Introductions To Sech H L H L H L H L H L H L

2y ago
25 Views
2 Downloads
3.81 MB
71 Pages
Last View : 15d ago
Last Download : 3m ago
Upload by : Kaden Thurman
Transcription

Introductions to SechIntroduction to the hyperbolic functionsGeneralThe six well-known hyperbolic functions are the hyperbolic sine sinhHzL, hyperbolic cosine coshHzL, hyperbolictangent tanhHzL, hyperbolic cotangent cothHzL, hyperbolic cosecant cschHzL, and hyperbolic secant sechHzL. They areamong the most used elementary functions. The hyperbolic functions share many common properties and they havemany properties and formulas that are similar to those of the trigonometric functions.Definitions of the hyperbolic functionsAll hyperbolic functions can be defined as simple rational functions of the exponential function of z:sinhHzL coshHzL tanhHzL cothHzL cschHzL sechHzL ãz - ã-z2ãz ã-z2ãz - ã-zãz ã-zãz ã-zãz - ã-z2ãz - ã-z2ãz ã-z.The functions tanhHzL, cothHzL, cschHzL, and sechHzL can also be defined through the functions sinhHzL and coshHzLusing the following formulas:tanhHzL sinhHzLcoshHzLcothHzL cschHzL sechHzL coshHzLsinhHzL1sinhHzL1.coshHzLA quick look at the hyperbolic functionsHere is a quick look at the graphics of the six hyperbolic functions along the real axis.

s within the group of hyperbolic functions and with other function groupsRepresentations through more general functionsThe hyperbolic functions are particular cases of more general functions. Among these more general functions, fourclasses of special functions are of special relevance: Bessel, Jacobi, Mathieu, and hypergeometric functions.For example, sinhHzL and coshHzL have the following representations through Bessel, Mathieu, and hypergeometricfunctions:sinh HzL -äcosh HzL J1 2 Hä zLsinh HzL Πz2I1 2 HzLsinh HzL -äΠäz2Y-1 2 Hä zL sinh HzL J-1 2 Hä zLcosh HzL Πz2I-1 2 HzLcosh HzL -Πäz2Y1 2 Hä zLΠäz2Πäz2sinh HzL -ä Se H1, 0, ä zL cosh HzL Ce H1, 0, ä zLsinhHzL z 0 F1 J; 2 ;3z2N4coshHzL 0 F1 J; 2 ;1z2N4cosh HzL 12Π12ΠI-z K1 2 H-zL -zI-z K1 2 H-zL z.All hyperbolic functions can be represented as degenerate cases of the corresponding doubly periodic Jacobielliptic functions when their second parameter is equal to 0 or 1:sinh HzL -ä sd Hä z È 0L -ä sn Hä z È 0Lcosh HzL cd Hä z È 0L cn Hä z È 0Ltanh HzL -ä sc Hä z È 0Lcoth HzL ä cs Hä z È 0Lcsch HzL ä ds Hä z È 0L ä ns Hä z È 0Lsech HzL dc Hä z È 0L nc Hä z È 0Lsinh HzL sc Hz È 1L sd Hz È 1Lcosh HzL nc Hz È 1L nd Hz È 1Ltanh HzL sn Hz È 1Lcoth HzL ns Hz È 1Lcsch HzL cs Hz È 1L ds Hz È 1Lsech HzL cn Hz È 1L dn Hz È 1L.Representations through related equivalent functionsEach of the six hyperbolic functions can be represented through the corresponding trigonometric function:sinh HzL -ä sin Hä zLcosh HzL cos Hä zLtanh HzL -ä tan Hä zLcoth HzL ä cot Hä zLcsch HzL ä csc Hä zLsech HzL sec Hä zLsinh Hä zL ä sin HzLcosh Hä zL cos HzLtanh Hä zL ä tan HzLcoth Hä zL -ä cot HzLcsch Hä zL -ä csc HzLsech Hä zL sec HzL.Relations to inverse functions

