AN EXCURSION INTO P-ADIC HODGE THEORY

2y ago
75 Views
3 Downloads
1.16 MB
12 Pages
Last View : 1m ago
Last Download : 2m ago
Upload by : Lucca Devoe
Transcription

AN EXCURSIONINTO p-ADIC HODGE THEORY:FROM FOUNDATIONSTO RECENT TRENDSF. Andreatta, R. Brasca, O. Brinon,X. Caruso, B. Chiarellotto,G. Freixas i Montplet, S. Hattori,N. Mazzari, S. Panozzo,M. Seveso, G. YamashitaPanoramas et SynthèsesNuméro 54SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Comité de rédactionMarc HINDRYNicolas BERGERONPascal MASSARTSerge CANTATAriane MÉZARDAnne-Laure DALIBARDHervé PAJOTTien-Cuong DINHArnaud GUILLINBertrand RÉMY (dir.)DiffusionAMSMaison de la SMFP.O. Box 6248Case 916 - LuminyProvidence RI 0294013288 Marseille Cedex 9USAFrancechristian.smf@cirm-math.fr www.ams.orgTarifsVente au numéro : 50 e ( 75)Des conditions spéciales sont accordées aux membres de la SMF.SecrétariatPanoramas et SynthèsesSociété Mathématique de FranceInstitut Henri Poincaré, 11, rue Pierre et Marie Curie75231 Paris Cedex 05, FranceTél : (33) 01 44 27 67 99 Fax : (33) 01 40 46 90 96panoramas@smf.emath.fr http://smf.emath.fr/ Société Mathématique de France 2019Tous droits réservés (article L 122–4 du Code de la propriété intellectuelle). Toute représentation oureproduction intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représentation ou reproduction par quelque procédé que ce soit constituerait une contrefaçon sanctionnée parles articles L 335–2 et suivants du CPI.ISSN 1272-3835ISBN 978-2-85629-913-5Directeurde la publication : Stéphane Seuret

PANORAMAS ET SYNTHÈSES 54AN EXCURSION INTO p-ADIC HODGE THEORY:FROM FOUNDATIONS TO RECENT TRENDSF. Andreatta, R. Brasca, O. Brinon, X. Caruso,B. Chiarellotto, G. Freixas i Montplet, S. Hattori,N. Mazzari, S. Panozzo, M. Seveso, G. YamashitaSociété mathématique de France

Fabrizio AndreattaDipartimento di Matematica “Federigo Enriques”, Via C. Saldini 50, 20133 Milano, ItalyE-mail : fabrizio.andreatta@unimi.itRiccardo BrascaInstitut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UPMC - CampusJussieu, 4, place Jussieu, 75252 Paris Cedex 05, FranceE-mail : riccardo.brasca@imj-prg.frOlivier BrinonIMB, Université de Bordeaux, 351, cours de la Libération, 33405 TalenceE-mail : olivier.brinon@math.u-bordeaux.frXavier CarusoIMB, Université de Bordeaux, 351, cours de la Libération, 33405 Talence, FranceE-mail : xavier.caruso@normalesup.orgBruno ChiarellottoMatematica Pura ed Applicata, Torre Archimede, Via Trieste, 63, 35121 Padova, ItalyE-mail : chiarbru@math.unipd.itGerard Freixas i MontpletInstitut de Mathématiques de Jussieu - Paris Rive Gauche, 4 Place Jussieu, 75005 Paris,FranceShin HattoriDepartment of Natural Sciences, Tokyo City University 1-28-1 Tamazutsumi, Setagaya-ku,Tokyo, 158-8557 JapanE-mail : hattoris@tcu.ac.jpNicola MazzariIMB, Université de Bordeaux, 351, cours de la Libération, 33405 Talence, FranceE-mail : nicola.mazzari@math.u-bordeaux.frSimone PanozzoDipartimento di Matematica “Federigo Enriques”, Via C. Saldini 50, 20133 Milano, ItalyE-mail : simone.panozzo@unimi.itMarco SevesoDipartimento di Matematica “Federigo Enriques”, Via C. Saldini 50, 20133 Milano, ItalyE-mail : marco.seveso@unimi.itGo YamashitaResearch Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, JapanE-mail : gokun@kurims.kyoto-u.ac.jpClassification mathématique par sujets. (2010) — 14F30, 14F40, 11G25, 11F80.Keywords and phrases. — Abelian varieties, comparison theorems, crystalline cohomology, deRham cohomology, étale and other Grothendieck topologies and (co)homologies, FontaineLaffaille modules, Galois cohomology, Hodge-Tate decompositions, integral p-adic Hodge theory,Local fields, Local ground fields, logarithmic geometry, non-Archimedean analysis, p-adic cohomologies, p-adic étale cohomology, p-adic Galois representations, p-adic Hodge theory, p-adicperiods, p-adic representations, ramification theory, rigid analytic geometry, semi-stable representations, Tate modules, Witt vectors and related rings.

