Multivariate Data Analysis - I2PC

3y ago
32 Views
2 Downloads
6.10 MB
203 Pages
Last View : 6d ago
Last Download : 3m ago
Upload by : Ryan Jay
Transcription

Multivariate Data AnalysisSession 0: Course outlineCarlos Óscar Sánchez Sorzano, Ph.D.Madrid

Motivation for this course2

Motivation for this course3

Course outline4

Course outline: Session 11. Introduction1.1. Types of variables1.2. Types of analysis and technique selection1.3. Descriptors (mean, covariance matrix)1.4. Variability and distance1.5. Linear dependence2. Data Examination2.1. Graphical examination2.2. Missing Data2.3. Outliers2.4. Assumptions of multivariate analysis5

Course outline: Session 23. Principal component analysis (PCA)3.1. Introduction3.2. Component computation3.3. Example3.4. Properties3.5. Extensions3.6. Relationship to SVD4. Factor Analysis (FA)4.1. Introduction4.2. Factor computation4.3. Example4.4. Extensions4.5. Rules of thumb4.6. Comparison with PCA6

Course outline: Session 35. Multidimensional Scaling (MDS)5.1. Introduction5.2. Metric scaling5.3. Example5.4. Nonmetric scaling5.5. Extensions6. Correspondence analysis6.1. Introduction6.2. Projection search6.3. Example6.4. Extensions7. Tensor analysis7.1 Introduction7.2 Parafac/Candecomp7.3 Example7.4 Extensions7

Course outline: Session 48. Multivariate Analysis of Variance (MANOVA)8.1. Introduction8.2. Computations (1-way)8.3. Computations (2-way)8.4. Post-hoc tests8.5. Example9. Canonical Correlation Analysis (CCA)9.1. Introduction9.2. Construction of the canonical variables9.3. Example9.4. Extensions10. Latent Class Analysis (LCA)10.1. Introduction8

Course ePractice9

Suggested readings: OverviewsIt is suggested to read (before coming): H. Abdi. Multivariate Analysis. In: Lewis-Beck M., Bryman, A., FutingT. (Eds.) (2003). Encyclopedia of Social Sciences Research Methods.Thousand Oaks (CA): Sage. S. Sanogo and X.B. Yang. Overview of Selected Multivariate StatisticalMethods and Their Use in Phytopathological Research. Phytopathology,94: 1004-1006 (2004)10

ResourcesData dd.ics.uci.eduLinks to organizations, events, software, tro.u-strasbg.fr/ fmurtagh/mda-swhttp://lib.stat.cmu.eduLecture /courses/ed231a1/lect.html11

Bibliography D. Peña. Análisis de datos multivariantes, Mc GrawHill, 2002 B. Manly. Multivariate statistical methods: a primer. Chapman & Hall/CRC,2004. J. Hair, W. Black, B. Babin, R. Anderson. Multivariate Data Analysis (6th ed),Prentice Hall, 2005. B. Everitt, G. Dunn. Applied multivariate data analysis. Hodder Arnold, 2001 N. H. Timm. Applied multivariate analysis. Springer, 2004 L. S. Meyers, G. C. Gamst, A. Guarino. Applied multivariate research: designand interpretation. Sage, 2005 J. L. Schafer. Analysis of incomplete multivariate data. Chapman & Hall/CRC,1997 M. Bilodeau, D. Brenner. Theory of multivariate statistics. Springer, 200612

Multivariate Data AnalysisSession 1: Introduction and data examinationCarlos Óscar Sánchez Sorzano, Ph.D.Madrid

Course outline: Session 11. Introduction1.1. Types of variables1.2. Types of analysis and technique selection1.3. Descriptors (mean, covariance matrix)1.4. Variability and distance1.5. Linear dependence2. Data Examination2.1. Graphical examination2.2. Missing Data2.3. Outliers2.4. Assumptions of multivariate analysis2

1. Introduction3

1.1 Introduction: Types of variablesDataDiscrete SexÎ{Male,Female}No. SonsÎ{0,1,2,3, }Continuous TemperatureÎ[0, /CategoricalScale0 Male1 FemaleOrdinalScale0 Love1 Like2 Neither like nor dislike3 Dislike4 HateIntervalScaleYears: 20062007 RatioScaleTemperature:0ºK1ºK 4