http://functions.wolfram.com3Each of the six hyperbolic functions is connected with a corresponding inverse hyperbolic function by two formulas. One direction can be expressed through a simple formula, but the other direction is much more complicatedbecause of the multivalued nature of the inverse function:sinh Isinh-1cosh IcoshHzLM z-1tanh Itanh-1coth Icoth-1csch Icsch-1sech Isech-1HzLM z cosh-1HzLM z tanhHsinh HzLL z ; - 2 Im HzL Π2ë JIm HzL - 2 í Re HzL 0N ë JIm HzL Π2í Re HzL ³ 0NHtanh HzLL z ; - 2 Im HzL Π2ë JIm HzL - 2 í Re HzL 0N ë JIm HzL Π2í Re HzL 0NΠ-1sinh-1HzLM z coth-1HzLM z csch-1HzLM z sech-1ΠHcosh HzLL z ; Re HzL 0 ß -Π Im HzL Π Þ Re HzL 0 ß Im HzL ³ 0ΠHcoth HzLL z ;Π-2 Im HzL Hcsch HzLL z ; - 2 Im HzL ΠΠ2Π2Πë JIm HzL Π-2í Re HzL 0N ë JIm HzL ë JIm HzL - 2 í Re HzL 0N ë JIm HzL ΠHsech HzLL z ; -Π Im HzL Π ß Re HzL 0 Þ Re HzL 0 ß Im HzL ³ 0.Π2Π2í Re HzL 0Ní Re HzL ³ 0NRepresentations through other hyperbolic functionsEach of the six hyperbolic functions can be represented through any other function as a rational function of thatfunction with a linear argument. For example, the hyperbolic sine can be representative as a group-defining function because the other five functions can be expressed as:cosh HzL -ä sinh Jtanh HzL coth HzL csch HzL sech HzL sinh HzLcosh HzLcosh HzLsinh HzL Πä22sinh J -Πä22-zNä sinh JΠä-zNsinh HzL22tanh HzL ä sinh HzL1sinh HzL1cosh HzLcosh HzL 1 sinh HzL- zNcoth HzL 2csch HzL 2 äsinh Jsech HzL 2Πä2-zNsinh2 HzL1 sinh2 HzL1 sinh2 HzLsinh2 HzLsinh2 HzL11 sinh2 HzL1.All six hyperbolic functions can be transformed into any other function of the group of hyperbolic functions if theargument z is replaced by p Π ä 2 q z with q2 1 ì p Î Z:sinh H-z - 2 Π äL -sinh HzL sinh Hz - 2 Π äL sinh HzLsinh J-z -3ΠäN2sinh J-z -ΠäN2 ä cosh HzLsinh H-z - Π äL sinh HzLsinh Jz ΠäN2sinh Jz 3ΠäN2sinh Jz -sinh Hz Π äL -sinh HzL -ä cosh HzLsinh Hz 2 Π äL sinh HzL ä cosh HzLsinh Hz - Π äL -sinh HzL -ä cosh HzL sinh Jz - ä cosh HzL3ΠäN2sinh JΠä2sinh J3Πä2ΠäN2 -ä cosh HzL- zN ä cosh HzLsinh HΠ ä - zL sinh HzL- zN -ä cosh HzLsinh H2 Π ä - zL -sinh HzL

http://functions.wolfram.com4cosh H-z - 2 Π äL cosh HzLcosh Hz - 2 Π äL cosh HzLcosh H-z - Π äL -cosh HzLcosh Hz - Π äL -cosh HzLcosh Jz ΠäN2cosh JΠä2cosh Jz 3ΠäN2cosh J3Πä2cosh J-z -3ΠäN2cosh J-z -ΠäN2 -ä sinh HzL cosh Jz - ä sinh HzL3ΠäN2cosh Jz - ä sinh HzLcosh Hz Π äL -cosh HzLΠäN2 ä sinh HzL -ä sinh HzL- zN -ä sinh HzLcosh HΠ ä - zL -cosh HzL -ä sinh HzLcosh Hz 2 Π äL cosh HzL- zN ä sinh HzLcosh H2 Π ä - zL cosh HzLtanh H-z - Π äL -tanh HzLtanh Hz - Π äL tanh HzLtanh Jz tanh Jtanh J-z -ΠäN2ΠäN2 -coth HzL tanh Jz - coth HzLtanh Hz Π äL tanh HzLΠäN2 coth HzL- zN -coth HzLΠä2tanh HΠ ä - zL -tanh HzLcoth H-z - Π äL -coth HzL coth Hz - Π äL coth HzLcoth J-z coth Jz ΠäN2ΠäN2 -tanh HzL coth Jz - tanh HzLcoth Hz Π äL coth HzLcoth JΠä2ΠäN2 tanh HzL- zN -tanh HzLcoth HΠ ä - zL -coth HzLcsch H-z - 2 Π äL -csch HzLcsch Hz - 2 Π äL csch HzLcsch H-z - Π äL csch HzLcsch Hz - Π äL -csch HzLcsch Jz ΠäN2csch Jcsch Jz 3ΠäN2csch J-z -3ΠäN2csch J-z -ΠäN2 -ä sech HzL csch Jz - ä sech HzL -ä sech HzLcsch Hz Π äL -csch HzL ä sech HzLcsch Hz 2 Π äL csch HzLsech H-z - 2 Π äL sech HzLsech J-z -3ΠäN2sech J-z -ΠäN2sech Jz sech Jz 3ΠäN2csch Jz -ΠäN23Πä2- zN ä sech HzLcsch HΠ ä - zL csch HzLcsch Jcsch H2 Π - z äL -csch HzLsech Hz - 2 Π äL sech HzL3ΠäN2 -ä csch HzLsech Jz -ΠäN2sech Hz Π äL -sech HzL ä csch HzLsech Hz 2 Π äL sech HzL ä sech HzL- zN -ä sech HzLsech Jz - -ä csch HzL -ä sech HzLΠä2 ä csch HzLsech H-z - Π äL -sech HzLΠäN23ΠäN2 -ä csch HzLsech Hz - Π äL -sech HzLΠäsech J 2 ä csch HzL- zN ä csch HzLsech HΠ ä - zL -sech HzLsech J3Πä2- zN -ä csch HzLsech H2 Π ä - zL sech HzL.The best-known properties and formulas for hyperbolic functionsReal values for real argumentsFor real values of argument z, the values of all the hyperbolic functions are real (or infinity).