AN EXCURSION INTO p-ADIC HODGE THEORY:FROM FOUNDATIONS TO RECENT TRENDSF. Andreatta, R. Brasca, O. Brinon, X. Caruso, B. Chiarellotto,G. Freixas i Montplet, S. Hattori, N. Mazzari, S. Panozzo,M. Seveso, G. YamashitaAbstract. — This volume offers a progressive and comprehensive introduction to p-adicHodge theory. It starts with Tate’s works on p-adic divisible groups and the cohomology of p-adic varieties, which constitutes the main concrete motivations for thedevelopment of p-adic Hodge theory. It then moves smoothly to the construction ofFontaine’s p-adic period rings and their apparition in several comparison theoremsbetween various p-adic cohomologies. Applications and generalizations of these theorems are subsequently discussed. Finally, Scholze’s modern vision on p-adic Hodgetheory, based on the theory of perfectoids, is presented.Résumé (Une promenade dans la théorie de Hodge p-adique : des fondements auxdéveloppements récents). — Ce volume propose une introduction progressive à lathéorie de Hodge p-adique. En guise d’introduction, le lecteur est invité à découvrir les travaux de Tate sur les groupes p-divisibles et la cohomologie des variétésp-adiques qui contiennent en essence les prémisses de la théorie de Hodge p-adique.À la suite de cette initiation, la lectrice est guidée naturellement vers la définitiondes anneaux de Fontaine de périodes p-adiques et leur apparition dans certainsthéorèmes de comparaison entre diverses cohomologies p-adiques. Des applications etdes généralisation de ces théorèmes sont discutées par la suite. Le volume se conclutpar une exposition de la vision moderne de la théorie de Hodge p-adique, qui est dûeà Scholze et est fondée sur la notion de perfectoïdes.

CONTENTSINTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viiAN INTRODUCTION TO HODGE-TATE DECOMPOSITIONS by GerardFreixas i Montplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. Algebraic and analytic de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . .3. Galois cohomology of Cp and its Tate twists . . . . . . . . . . . . . . . . . . . . . . . . . .4. Producing p-adic periods from Kähler differentials . . . . . . . . . . . . . . . . . . . . .5. Hodge-Tate decomposition of abelian varieties . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1114101317AN INTRODUCTION TO p-ADIC PERIOD RINGS by Xavier Caruso . . . . . . . .Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. From Hodge decomposition to Galois representations . . . . . . . . . . . . . . . . . .2. The first period ring: Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. Two refined period rings: Bcrys and BdR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. Crystalline and de Rham representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19192134527690FILTERED (ϕ, N )-MODULES AND SEMI-STABLE REPRESENTATIONS byOlivier Brinon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. Analogies with the -adic/complex analytic case . . . . . . . . . . . . . . . . . . . . . .3. The ring st and semi-stable representations . . . . . . . . . . . . . . . . . . . . . . . . . . .4. The comparison theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. The p-adic monodromy theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. Appendix: Inputs from log-geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93939597111115121126