1.1 Introduction: Types of variablesCoding of categorical variablesHair Colour{Brown, Blond, Black, Red}No orderPeter: BlackMolly: BlondCharles: BrownCompany size{Small, Medium, Big}Company A: BigCompany B: SmallCompany C: Medium xBrown , xBlond , xBlack , xRed 0,1 4Peter:Molly:Charles:Implicit order 0, 0,1, 0 0,1, 0, 0 1, 0, 0, 0 xsize 0,1, 2 Company A: 2Company B: 0Company C: 15

1.2 Introduction: Types of analysisAnalysisY f (X )f ( X ,Y ) 0DependenceInterdependenceA variable or set of variables is identified as the dependent variable to bepredicted or explained by other variables known as independent variables.Example:(No. Sons, House Type) f(Income, Social Status, Studies) Multiple Discriminant Analysis Logit/Logistic Regression Multivariate Analysis of Variance (MANOVA) and Covariance Conjoint Analysis Canonical Correlation Multiple Regression Structural Equations Modeling (SEM)6

1.2 Introduction: Types of analysisAnalysisY f (X )Dependencef ( X ,Y ) 0InterdependenceExample: Who is similar to whom?(No. Sons, House Type, Income, Social Status, Studies, )Involves the simultaneous analysis of all variables in the set, withoutdistinction between dependent variables and independent variables. Principal Components and Common Factor Analysis Cluster Analysis Multidimensional Scaling (perceptual mapping) Correspondence Analysis Canonical Correlation7

1.2 Introduction: Technique selection Multiple regression: a single metric variable is predicted byseveral metric variables.Example:No. Sons f(Income, No. Years working) Structural Equation Modelling: several metric variables arepredicted by several metric (known and latent) variablesExample:(No. Sons, House m2) f(Income, No. Years working, (No. Years Married))8

1.2 Introduction: Technique selection Multiple Analysis of Variance (MANOVA): Several metricvariables are predicted by several categorical variables.Example:(Ability in Math, Ability in Physics) f(Math textbook, Physics textbook, College) Discriminant analysis, Logistic regression: a single categorical(usually two-valued) variable is predicted by several metricindependent variablesExample:Purchaser (or non purchaser) f(Income,No. Years working)9

1.2 Introduction: Technique selection Canonical correlation: Several metric variables are predicted byseveral metric variablesExample:(Grade Chemistry, Grade Physics) f(Grade Math, Grade Latin) Conjoint Analysis: An ordinal variable (utility function) ispredicted by several categorical/ordinal/metric variablesExample:TV utility f(Screen format, Screen size, Brand, Price) Classification Analysis: Predict categorical variable from severalmetric variables.Example:HouseType f(Income,Studies)10

1.2 Introduction: Technique selection Factor analysis/Principal Component Analysis: explain thevariability of a set of observed metric variables as a function ofunobserved variables (factors)Example:(Grade Math, Grade Latin, Grade Physics) f(Intelligence, Maturity) Correspondence analysis: similar to factor analysis but withcategorical data.Example:(Eye colour, Hair colour, Skin colour) f(gene A, gene B) Cluster analysis: try to group individuals according to similarcharacteristicsExample:(Grade Math, Grade Latin, Grade Physics, Grade Philosophy, Grade History)11

1.2 Introduction: Technique selection Multidimensional scaling: Find representative factors so that therelative dissimilarities in the original space are as conserved aspossibleExample:(x,y) f(City gross income, health indexes,population, political stability, )12

(Basic vector and matrix algebra)xt13

(Basic vector and matrix algebra)VectorNormxx x, xNInternal productDot productx, y y , x x y xt y xi yi x y cos i 1yx Projx y Orthogonalityx, yxux x, yx2x x(xt x) 1 xt yx y x, y 014

(Basic vector and matrix algebra)fieldLinear spanspan x1 , x 2 ,., x r x 1x1 2 x 2 . r x r 1 , 2 ,., r K Linearly dependent, i.e., 0 x 1x1 2 x 2 . r x r 0uzspan u y , u z uyuxspan u x span u y , u z span u x C span u y , u z Complementary spaces15

(Basic vector and matrix algebra)uzy Assuming that u x ,u yuyxuxE span u x , u y is a basis of the spanned spacex ProjE y Proju x y Proju y y X ( X t X ) 1 X t yBasis vectors of E as columns y x E y x C E y x y x22216