http://functions.wolfram.com5In the points z 2 Π n ä m ; n Î Z ì m Î Z, the values of the hyperbolic functions are algebraic. In several cases,they can even be rational numbers, 1, or ä (e.g. sinhHΠ ä 2L ä, sechH0L 1, or coshHΠ ä 3L 1 2). They can beexpressed using only square roots if n Î Z and m is a product of a power of 2 and distinct Fermat primes {3, 5, 17,257, }.Simple values at zeroAll hyperbolic functions has rather simple values for arguments z 0 and z Π ä 2:sinh H0L 0cosh H0L 1tanh H0L 0sinh JΠäN2cosh Jtanh JΠäN2ΠäN2 ä 0 coth J Π ä N 0coth H0L 2 csch J Π ä N -äcsch H0L 2sech H0L 1sech JΠäN2 . AnalyticityAll hyperbolic functions are defined for all complex values of z, and they are analytical functions of z over thewhole complex z-plane and do not have branch cuts or branch points. The two functions sinhHzL and coshHzL are entire functions with an essential singular point at z . All other hyperbolic functions are meromorphic functions with simple poles at points z Π k ä ; k Î Z (for cschHzL and cothHzL) and at points z Π ä 2 Π k ä ; k Î Z(for sechHzL and tanhHzL).PeriodicityAll hyperbolic functions are periodic functions with a real period (2 Π ä or Π ä):sinh HzL sinh Hz 2 Π äLcosh HzL cosh Hz 2 Π äLtanh HzL tanh Hz Π äLcoth HzL coth Hz Π äLcsch HzL csch Hz 2 Π äLsech HzL sech Hz 2 Π äLsinh Hz 2 Π ä kL sinh HzL ; k Î Zcosh Hz 2 Π ä kL cosh HzL ; k Î Ztanh Hz Π ä kL tanh HzL ; k Î Zcoth Hz Π ä kL coth HzL ; k Î Zcsch Hz 2 Π ä kL csch HzL ; k Î Zsech Hz 2 Π ä kL sech HzL ; k Î Z.Parity and symmetryAll hyperbolic functions have parity (either odd or even) and mirror symmetry:sinh H-zL -sinh HzLcosh H-zL cosh HzLsinh Hz L sinh HzLcosh Hz L cosh HzLtanh H-zL -tanh HzL tanh Hz L tanh HzLcoth H-zL -coth HzL coth Hz L coth HzLcsch H-zL -csch HzL csch Hz L csch HzLsech H-zL sech HzLsech Hz L sech HzL.Simple representations of derivatives