viCONTENTSAN INTRODUCTION TO p-ADIC HODGE THEORY FOR OPEN VARIETIESVIA SYNTOMIC COHOMOLOGY by Go Yamashita . . . . . . . . . . . . . . . . . . .1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. p-adic Hodge theory for proper varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. p-adic Hodge theory for open varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131131132147155INTEGRAL p-ADIC HODGE THEORY AND RAMIFICATION OF CRYSTALLINE REPRESENTATIONS by Shin Hattori . . . . . . . . . . . . . . . . . . . . . .1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. Fontaine-Laffaille modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. Sketch of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159159161175181195AN INTRODUCTION TO PERFECTOID SPACES by Olivier Brinon, FabrizioAndreatta, Riccardo Brasca, Bruno Chiarellotto, Nicola Mazzari, SimonePanozzo & Marco Seveso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2. Motivating problems and constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3. Almost mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4. Adic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5. Perfectoid fields and their tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. The relative case: perfectoid spaces and their tilt . . . . . . . . . . . . . . . . . . . . . .7. Comparison theorem for rigid analytic varieties . . . . . . . . . . . . . . . . . . . . . . .8. The monodromy-weight conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207207209214218227236243256262PANORAMAS & SYNTHÈSES 54

INTRODUCTIONXavier CarusoThis volume is dedicated to Jean-Marc Fontainewho passed away in January 2019.Since the introduction of algebraic methods in topology by Poincaré at the end ofthe 19th century, the cohomology of manifolds has been intensively studied by manyauthors in many different directions. Among them, an important case of interest isthat of complex algebraic varieties, whose cohomology has a very rich structure. Forthese manifolds, we have at our disposal (at least) two differential cohomologicaltheories: the singular cohomology, which is purely topological (it makes sense forany topological space), and the de Rham cohomology, which has a analytic flavorsince it is defined using differential forms. In 1931, de Rham proved a spectacularand quite unexpected (through very classical nowadays) theorem, stating that thesetwo cohomologies are actually the same. Precisely, whenever X is a complex smoothmanifold, we have a canonical isomorphism:rrHsing(X, C) ' HdR(X).Soon after that, Hodge observed that, when X is a projective algebraic complex variety (1), the decomposition of any smooth differential form as a sum of a holomorphicand an antiholomorphic ones induces a canonical splitting of the de Rham cohomologyof X:MrHdR(X) H a,b (X)a b ron which the complex conjugacy acts by swapping H a,b (X) and H b,a (X). Moreover,the components H a,b (X) have a strong geometrical interpretation in terms of Dolbeault cohomology. Throughout the 20th century, Hodge decomposition has becomea fundamental tool in complex geometry. For example, viewed as a varying flag in arrcomplex vector space (namely HdR(X) ' Hsing(X, C)), it provides efficient methods(1)Or, more generally, when X is complex, compact and carries a Kähler form.

viiiINTRODUCTIONfor classifying complex algebraic varieties and, consequently, helping in solving moduliproblems.Another important breakthrough of the 20th century is the emergence of geometricapproaches for attacking arithmetical questions. The notion of algebraic scheme, introduced by Grothendieck in the 1950’s, leads to a uniform language in which all usualgeometric constructions—including cohomology—extend to arbitrary base rings, andespecially to the field of rational numbers Q which has, of course, a strong arithmetical taste. It is well known that the field of reals numbers R is obtained from Q bycompletion. It turns out that Q carries other absolute values, which are as least asrelevant as the standard absolute value regarding arithmetics. These absolute valuesare indexed by the prime numbers p and are called the p-adic absolute values. Bycompletion, they lead to the fields of p-adic numbers, denoted by Qp , which thenappear as a natural arithmetical analog of R. For these reasons, mathematicians startto seek for an analog of Hodge decomposition theorem in the p-adic setting.Before going further, we would like to underline that, although Qp and R sharesome similarities, they also differ in several points. Actually, the main differences are ofalgebraic nature. Indeed, contrary to R, the unit ball is Qp carries a structure of ring.It is called the ring of p-adic integers and is usually denoted by Zp . The spectrumof Zp consists of two points: one special point, which is closed and corresponds tothe unique maximal ideal pZp and one generic point, which is open and dense andcorresponds to the ideal {0}. Spec Zp is sometimes represented as follows:Spec Qp(generic point)Spec(Z/pZ)(closed point)On this drawing, we clearly see that the generic point, which is canonically isomorphicto Spec Qp , is not quite the analog of the point, but rather of the punctured unit disk.For this reason, it is sometimes relevant to consider p-adic varieties as the analogsof families of varieties (indexed by the “parameter” p) and it turns out that p-adicHodge theory shares many similarities with relative Hodge theory whose aim is tostudy variations of Hodge structure by means of differential techniques (as GaussManin connection).The second difference between Qp and R we would like to stress concerns Galoistheory: whereas R admits only one algebraic extension, namely C, the algebraic closureQ̄p of Qp has infinite degree over Qp and contains many interesting subfields. In otherwords, while the absolute Galois group of R is dramatically simple (it consists oftwo elements: the identity and the conjugacy), the absolute Galois group of Qp ismuch more intricated, reflecting partially the incredible richness of Gal(Q̄/Q). Makingapparent the action of Gal(Q̄p /Qp ) is something of prime importance in p-adic HodgePANORAMAS & SYNTHÈSES 54