1.3 Descriptors: Data representation x1t x11 t x 2 x21 X . . t x n xn1x12x22.xn 2. x1 p . x2 p . . . xnp FeaturesIndividualsXx t217

1.3 Descriptors: Univariate analysis x1t x11 t x 2 x21 X . . t x n xn1Sample meanSample standarddeviationSample variationcoefficientx12x22.xn 2. x1 p . x2 p . . . xnp 1 nx2 xi 2n i 11 n2s2 x x i2 2 n i 1VC2 x22s22m2If outliersRobust statisticsSample medianPr X 2 m2 1 Pr X 2 m2 2MAD2 Sample MedianAbsolute DeviationMedian x2 m2 18

1.3 Descriptors: Mean and covariance x 1t x11 t x 21xX 2 . . t x n x n1x12.x 22.xn 2.x1 p x2 p . x np x x1 x2 . x p 1 tx X 1 Sample meannt x 1 x t x 2 x tX . t xx nX X 1 x t x xx12 x 2 . x1 p x p1 11 x 21 x1 x 22 x 2 . x 2 p x p . . x n1 x1 x n 2 x 2 . x np x p Matrix of centered dataVector of 1s1 nSample covariance s jk xij x j xik xk n i 1Symmetric,positivesemidefinite s12 sS 21 . s p1 s12s 22.sp2.s1 ps2 p.s 2pMeasures how variablesj and k are related n1 t t 1X Xxxxx ii n ni 1 E x x x x t 19

1.3 Descriptors: CovarianceX x1x2X 1 N (0,1)X 2 N (0,1)X 3 N (0,1)x 3 3 variables 13 E ( X 1 1 )( X 3 3 ) 200 samples 0.9641 S 0.0678 0.0509 E X 1 X 30.06780.85520.0398 0.0509 0.0398 0.9316 Sample covarianceX 1 N (0,1)X 2 X1X 3 X1X 1 N (0, 9)X 2 X1X 3 X1 0.9641 S 0.9641 0.9641 10.4146 S 10.4146 10.4146 1 0 0 0 0 1 010Covariance0.96410.9641 0.9641 0.9641 0.9641 0.9641 10.414610.4146 10.4146 10.4146 10.4146 10.4146 1 1 1 9 9 9 11 199 9 1 1 1 9 9 9 20

1.3 Descriptors: CovarianceX 1 N (1, 2)X 2 N (2, 3)X 3 X1 X 2 1.6338 S 0.0970 1.5368 0.09702.8298 2.7329 1 2 X1 X X 2 N 2 , 0 X 1 2 3 X 1 N ( 1 , 12 )X 2 N ( 2 , 22 )X 3 a1 X 1 a 2 X 21.5368 2.7329 4.2696 03 3X N μ , 0 22a 2 221 2 03 32 3 5 2 3 5 2 1 X1 1 X X2 N 2 , 0 X a a a 22 2 1 1 3 1 1fX (x) 2 0 2 N2 a1 12 a 2 22 a12 12 a 22 22 1 exp ( x μ ) t 1 ( x μ ) 2 21

1.3 Descriptors: CovarianceX N μ , fX (x) 1 2 N2 1 exp ( x μ ) t 1 ( x μ ) 2 4 0 μ 0 1 00.220 1 X10.1004-220-2-4 -4-2024X2-4-4-2024X 1 and X 2 are independentFor multivariate Gaussians, covariance 0 implies independency22

1.3 Descriptors: CovarianceX N μ , 1 2 N2 1 exp ( x μ ) t 1 ( x μ ) 2 4 1 μ 0 1 0f X (x) 0.220 3 0.1004-220-2-4 -4-2024-4-4-2024X 1 and X 2 are independent23

1.3 Descriptors: CovarianceX N μ , f X (x) 1 2 N2 1 exp ( x μ ) t 1 ( x μ ) 2 40.22μ 0 1 R 0X10.10 t R3 004-22 cos 60ºR sin 60º 2.5 0.8660.866 1.5 sin 60º cos 60º 0-2-4 -4-2024X2-4-4-2024X 1 and X 2 are NOT independentBUT there exist two independent variables24