http://functions.wolfram.com6The derivatives of all hyperbolic functions have simple representations that can be expressed through other hyperbolic functions:¶sinh HzL¶z¶coth HzL¶z cosh HzL¶cosh HzL¶z -csch HzL¶csch HzL¶z2 sinh HzL¶tanh HzL¶z -coth HzL csch HzL¶sech HzL¶z sech HzL2 -sech HzL tanh HzL.Simple differential equationsThe solutions of the simplest second-order linear ordinary differential equation with constant coefficients can berepresented through sinhHzL and coshHzL. The other hyperbolic functions satisfy first-order nonlinear differentialequations:w HzL - w HzL 0 ; w HzL cosh HzL ì w H0L 1 ì w H0L 0w HzL - w HzL 0 ; w HzL sinh HzL ì w H0L 0 ì w H0L 1w HzL - w HzL 0 ; w HzL c1 cosh HzL c2 sinh HzL.All six hyperbolic functions satisfy first-order nonlinear differential equations:w HzL -1 Hw HzLL2 0 ; w HzL sinh HzL í w H0L 0 í Im HzL w HzL --1 Hw HzLL 2w HzL w HzL2 - 1 0 ; w HzL coth HzL í w Jw HzL - w HzL - w HzL 0 ; w HzL csch HzL242 0 ; w HzL cosh HzL í w H0L 1 í Im HzL w HzL w HzL2 - 1 0 ; w HzL tanh HzL ì w H0L 0 ΠΠäN2Π2 02w HzL2 w HzL4 - w HzL2 0 ; w HzL sech HzL.Applications of hyperbolic functionsTrigonometric functions are intimately related to triangle geometry. Functions like sine and cosine are oftenintroduced as edge lengths of right-angled triangles. Hyperbolic functions occur in the theory of triangles inhyperbolic spaces.Lobachevsky (1829) and J. Bolyai (1832) independently recognized that Euclid's fifth postulate—saying that for agiven line and a point not on the line, there is exactly one line parallel to the first—might be changed and still be aconsistent geometry. In the hyperbolic geometry it is allowable for more than one line to be parallel to the first(meaning that the parallel lines will never meet the first, however far they are extended). Translated into triangles,this means that the sum of the three angles is always less than Π.A particularly nice representation of the hyperbolic geometry can be realized in the unit disk of complex numbers(the Poincaré disk model). In this model, points are complex numbers in the unit disk, and the lines are either arcsof circles that meet the boundary of the unit circle orthogonal or diameters of the unit circle.The distance d between two points (meaning complex numbers) A and B in the Poincaré disk is:-1dHA, BL 2 tanhA-B1-BA.

http://functions.wolfram.com7The attractive feature of the Poincaré disk model is that the hyperbolic angles agree with the Euclidean angles.Formally, the angle Α at a point A of two hyperbolic lines A B and A C is described by the formula:cosHΑL -A B -A C1-A B 1-A C 1-A B 1-A C -A B-A C.In the following, the values of the three angles of an hyperbolic triangle at the vertices A, B, and C are denotedthrough Α, Β, and Γ. The hyperbolic length of the three edges opposite to the angles are denoted a, b, and c.The cosine rule and the second cosine rule for hyperbolic triangles are:sinhHbL sinhHcL cosHΑL coshHbL coshHcL - coshHaLsinhHaL sinhHcL cosHΒL coshHaL coshHcL - coshHbLsinhHaL sinhHbL cosHΓL coshHaL coshHbL - coshHcLsinHΒL sinHΓL coshHaL cosHΒL cosHΓL cosHΑLsinHΑL sinHΓL coshHbL cosHΑL cosHΑL cosHΒLsinHΑL sinHΒL coshHcL cosHΑL cosHΒL cosHΓL.The sine rule for hyperbolic triangles is:sinHΑLsinHΒL sinhHaL sinhHbLsinHΓL.sinhHcLFor a right-angle triangle, the hyperbolic version of the Pythagorean theorem follows from the preceding formulas(the right angle is taken at vertex A):coshHaL coshHbL coshHcL.Using the series expansion coshHxL » 1 x2 2 at small scales the hyperbolic geometry is approximated by thefamilar Euclidean geometry. The cosine formulas and the sine formulas for hyperbolic triangles with a right angleat vertex A become:cosHΒL tanhHcLsinhHbL, sinHΒL tanhHaLtanhHbLcosHΓL sinhHaLsinhhHcL, sinHΓL .tanhHaLtanhHaLThe inscribed circle has the radius:Ρ -1tanhcos2 HΑL cos2 HΒL cos2 HΓL 2 cosHΑL cosHΒL cosHΓL - 12 H1 cosHΑLL H1 cosHΒLL H1 cosHΓLLThe circumscribed circle has the radius:4 sinhI 2 M sinhJ 2 N sinhI 2 Ma-1Ρ tanhbsinHΓL sinhHaL sinhHbLc.

http://functions.wolfram.com8Other applicationsAs rational functions of the exponential function, the hyperbolic functions appear virtually everywhere in quantitative sciences. It is impossible to list their numerous applications in teaching, science, engineering, and art.Introduction to the Hyperbolic Secant FunctionDefining the hyperbolic secant functionThe hyperbolic secant function is an old mathematical function.This function is easily defined as the ratio of one and hyperbolic cosine functions:1sechHzL coshHzL2ã ã-zz.After comparison with the famous Euler formula for the cosine function cosHzL ãä z ã-ä z,2it is easy to derive thefollowing representation of the hyperbolic secant through the circular secant:sechHzL secHä zL.The previous formula allows establishment of all the properties and formulas for the hyperbolic secant fromcorresponding properties and formulas for the circular secant.A quick look at the hyperbolic secant functionHere is a graphic of the hyperbolic secant function f HxL sechHxL for real values of its argument x.21.5f10.50-0.5-1-2-10x12Representation through more general functionsThe hyperbolic secant function sechHzL can be represented using more general mathematical functions. As thereciprocal to the hyperbolic cosine function that is a particular case of the generalized hypergeometric, Bessel,Struve, and Mathieu functions, the hyperbolic secant function can also be represented as reciprocal to those specialfunctions. Here are some examples:sech HzL 10 F11 z2; ;2 4sech HzL 1Πäz2J-12Hä zLsech HzL 1Πz2I-12HzL