INTRODUCTIONixtheory, at which point that p-adic Hodge theory provides nowadays the most powerfultools for studying Galois representations.In the p-adic setting, the singular cohomology is no longer relevant since basically the topology on Qp is quite different from that on standard simplexes. SinceGrothendieck, we know that it has to be replaced by the algebraic étale -adic cohomology where is an auxiliary prime number. This cohomology group will be denotedrby Hét(XQ̄p , Q ) where X is the variery over Qp we are considering. It is important tormention that Hét(XQ̄p , Q ) comes equipped with an action of Gal(Q̄p /Qp ). De Rhamcohomology admits an algebraic analog in the p-adic setting as well; we shall denoterit by HdR(X) in what follows. It is a vector space over Qp equipped with the so-calledrde Rham filtration Fili HdR(X). If X were a complex variety, the filtration would begiven by the formula:MrFili HdR(X) H a,b (X)a b ra ishowing that it is closely related to the Hodge decomposition. However, in the p-adiccase, we can prove that the de Rham filtration is not split in general.Let us now assume that X is a projective smooth variety over Qp . The p-adicétale cohomology of X and its de Rham cohomology are then finite dimensionalQp -vector spaces with the same dimension (2). Inspired by the complex case, one raisesthe following question—sometimes referred to as Grothendieck’s mysterious functorproblem—which can be considered as the starting point of p-adic Hodge theory.rrIs there a canonical way to compare Hét(XQ̄p , Qp ) and HdR(X) (equipped withtheir additional structures), and to go back and forth between them?The first significant result towards Grothendieck’s question is due of Tate and appearsin his seminal paper on p-divisible groups published in 1966; it states that, when A is asmooth abelian scheme over Spec Zp , we have a Gal(Q̄p /Qp )-equivariant isomorphism: 1(1) Cp Qp Hét(AQ̄p , Qp ) ' Cp K H 1 (A, O A ) Cp ( 1) K H 0 (A, ΩA/K )where Cp denotes the completion of Q̄p and Cp ( 1) is its twist by the inverse of thecyclotomic character. The right hand side of (1) is not quite the de Rham cohomologyof A, but is nevertheless related to it since it is isomorphic to its graded module withrespect to the de Rham filtration.After this result, Grothendieck’s question has been investigated by Fontaine forseveral decades. After several partial results (including an extension of Tate’s theorem to all abelian varieties over Qp ), Fontaine managed, in the 1990’s, to introduce theingredients that will eventually allow for a complete answer to Grothendieck’s question. Precisely, Fontaine constructed a large field BdR , the so-called field of p-adicperiods and, together with Jannsen, he formulated the (CdR )-conjecture, stating thatthere should exist a canonical isomorphism (compatible with all additional structures)(2)This can be proved by reduction to the complex case after the choice of a field embedding Qp , C.SOCIÉTÉ MATHÉMATIQUE DE FRANCE