1.3 Descriptors: CovariancePitfalls of the covariance matrix43X 1 N (0,1) XX2 1 X 12p 0.51 p 0.510-1-2 1 00 1 X 1 N (0,1)X 2 X 12 1 00 2 -3-4-4-3-2-101234C ov ( X 1 , X 2 ) 0 U ncorrelated IndependentC ov ( X 1 , X 2 ) 0 G aussian Independent25

1.3 Descriptors: CovarianceRedundant variablesX 3 N (0,1) 1 0 0 X 1 N (0,1)X 2 X1X 3 X1 1 1 1 1 1 1 R 00 t R3 X 1 N (0,1)X 2 N (0,1)X 1 N (1, 2)X 2 N (2, 3)X 3 X1 X 2 2 0 2 0 0 1 010103 3eig ( ) (1,1,1) 1 1 1 2 3 5 eig ( ) (1, 0, 0)eig ( ) (3,1)eig ( ) (7.64, 2.35, 0)26

1.4 Variability and distancex t2tx10How far are they?How far are they from the mean?d (xi , x j )n1-norm (Manhattan)d (xi , x j ) xis x jss 1nMost usedp-norm (Euclidean p 2)MinkowskiInfinity normp d (xi , x j ) xis x js s 1 d (xi , x j ) max xis x js1ps27

1.4 Variability and distanceHeight (m) Weight (kg)JuanJohnJeand (xi , x j )Juan1.801.701.65JuanHeight (cm) Weight (kg)807281JohnJuanJohnJeand (xi , x j )Jean----- 8.0004 1.0112JuanMahalanobis distance807281JuanJohnJean----- 11.3137 15.0333 M x x d (x , x ) x x I x x x x x x d (x , x ) x x x x d (x , x ) k x x tMatrix-based distance d 2 ( xi , x j ) xi x jEuclidean distance180170165 1it2ijitijt 1j2ijijijijij 1jNCorrentropy distanceijk 1 ikjk28

1.4 Variability and distance Mahalanobis distance d 2 ( xi , x j ) xi x j2 height r height weight x x t 1ijr height weight 100 70 2 weight 70 100 height 10cm weight 10kg4r 0.700-2-2024JuanJohnJean----- 0.7529 4.843142-2JuanIndependently of units!!2-4-4d (xi , x j )-4-4-202429

1.5 Linear dependence: Pair dependenceX 1 N ( 0 , 1)X 2 X1X3 X1X 1 N (0, 9)X 2 X1X3 X1 0 .9 6 4 1 S 0 .9 6 4 1 0 .9 6 4 1 1 0 .4 1 4 6 S 1 0 .4 1 4 6 1 0 .4 1 4 6 0 .9 6 4 10 .9 6 4 1 0 .9 6 4 1 0 .9 6 4 1 0 .9 6 4 1 0 .9 6 4 1 1 0 .4 1 4 61 0 .4 1 4 6 1 0 .4 1 4 6 1 0 .4 1 4 6 1 0 .4 1 4 6 1 0 .4 1 4 6 1 r jk 1 s s 21 S . s p1 21s12s 22.sp2.s1 p s2 p . 2 sp 1 s 21R s 2 s1 . s s ps1 p1s12s1 s 2.1.sp2s p s2.r jk s jks j sk s2 p 1 1s2 s p D 2 SD 2. s12 0 . 0 s 22 .1 D s1 ps1 s p. 0 .0.r jk 1 x j a bx kr jk Is invariant to lineartransformations of thevariables0 0 . s 2p 30

1.5 Linear dependence: Pair dependencecount Example:11714114311 913 1117 2013 951 69Traffic count in threedifferent places(thousands/day) 312covariance 643 980 1656980 1714 26901656 2690 4627Moretraffic?correlation 1.0000 0.9331 0.95990.9331 1.0000 0.95530.9599 0.9553 1.000031

1.5 Linear dependence: Multiple dependenceˆ X 1 2 X 2 3 X 3 . p X p βX2 ,3,., pX̂ X Xˆ 111β S 2 ,3,.,p S11nMultiplecorrelationcoefficient2R1.2,3,. p 2ˆ()x x 1i 1i 1n2()x x 1i 1Variance of X 1explained by a linearpredictionTotal variance of X 1 s12 s 21 S . s p1 s12s 22.sp2.s1 ps2 p.s 2pi 132