http://functions.wolfram.comsech HzL -91Πäz2Y 1 Hä zLsech HzL 1Πz1 2L 1 HzLsech HzL 1.Ce H1,0,ä zL22But these representations are not very useful because they include complicated special functions in thedenominators.It is more useful to write the secant function as particular cases of one special function. That can be done usingdoubly periodic Jacobi elliptic functions that degenerate into the hyperbolic secant function when their secondparameter is equal to 0 or 1:sechHzL dcHä z È 0L ncHä z È 0L dsΠ2- ä z 0 nsΠ2- ä z 0 cnHz È 1L dnHz È 1L ä csΠä2- z 1 ä dsΠä2-z 1 .Definition of the hyperbolic secant function for a complex argumentIn the complex z-plane, the function sechHzL is defined by the same formula used for real values:1sechHzL coshHzL2ã ã-zz.In the points z Π ä 2 Π k ä ; k Î Z, where coshHzL has zeros, the denominator of the last formula equals zero andsechHzL has singularities (poles of the first order).Here are two graphics showing the real and imaginary parts of the hyperbolic secant function over the complexplane.2Re2Im02-202-20-20-2x2y0-20y-2x2The best-known properties and formulas for the hyperbolic secant functionValues in pointsThe values of the hyperbolic secant function for special values of its argument can be easily derived from thecorresponding values of the circular secant function in special points of the circle:

http://functions.wolfram.comsech H0L 1sech JΠäN2 sech HΠ äL -1sech J3ΠäN210sech Jsech JΠäN62ΠäN37Πäsech J 6 N sech Jsech J2 sech J3 -2 -5ΠäN323ΠäN43ΠäN45Πäsech J 4 N 2sech J 2 - 2 - 27ΠäN4 2sech Jsech JΠäN35ΠäN6 -4Πäsech J 3 Nsech J 211 Π äN623 -2 231 ; m Î Z.sech H2 Π äL 1 sech HΠ ä mL H-1Lm ; m Î Z sech JΠ ä J 2 mNN The values at infinity can be expressed by the following formulas:sech H L 0 sech H- L 0.General characteristicsFor real values of argument z, the values of sechHzL are real.In the points z 2 Π n ä m ; n Î Z ì m Î Z, the values of sechHzL are algebraic. In several cases, they can beintegers -2, -1, 1, or 2:sech H0L 1 sech JΠäN3The values of sechI 2 sech JΠäΠMm2ΠäN3 -2 sech HΠ äL -1.can be expressed using only square roots if n Î Z and m is a product of a power of 2 anddistinct Fermat primes {3, 5, 17, 257, }.The function sechHzL is an analytical function of z that is defined over the whole complex z-plane and does not havebranch cuts and branch points. It has an infinite set of singular points:(a) z Π ä 2 Π ä k ; k Î Z are the simple poles with residues H-1Lk-1 ä. (b) z is an essential singular point.It is a periodic function with period 2 Π ä:sechHz 2 Π äL sechHzLsech HzL sech Hz 2 Π ä kL ; k Î Z sech HzL H-1Lk sech Hz Π ä kL ; k Î Z.The function sechHzL is an even function with mirror symmetry:sech H-zL sech HzL sech Hz L sech HzL .DifferentiationThe first derivative of sechHzL has simple representations using either the tanhHzL function or the sechHzL function:¶sech HzL¶z -tanh HzL sech HzL.

http://functions.wolfram.com11The nth derivative of sechHzL has much more complicated representations than the symbolic nth derivatives forsinhHzL and coshHzL:¶n sech HzL¶znn fvk-1 sech HzL n ä Hn 1L! â â2nIH-1Lk 21-k Hk - 2 jLn sechk HzLM cosh JänΠ2Hk 1L j ! Hk - jL! Hn - kL!k 0 j 0- Hk - 2 jL zN ; n Î N,where n is the Kronecker delta symbol: 0 1 and n 0 ; n ¹ 0.Ordinary differential equationThe functions sechHzL satisfies the following first-order nonlinear differential equation:w HzL2 w HzL4 - w HzL2 0 ; w HzL sech HzL.Series representationThe function sechHzL has the following series expansion at the origin that converges for all finite values z withΠz 2 :sech HzL 1 -z2 25 z424 ¼ â E2 k z2 kH2 kL!k 0,where E2 k are the Euler numbers.The hyperbolic secant function sechHzL can also be presented using other kinds of series with the followingformulas:sech HzL Π âH-1Lk H2 k 1L k 0Π Jk 2sech HzL - â1 2N2 ; z212k - Jz Π ä Jk 2 NN21äzΠ ;-12äzΠÏZ-12Ï Z.Integral representationThe function sechHzL has a well-known integral representation through the following definite integral along thepositive part of the real axis:sechHzL 2Πà0 1t 12tâ t ; ImHzL 2äzΠΠ2.Product representationThe famous infinite product representation for coshHzL can be easily rewritten as the following product representation for the hyperbolic secant function:sechHzL ä k 1Π2 H2 k - 1L2Π2 H2 k - 1L 4 z22.

