General Physics I - Pgccphy

3y ago
68 Views
2 Downloads
5.09 MB
360 Pages
Last View : 2d ago
Last Download : 3m ago
Upload by : Ryan Jay
Transcription

General Physics I:Classical MechanicsDavid G. SimpsonDept. of Natural Sciences, Prince George’s Community College, Largo, MarylandLarry L. SimpsonUnion Carbide Corporation (ret.), South Charleston, West VirginiaFall 2020Last updated: October 8, 2020

ContentsAcknowledgments111What is Physics?122Units2.12.22.32.42.52.62.72.8Systems of Units. . . . . . . . . . . .SI Units . . . . . . . . . . . . . . . .CGS Systems of Units . . . . . . . . .British Engineering Units . . . . . . .Units as an Error-Checking Technique .Unit Conversions . . . . . . . . . . .Currency Units. . . . . . . . . . . . .Odds and Ends . . . . . . . . . . . . .1414151919192022223Problem-Solving Strategies4Density264.1Specific Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2Density Trivia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Kinematics in One Dimension5.1Position . . . . . . . . .5.2Velocity . . . . . . . . .5.3Acceleration . . . . . . .5.4Higher Derivatives . . . .5.5Dot Notation . . . . . . .5.6Inverse Relations. . . . .5.7Constant Acceleration . .5.8Summary . . . . . . . .5.9Geometric Introduction . . . . . . . . . . . . . .6.2Vector Arithmetic: Graphical Methods.6.3Vector Arithmetic: Algebraic Methods.6.4The Zero Vector . . . . . . . . . . . .6.5Derivatives. . . . . . . . . . . . . . .37. 37. 38. 38. 43. 431

Prince George’s Community College6.66.778910Simpson & SimpsonIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Other Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44The Dot Product7.1Definition . . . . .7.2Component Form .7.3Properties . . . . .7.4Matrix Formulation.45. 45. 45. 46. 48Kinematics in Two or Three Dimensions8.1Position . . . . . . . . . . . . . .8.2Velocity . . . . . . . . . . . . . .8.3Acceleration . . . . . . . . . . . .8.4Inverse Relations. . . . . . . . . .8.5Constant Acceleration . . . . . . .8.6Vertical vs. Horizontal Motion . . .8.7Summary . . . . . . . . . . . . .4949494950505152Projectile Motion9.1Range . . . . . . . . . . . . . . . .9.2Maximum Altitude. . . . . . . . . .9.3Shape of the Projectile Path . . . . .9.4Hitting a Target on the Ground. . . .9.5Hitting a Target on a Hill. . . . . . .9.6Exploding Projectiles . . . . . . . .9.7Other Considerations . . . . . . . .9.8The Monkey and the Hunter Problem9.9Summary . . . . . . . . . . . . . .54555657575960606062Newton’s Method10.1 Introduction . . . . . .10.2 The Method . . . . . .10.3 Example: Square Roots10.4 Projectile Problem . . .63. 63. 63. 63. 6511Mass12Force12.112.212.312.412.513General Physics I.66The Four Forces of Nature .Hooke’s Law. . . . . . . .Weight . . . . . . . . . . .Normal Force . . . . . . .Tension . . . . . . . . . .67. 67. 68. 68. 68. 69Newton’s Laws of Motion7013.1 First Law of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7013.2 Second Law of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7013.3 Third Law of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

Prince George’s Community CollegeGeneral Physics ISimpson & Simpson14The Inclined Plane7315Atwood’s Machine7516Statics7916.1 Mass Suspended by Two Ropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7916.2 The Elevator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8216.3 The Catenary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8217Friction17.1 Introduction . . . . . . . .17.2 Static Friction . . . . . . .17.3 Kinetic Friction . . . . . .17.4 Rolling Friction . . . . . .17.5 The Coefficient of Friction.84. 84. 84. 85. 85. 8518Blocks and Pulleys8718.1 Horizontal Block and Vertical Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8718.2 Inclined Block and Vertical Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8819Resistive Forces in Fluids9119.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9119.2 Model I: F R / v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9119.3 Model II: F R / v 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9320Circular Motion20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20.2 Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20.3 Centrifugal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20.4 Relations between Circular and Linear Motion. . . . . . . . . . . . . . . . . . . . . . . .20.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Work21.121.221.321.421.521.622Introduction . . . . . . . . . . . . . .Case I: Constant F k r . . . . . . . . .Case II: Constant F r . . . . . . . .Case III: Variable F k r . . . . . . . .Case IV (General Case): Variable F rSummary . . . . . . . . . . . . . . .Simple Machines22.1 Inclined Plane .22.2 Wheel and Axle22.3 Pulley . . . . .22.4 Lever . . . . .22.5 Wedge . . . . .22.6 Screw . . . . .22.7 Gears . . . . 61081081083