1.5 Linear dependence: Pair dependenceExample:R1.3 0.9599As seen beforeR1.2 ,3 0.9615Does X2 provide useful informationon X1 once the influence of X3 isremoved?ˆˆX 1 13 X 3 Y1 X 1 X 131210040ˆˆX 2 23 X 3 Y2 X 2 X 220RY1 .Y2 0.1943Y2X2500-50-500p value 0.363-20050X1100-40-20No!-100Y1102033

2. Data examination: Get acquainted with your data34

2.1 Graphical examination Univariate distribution plots Bivariate distribution plots Pairwise plots– Scatter plots– Boxplots Multivariate plots– Chernoff faces– Star plots35

2.1 Graphical examination: Univariate distribution36

2.1 Graphical examination: Bivariate distributions37

2.1 Graphical examination: Scatter plotsColouredby class38

2.1 Graphical examination: Boxplots (Box-Whiskers)Group 2 has substantially more dispersionthan the other groups.Outlier #131175% Quartile101391.5IQR or min8X6 - Product Quality1.5IQR or maxInter Quantile Range (IQR)25% Quartile76Median54N 323533Less than 1 year1 to 5 yearsOver 5 yearsX1 - Customer Type39

2.1 Graphical examination: Multivariate plotsX 11X1X2X 10X3X9X4X8X5X7X6Chernoff Faces40

2.1 Graphical examination: Multivariate plotsX1X2X8X7X3X6X4X5Star plots41

2.2 Missing dataTypes of missing data: Missing Completely At Random (MCAR) Missing at Random (MAR)Strategies for handling missing data: use observations with complete data only delete case(s) and/or variable(s) estimate missing values (imputation): All-available Mean substitution Cold/Hot deck Regression (preferred for MCAR): Linear, Tree Expectation-Maximization (preferred for MAR) Multiple imputation (Markov Chain Monte Carlo, Bayesian)42

2.3 Multivariate outliersModel: Centroid noiseUnivariate detectionxi median( x)2.52MAD( x)1.5 4.51Grubb’s statistic (assumes normality)0.50-0.5max-1-1.5xi xsx ( N 1)Nt 2 N, N 2N 2 t2 , N 2N-2-2.5-2.5-2-1.5-1-0.50Multivariate detection0.511.522.5Number ofvariablesCritical value of Student’s tdistribution with N-2 degrees offreedom and a significance leveld 2 (xi , x ) (xi x )t S 1 (xi x ) p 3 2 p43

2.3 Multivariate outliersModel: Function noise1. For each dimensiona. Fit a model to data by regressionxˆ1 f ( x2 , x3 ,., x p )2.b.Label all those points with large residuals asoutliersxˆ1i x1i ( p, N , )c.Go to step a until convergenceFor each pair of dimensionsa. Fit a model to data by regression( xˆ1 , xˆ2 ) f ( x3 ,., x p )b.Label all those points with large residuals asoutliersdist (( xˆ1i , xˆ2i ), ( x1i , x2i )) ( p, N , )c.Go to step a until convergenceThe threshold is a function of thenumber of variables, the number ofsamples, and the significance level44

2.4 Assumptions of multivariate analysis Normality: the multivariate variable follows a multivariate Gaussian– Univariate variables, too– Tests: Shapiro-Wilks (1D), Kolmogorov-Smirnov(1D), Smith-Jain (nD) Homoscedasticity (Homoskedasticity): the variance of the dependentvariables is the same across the range of predictor variables– Tests: Levene, Breusch-Pagan, White6420-2-4-6-3-2-1012345

2.4 Assumptions of multivariate analysis Linearity: All techniques based on correlation (multiple regression, logisticregression, factor analysis, structure equation modelling, principalcomponent analysis, etc.) assume that the dependent variables dependlinearly on the independent ones.– Test: Scatterplots Non-correlated errors: All prediction techniques assume that the predictionresidual is independent of the predictors. This may not be true all over thepredictor interval.21.510.50-0.5-1-1.5-2-3-2-1012346

2.4 Assumptions of multivariate analysis The solution to most assumption violations is provided by datatransformations.Y XY log XY Table of sample pdfs and suggested transformationMultivariate standardization 1Y ( X 1Xt ) S X 21X47

Course outline: Session 11. Introduction1.1. Types of variables1.2. Types of analysis and technique selection1.3. Descriptors (mean, covariance matrix)1.4. Variability and distance1.5. Linear dependence2. Data Examination2.1. Graphical examination2.2. Missing Data2.3. Outliers2.4. Assumptions of multivariate analysis48