http://functions.wolfram.com12Limit representationThe hyperbolic secant function has the following limit representation:H-1Lksech HzL lim ânn Π Jk 2 N - ä z1k -n ;äzΠ-12Ï Z.Indefinite integrationIndefinite integrals of expressions that contain the hyperbolic secant function can sometimes be expressed usingelementary functions. However, special functions are frequently needed to express the results even when theintegrands have a simple form (if they can be evaluated in closed form). Here are some examples:z-1à sechHzL â z 2 tan KtanhK OO2sechHzL â z -2 ä cosh 2 HzL Fà1và sech Ha zL â z -v-1secha H1 - vLäz22 sech 2 HzL1Ha zL sinh Ha zL-sinh Ha zL22 F11-v 1 3-v2, ;; cosh Ha zL .222Definite integrationDefinite integrals that contain the hyperbolic secant function are sometimes simple and their values can beexpressed through elementary functions. Here is one example:à t2 sechHtL â t 0Π3.8Some special functions can be used to evaluate more complicated definite integrals. For example, gamma functions, incomplete beta functions, and the Catalan constant are needed to express the following integrals:àsech HtL â t Π2a0à12ä Bcosh2 J Π N21-a 1,22Π GJ2 - 2N1aG I1 - 2 Ma ; Re HaL 1 t sechHtL â t 2 C.0Finite summationThe following finite sum that contain the hyperbolic secant has a simple value:ânk 1122k2zsech2k1 22ncsch K2z2nO - csch HzL ; n Î N.2Infinite summationThe evaluation limit of the last formula in the previous subsubsection for n - gives the following value for thecorresponding infinite sum:

http://functions.wolfram.comâ k 1122 kz2sech2k 131z2- csch HzL.2Finite productsThe following finite product from the hyperbolic secant can be represented through the hyperbolic cosecantfunction:ä sec z n-1k 0Πkn H-1Ln-1 2n-1 cscn HΠ - 2 zL ; n Î N .2Infinite productsThe following infinite product from the hyperbolic secant can be represented through the hyperbolic cosecantfunction:ä sech zk 12k z cschHzL.Addition formulasThe hyperbolic secant of a sum or difference can be represented in terms of hyperbolic sine and cosine as shown inthe following formulas:sechHa bL sechHa - bL 1coshHaL coshHbL sinhHaL sinhHbL1coshHbL coshHaL - sinhHaL sinhHbL.Multiple argumentsIn the case of multiple arguments 2 z, 3 z, , the function sechHn zL can be represented as a rational function thatcontains powers of the hyperbolic secant. Here are two examples:sech HzL2sechH2 zL 2 - sech HzL2sech HzL3sechH3 zL 4 - 3 sech HzL2.Half-angle formulasThe hyperbolic secant of a half-angle can be represented by the following simple formula that is valid in a horizontal strip:zsechK O 22coshHzL 1 ; ImHzL Π Þ HImHzL Π ß ReHzL 0L Þ HImHzL -Π ß ReHzL 0L.To make this formula correct for all complex z, a complicated prefactor is needed:

