(-3, -5) 7. A9(6, 3), B9(10, 0), C9(12, 4),D9(9, 5) 8. A9(3, 8), B9(-1, 5), C9(-3, 9), D9(0, 10)9. A9(5, 2), B9(1, -1), C9(-1, 3), D9(2, 4) 10. A9(-3, 0),B9(0, -4), C9(-4, -6), D9(-5, -3) 11. A9(0, 3), B9(4, 6),C9(6, 2), D9(3, 1) 12. (x, y) S (x 4, y - 3)13. (x, y) S (x - 3, y 6) 14. rhombus and two triangles;3 Student gives correct answers and a clear and accurateexplanation.2 Student gives answers and an explanation that are largelycorrect.1 Student gives answers or an explanation that may containserious errors.0 Student makes little or no effort.TASK 2: Scoring GuideSample:translation15. A'B'P C'ACBGeometry Chapter 93 Student draws a figure that accurately reflects the statedconditions.2 Student draws a figure that is mostly correct but falls justshort of satisfying all the stated conditions.1 Student draws a figure that has significant flaws relative tothe stated conditions.0 Student makes little or no effort.Answers43

Chapter 9 Answers(continued)d. glide reflection:TASK 3: Scoring GuideSample:The car can undergo translations and rotations as it movesand turns. But it can undergo neither a dilation, which wouldchange its size, nor a reflection, which would, for example,put the steering wheel on the passenger side.3 Student gives a correct and thorough explanation.2 Student gives an explanation that demonstratesunderstanding of transformations but may contain minorerrors or omissions.1 Student gives an explanation containing major errors oromissions.0 Student makes little or no effort.4 yThe glide reflection is equivalent toa translation 2, 0 followed by areflection across the line y -2.2 4 2 224x 4e. rotation:4 y4x 4 24 y 423 Student gives accurate graphs and correctly identifies thedetails the problem calls for.2 Student gives generally correct graphs and details, althoughthe work may contain some errors.1 Student gives graphs and accompanying details that containsignificant errors or omissions.0 Student makes little or no effort.4x 4 4a. translation:4 y2translation vector: 1, 0 4 22Cumulative Review1. D8. H14. J2. G3. B4. H5. A6. J7. B9. C10. J11. B12. H13. A15. B16. 49 cm317. A, H, I, M, O, T, U, V,W, X, Y18. Rotational; it is turning around a fixed point,4x 4the corner.b. dilation:19.44 y2Tscale factor: 2yUG U G2T 2 2x2 4 24 x20. Equilateral triangle, square, and regular hexagon;the measure of each interior angle is a factor of 360.21. If a triangle is not a right triangle, then the PythagoreanTheorem cannot be applied.c. reflection:y24 2 2 2line of reflection: y 12y22.44x2U 4VV U 4 224W 6 xW 423. 21.2144AnswersGeometry Chapter 9 Pearson Education, Inc., publishing as Pearson Prentice Hall.Sample:All rights reserved.degrees of rotation: 90TASK 4: Scoring Guide

Chapter 9 Answers (continued) 40 Answers Geometry Chapter 9 5. Reteaching 9-6 1. translation 2. reﬂection 3. rotation 4. glide reﬂection 5. rotation 6. glide reﬂection 7. reﬂection 8. translation Reteaching 9-7 1. 2. Sample: line symmetry across the dashed lines, rotational symmetry around points,translational symmetry,File Size: 672KBPage Count: 10

Related Documents:

Part One: Heir of Ash Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26 Chapter 27 Chapter 28 Chapter 29 Chapter 30 .

TO KILL A MOCKINGBIRD. Contents Dedication Epigraph Part One Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Part Two Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18. Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26

mint payments - virtual terminal & merchant portal user guide 1.0 2 contents chapter 1: merchant portal - logging in 3 chapter 2: merchant portal - home page 6 chapter 3: merchant portal - setting up your company 7 chapter 4: merchant portal - user registration 10 chapter 5: merchant portal - mpos device setup 14 chapter 6: merchant portal - transaction, exporting data, refunds 15

DEDICATION PART ONE Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 PART TWO Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 .

The Portal Admin is the primary user for each Client Axcess portal. The Portal Admin may perform all portal-related functions, create other Portal Users and control access for other Portal Users. The Portal Admin user will be the only user that exists initially when a portal is created.

18.4 35 18.5 35 I Solutions to Applying the Concepts Questions II Answers to End-of-chapter Conceptual Questions Chapter 1 37 Chapter 2 38 Chapter 3 39 Chapter 4 40 Chapter 5 43 Chapter 6 45 Chapter 7 46 Chapter 8 47 Chapter 9 50 Chapter 10 52 Chapter 11 55 Chapter 12 56 Chapter 13 57 Chapter 14 61 Chapter 15 62 Chapter 16 63 Chapter 17 65 .

as advanced engineering mathematics and applied numerical methods. The greatest beneÞt to the reader will probably be derived through study of the programs relat-' 2003 by CRC Press LLC. ing mainly to physics and engineering applications. Furthermore, we believe that several of the MATLAB functions are useful as general utilities. Typical examples include routines for spline interpolation .