xINTRODUCTIONbetween the étale cohomology and the de Rham cohomology after extending scalarsto BdR , i.e.,(2)rrBdR Qp Hét(XQ̄p , Qp ) ' BdR Qp HdR(X)for all nonnegative integer r and all proper smooth variety X over Qp . Let us underlinethat this isomorphism could be thought of as a p-adic analog of the classical Hodgedecomposition theorem since, beyond relating two different types of cohomologies, itshows that the cohomology of X is endowed with remarkable additional structures,which are a filtration and a Galois action preserving it.Besides, Fontaine noticed that the situation should be even richer when X admitsa nice prolongation X to Spec Zp (that is, following our analogy, to the “unpunctured” unit disk), i.e., when we assume that the degeneracy of X at the special pointof Spec Zp remains under control. The simplest situation occurs when the prolongation X remains smooth, i.e., when there is no degeneracy. This is the so-called caseof good reduction. Another case of interest occurs when the special fiber of X is anormal crossing divisor. This is the so-called case of semi-stable reduction. In bothcases, one can relate the de Rham cohomology of X with a suitable cohomology ofthe special fiber of X . Since the latter is defined over (Z/pZ), one derives a Frobeniusrraction on HdR(X). Moreover, in the case of semi-stable reduction, HdR(X) comes alsoequipped with a monodromy action reflecting, roughly speaking, how the cohomologyis changed when one turns around the singularity. Fontaine suggeste

R”sum” (Une promenade dans la th”orie de Hodge p-adique : des fondements aux d”veloppements r”cents). Ñ Ce volume propose une introduction progressive à la théorie de Hodge p-adique. En guise d’introduction, le lecteur est invité à décou-vrir les travaux de Tate sur les groupes p-divisibles et la cohomologie des variétés

Related Documents:

Discrete Dynamics in Nature and Society 3 As was shown in 3 , Carlitz’s q-Bernoulli numbers can be represented by p-adic q-integral on Z p as follows: Z p x m q dμ q x β m,q, for m Z. 1.7 Also, Carlitz’s q-Bernoulli polynomials β k,q x can be represented β m,q x Z p x y m q dμ q y, for m Z, 1.8 see 3 . In this paper, we consider the

theory, including, for example, in the famous proof of Fermat’s Last Theorem by Andrew Wiles. Since 80th p-adic numbers are used in applications to quantum physics. Lanqi Fei (UMD) Construction of P-adic Numbers 2/29

This book. This book describes a general theory of Euler systems for p-adic representations. We start with a finite-dimensional p-adic representation T of the Galois group of a number field K. (Thaine's situation is the case where T is limˆ¡„pn twisted by an even Dirichlet character, and Kolyvagin's is the case where T is the vii

ematics as, for instance, elementary number theory, complex analytic number theory, differential topology (differential structures on spheres), theory of modular forms (Eisenstein series), p-adic analytic number theory (p-adic L-functions), and quantum physics (quantum groups). The works of Genocchi numbers and their combinatorial relations have

Todas las semanas habrá una salida fuera del Jardín Botánico. La excursión semanal será la visita a la granja escuela de CEI El Jarama. En dicha excursión los niños/as podrán disfrutar de un rato de piscina además de otras actividades deportivas y de naturaleza. Se fijarán los días de excursión antes del comienzo del campamento.

An outcomes-based resource manual for NSW HSC Physics students Student notes and excursion activities covering material from HSC Options: Quanta to Quarks(9.8.3 and 9.8.4) Aspects of Medical Physics (9.6.3) PHYSICS Excursion NOTES AND WORKBOOK Prepared by Peter L. Rob

- Oversized spider for linearity at high excursion - High-excursion EPDM rubber surround - 107 ounce magnet/204 ounce motor structure - Frequency Response: 28 - 120 Hz ( /- 3 dB) - 8 ohm impedance SC-10: - 10” (8” piston diameter) subwoofer - 3” high temperature inside/outside voice coil - Oversized spider for linearity at high excursion

Coppieters et al. Different Nerve Gliding Exercises Induce Different Magnitudes of Median Nerve Longitudinal Excursion: A Study Using Dynamic US imaging. JOSPT 2009;39:164-171. Different exercises produce different amounts of longitudinal nerve excursion (A) “Sliding Technique” produces largest excursion –Ipsilateral cervical SB