Multivariate Data AnalysisSession 2: Principal Component Analysis andFactor AnalysisCarlos Óscar Sánchez Sorzano, Ph.D.Madrid

Course outline: Session 23. Principal component analysis (PCA)3.1. Introduction3.2. Component computation3.3. Example3.4. Properties3.5. Extensions3.6. Relationship to SVD4. Factor Analysis (FA)4.1. Introduction4.2. Factor computation4.3. Example4.4. Extensions4.5. Rules of thumb4.6. Comparison with PCA2

3.1 PCA: IntroductionCan we capture the information provided by theoriginal p variables with a fewer number of variables?xt3

3.1 PCA: -3-2-10X12344

3.1 PCA: Introduction310281Z604Principal axes20-24-1-25200-2Y-4-5X-3-3-2-10X1235

3.1 PCA: IntroductionziProja1 xi xi , a1 a1 zi a13xi zi a1 ri2a1 a11 , a12 ,., a1 p Y10-1xiri-2-3-3-2Factor loadings0X122 zi a1 rina arg min ri*1a12i 1n22 zi2 ri2n arg min xi zi 2a1i 12 arg max zi 2 arg max Var Z a1Proja1 xi zi-1xii 1a136

3.2 PCA: C

Theory Theory Theory Theory Practice Theory Practice Practice Practice Practice. 10 Suggested readings: Overviews It is suggested to read (before coming): . B. Everitt, G. Dunn. Applied multivariate data analysis. Hodder Arnold, 2001 N. H. Timm. Applied multivariate analysis. Springer, 2004

Related Documents:

Introduction to Multivariate methodsIntroduction to Multivariate methods – Data tables and Notation – What is a projection? – Concept of Latent Variable –“Omics” Introduction to principal component analysis 8/15/2008 3 Background Needs for multivariate data analysis Most data sets today are multivariate – due todue to

6.7.1 Multivariate projection 150 6.7.2 Validation scores 150 6.8 Exercise—detecting outliers (Troodos) 152 6.8.1 Purpose 152 6.8.2 Dataset 152 6.8.3 Analysis 153 6.8.4 Summary 156 6.9 Summary:PCAin practice 156 6.10 References 157 7. Multivariate calibration 158 7.1 Multivariate modelling (X, Y): the calibration stage 158 7.2 Multivariate .

An Introduction to Multivariate Design . This simplified example represents a bivariate analysis because the design consists of exactly two dependent or measured variables. The Tricky Definition of the Multivariate Domain Some Alternative Definitions of the Multivariate Domain . “With multivariate statistics, you simultaneously analyze

Multivariate longitudinal analysis for actuarial applications We intend to explore actuarial-related problems within multivariate longitudinal context, and apply our proposed methodology. NOTE: Our results are very preliminary at this stage. P. Kumara and E.A. Valdez, U of Connecticut Multivariate longitudinal data analysis 5/28

Multivariate data 1.1 The nature of multivariate data We will attempt to clarify what we mean by multivariate analysis in the next section, however it is worth noting that much of the data examined is observational rather than collected from designed experiments. It is also apparent th

Multivariate Statistics 1.1 Introduction 1 1.2 Population Versus Sample 2 1.3 Elementary Tools for Understanding Multivariate Data 3 1.4 Data Reduction, Description, and Estimation 6 1.5 Concepts from Matrix Algebra 7 1.6 Multivariate Normal Distribution 21 1.7 Concluding Remarks 23 1.1 Introduction Data are information.

Multivariate Analysis Notes Adrian Bevan , These notes have been developed as ancillary material used for both BABAR analysis school lectures, and as part of an undergraduate course in Statistical Data Analysis techniques. They provide a basic introduction to the topic of multivariate analysis.

Department of Aliens LAVRIO (Danoukara 3, 195 00 Lavrio) Tel: 22920 25265 Fax: 22920 60419 tmallod.lavriou@astynomia.gr (Monday to Friday, 07:30-14:30) Municipalities of Lavrio Amavissos Kalivia Keratea Koropi Lavrio Markopoulo . 5 Disclaimer Please note that this information is provided as a guide only. Every care has been taken to ensure the accuracy of this information which is not .