http://functions.wolfram.comzsechK O cHzL214 ; cHzL H-1Lf2coshHzL 1Π-ImHzL2Πv1 - 1 H-1LfΠ-ImHzL2Πv f-Π-ImHzL2ΠvΘH-ReHzLL ,where cHzL contains the unit step, real part, imaginary part, and the floor functions.Sums of two direct functionsThe sum and difference of two hyperbolic secant functions can be described by the following formulas:asechHaL sechHbL 2 cosh2sechHaL - sechHbL -2 sinha2bacosh2-b2 2asinh2b2 sechHaL sechHbLb2sechHaL sechHbL.Products involving the direct functionThe product of two hyperbolic secants and the product of hyperbolic secant and cosecant have the followingrepresentations:2sechHaL sechHbL coshHa - bL coshHa bL2sechHaL cschHbL .sinhHa bL - sinhHa - bLInequalitiesOne of the most famous inequalities for the hyperbolic secant function is the following:sech HxL x csch HxL ; x 0 ß x Î R.Relations with its inverse functionThere are simple relations between the function sechHzL and its inverse function sech-1 HzL:sech Isech-1HzLM z sech-1Hsech HzLL z ; -Π Im HzL Π ß Re HzL 0 Þ Re HzL 0 ß Im HzL ³ 0.The second formula is valid at least in the horizontal half-strip -Π ImHzL Π ì ReHzL 0. This can be expandedto a full horizontal strip:sech HsechHzLL -1z2 ; -Π ImHzL Π Þ ImHzL -Π ß ReHzL 0 Þ ImHzL Π ß ReHzL ³ 0.Outside of this strip a much more complicated relation (that contains the unit step, real part, and the floor functions)holds:sech HsechHzLL -1z2 1 -Πä2z1 - H-1LfImHzLvΠ 2ImHzLΠRepresentations through other hyperbolic functions Πä2z2z 1 1 H-1LfImHzL2Π v f1ImHzL22Π- v12ΘHReHzLL ; z ¹ 0.

http://functions.wolfram.com15The hyperbolic secant and cosecant functions are connected by a very simple formula including the linear functionin the argument:sechHzL ä cschΠä2-z .The hyperbolic secant function can also be represented using other hyperbolic functions by the following formulas:sech HzL äsinh JΠä2-zNsech HzL 1-tanh2 J Nz2z1 tanh2 J N2sech HzL coth2 J N-1z2zcoth2 J N 12.Representations through trigonometric functionsThe hyperbolic secant function has the following representations using the trigonometric functions:sech HzL 1sin J -ä zNΠsech HzL 1cos Hä zLsech HzL 21 tan2 JäzN2äz1-tan2 J N2sech HzL sech HzL csc I 2 - ä zM sech HzL sec Hä zL sech Hä zL sec HzL.cot2 JäzN 12äzcot2 J N-12ΠApplicationsThe hyperbolic secant function is used throughout mathematics, the exact sciences, and engineering.Introduction to the Hyperbolic Functions in MathematicaOverviewThe following shows how the six hyperbolic functions are realized in Mathematica. Examples of evaluatingMathematica functions applied to various numeric and exact expressions that involve the hyperbolic functions orreturn them are shown. These involve numeric and symbolic calculations and plots.NotationsMathematica forms of notationsAll six hyperbolic functions are represented as built-in functions in Mathematica. Following Mathematica's generalnaming convention, the StandardForm function names are simply capitalized versions of the traditional mathematics names. Here is a list hypFunctions of the six hyperbolic functions in StandardForm.hypFunctions 8Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Sech@zD, Cosh@zD 8Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Sech@zD, Cosh@zD Here is a list hypFunctions of the six trigonometric functions in TraditionalForm.hypFunctions TraditionalForm8sinhHzL, coshHzL, tanhHzL, cothHzL, sechHzL, coshHzL Additional forms of notations

http://functions.wolfram.com16Mathematica also knows the most popular forms of notations for the hyperbolic functions that are used in otherprogramming languages. Here are three examples: CForm, TeXForm, and FortranForm.hypFunctions . 8z 2 Π z oth(2*Pi*z),Sech(2*Pi*z),Cosh(2*Pi*z))hypFunctions . 8z 2 Π z TeXForm\{ \sinh (2\,\pi \,z),\cosh (2\,\pi \,z),\tanh (2\,\pi \,z),\coth (2\,\pi \,z),\Mfunction{Sech}(2\,\pi \,z),\cosh (2\,\pi \,z)\}hypFunctions . 8z 2 Π z tic evaluations and transformationsEvaluation for exact, machine-number, and high-precision argumentsFor a simple exact argument, Mathematica returns an exact result. For instance, for the argument Π ä 6, the Sinhfunction evaluates to ä 2.FΠäSinhB6ä28Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Csch@zD, Sech@zD . z ä: ,2ä3,2, -ä3 , -2 ä,32Πä6 3For a generic machine-number argument (a numerical argument with a decimal point and not too many digits), amachine number is returned.Cosh@3.D10.06778Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Csch@zD, Sech@zD . z 2.83.62686, 3.7622, 0.964028, 1.03731, 0.275721, 0.265802 The next inputs calculate 100-digit approximations of the six hyperbolic functions at z 1.N@Tanh@1D, 1D N@ð, 50D 05

http://functions.wolfram.com17N@8Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Csch@zD, Sech@zD . z 1, 81334095870229565413013307567304323895 98 83 382 03 830 2808547853078928924 Within a second, it is possible to calculate thousands of digits for the hyperbolic functions. The next input calculates 10000 digits for sinhH1L, coshH1L, tanhH1L, cothH1L, sechH1L, and cschH1L and analyzes the frequency of theoccurrence of the digit k in the resulting decimal number.Map@Function@w, 8First@ðD, Length@ðD & Split@Sort@First@RealDigits@wDDDDD,N@8Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Csch@zD, Sech@zD . z 1, 10 000DD8880,86,83,880,87,83,880,87,83,980 , 81, 994 , 82, 996 , 83, 1014 , 84, 986 , 85, 1001 ,1017 , 87, 1020 , 88, 981 , 89, 1011 , 880, 1015 , 81, 960 , 82, 997 ,1037 , 84, 1070 , 85, 1018 , 86, 973 , 87, 997 , 88, 963 , 89, 970 ,971 , 81, 1023 , 82, 1016 , 83, 970 , 84, 949 , 85, 1052 , 86, 981 ,1056 , 88, 1010 , 89, 972 , 880, 975 , 81, 986 , 82, 1023 ,1004 , 84, 1008 , 85, 977 , 86, 977 , 87, 1036 , 88, 1035 , 89, 979 ,979 , 81, 1030 , 82, 987 , 83, 992 , 84, 1016 , 85, 1030 , 86, 1021 ,969 , 88, 974 , 89, 1002 , 880, 1009 , 81, 971 , 82, 1018 ,994 , 84, 1011 , 85, 1018 , 86, 958 , 87, 1019 , 88, 1016 , 89, 986 Here are 50-digit approximations to the six hyperbolic functions at the complex argument z 3 5 ä.N@Csch@3 5 äD, 23887285931631736730964453318082730911 1484269546408531396 775479803879772793331583262276221 38939784445056701747 äN@8Sinh@zD, Cosh@zD, Tanh@zD, Coth@zD, Csch@zD, Sech@zD . z 3 5 ä, 50D

5515436340301659921919691213853 94033 59125751 04102 1108 388729 775 614624 833 ä Mathematica always evaluat

csch2 HzL 1 sinh2 HzL sech HzL 1 cosh HzL ä sinh J pä 2-zN sech2 HzL 1 1 sinh2 HzL. All six hyperbolic functions can be transformed into any other function of the group of hyperbolic functions if the argument z is replaced by ppä’2 qz with q2 1ìp Z: sinh H-z-2päL -sinh HzLsinh Hz-

Related Documents:

7 Type bestelnr. Ketel (L) Cap. m3/h PK kW TPM Volt bar droger L x B x H kg Garantie (jaar) B5900B/270 FT 5.5 SECH 4116000159 270 40 5.5 4 1400 400 Tri 11 DRY 45 1490 x 500 x 1175 197 1 B5900B/500 FT 5.5 SECH 4116000165 500 40 5.5 4 1400 400 Tri 11 DRY 45 1894 x 600 x 1280 249 1

1 x2 x inverts sech(x) for x 0, while ln 1 p 1 x2 x inverts sech(x) for x 0. 6. Just for fun { and a mark too! { use Maple to nd any and all the real roots of the cubic equation, x3 2x2 3x 4 0, to 10 decimal places. [1] Solution. fsolve is variant of the solve command that tries to nd numeric solutions. fsolve(x 3-2*x 2

SECH SA Z.I. du Vivier 22, CH-1690 Villaz-St-Pierre Switzerland Phone: 41 26 552 52 00 All Rights Reserved info@sechsa.com www.sechsa.com Page 2 of 9

1. Define key messages that are imbedded in the introductions 2. Explain why starting a rollout of the standards with introductions is important. 3. Describe actions that you can consider in your district as you begin to roll out the standards. 1. What are standards? 2. To whom do standards apply? 3. Why were the standards revised? 4.

Resumes, Introductions, and Career Fair Prep. Today's Topics: 2 1. Craft a Resume 2. Prepare for the Career Fair 3. Create Introductions. Resumes. 1. Shows what you're good at and where you've been 2. Highlights both technical and essential skills 3. Answers some questions recruiters have abo

Simple formal greetings, introductions and goodbyes conversation Greetings Introductions Good-byes Sample sentence Sample response Sample sentence Sample response Sample sentence Sample response Hello, Mr. Jones Hello. Teacher Paul, I'd like to introduce you to my friend Linda It's a pleasure to meet you. / Pleased to meet you. It was nice .

work/products (Beading, Candles, Carving, Food Products, Soap, Weaving, etc.) ⃝I understand that if my work contains Indigenous visual representation that it is a reflection of the Indigenous culture of my native region. ⃝To the best of my knowledge, my work/products fall within Craft Council standards and expectations with respect to

BAB 6 LEMBAGA JASA KEUANGAN DALAM PEREKONOMIAN INDONESIA KOMPETENSI INTI 3. Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, bakat dan minatnya untuk memecahkan masalah kenegaraan, dan peradaban terkait penyebab fenomena dan .