Prince George’s Community College23General Physics IEnergy23.1 Introduction . . . . . . . .23.2 Kinetic Energy . . . . . . .23.3 Potential Energy . . . . . .23.4 Other Forms of Energy. . .23.5 Conservation of Energy . .23.6 The Work-Energy Theorem23.7 The Virial Theorem . . . .Simpson & Simpson.11011011011111411411511524Conservative Forces25Power11825.1 Energy Conversion of a Falling Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11925.2 Rate of Change of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12025.3 Vector Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12026Linear Momentum12126.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12126.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12126.3 Newton’s Second Law of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12127Impulse28Collisions28.1 Introduction . . . . . . . . . .28.2 The Coefficient of Restitution .28.3 Perfectly Inelastic Collisions. .28.4 Perfectly Elastic Collisions . .28.5 Newton’s Cradle . . . . . . . .28.6 Inelastic Collisions. . . . . . .28.7 Collisions in Two Dimensions .29The Ballistic Pendulum30Rockets30.1 Introduction . . . . .30.2 The Rocket Equation.30.3 Mass Fraction . . . .30.4 Staging . . . . . . 531Center of Mass31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31.2 Discrete Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31.3 Continuous Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32The Cross Product14032.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14032.2 Component Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14132.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414136. 136. 136. 137

Prince George’s Community College32.432.5General Physics ISimpson & SimpsonMatrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14333Rotational Motion14533.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14533.2 Translational vs. Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14533.3 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14734Moment of Inertia34.1 Introduction . . . . . .34.2 Radius of Gyration. . .34.3 Parallel Axis Theorem .34.4 Plane Figure Theorem .34.5 Routh’s Rule . . . . . .34.6 Lees’ Rule . . . . . . .14914915315415515515635Torque15735.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15735.2 Rotational Version of Hooke’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15835.3 Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15836Measuring the Moment of Inertia15936.1 Torque Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15936.2 Pendulum Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16037Newton’s Laws of Motion: Rotational Versions16237.1 First Law of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16237.2 Second Law of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16237.3 Third Law of Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16338The Pendulum38.1 Introduction . . . . . . . . .38.2 The Simple Plane Pendulum .38.3 The Spherical Pendulum . . .38.4 The Conical Pendulum. . . .38.5 The Torsional Pendulum . . .38.6 The Physical Pendulum . . .38.7 Other Pendulums . . . . . .164164164165165167167169Simple Harmonic Motion39.1 Energy . . . . . . . . . . . .39.2 Frequency and Period . . . .39.3 The Vertical Spring . . . . .39.4 Frequency and Period . . . .39.5 Mass on a Spring . . . . . .39.6 More on the Spring Constant.1701721741741741751753940Rocking Bodies17840.1 The Half-Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1785

Prince George’s Community College41Rolling Bodies41.1 Introduction . . . . . .41.2 Velocity . . . . . . . .41.3 Acceleration . . . . . .41.4 Kinetic Energy . . . . .41.5 The Wheel . . . . . . .41.6 Ball Rolling in a Bowl .General Physics I.Simpson & Simpson.18118118118218318418542Galileo’s Law18742.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18742.2 Modern Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18743The Coriolis Force18943.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18943.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19044Angular Momentum19144.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19144.2 Conservation of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19145Conservation Laws46The Gyroscope19446.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19446.2 Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19446.3 Nutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19547Elasticity47.1 Introduction . . . . . . . . . . . . . . .47.2 Longitudinal (Normal) Stress . . . . . .47.3 Transverse (Shear) Stress—Translational47.4 Transverse (Shear) Stress—Torsional . .47.5 Volume Stress . . . . . . . . . . . . . .47.6 Elastic Limit . . . . . . . . . . . . . . .47.7 Summary . . . . . . . . . . . . . . . .4849193.196196196197198198199199Fluid Statics48.1 Introduction . . . . . . . . . . . . . .48.2 Archimedes’ Principle . . . . . . . . .48.3 Floating Bodies . . . . . . . . . . . .48.4 Pressure . . . . . . . . . . . . . . . .48.5 Change in Fluid Pressure with Depth .48.6 Pascal’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200. 200. 200. 200. 201. 202. 203Fluid Dynamics49.1 The Continuity Equation.49.2 Bernoulli’s Equation . . .49.3 Torricelli’s Theorem . . .49.4 The Siphon . . . . . . .6.204205205206208

Prince George’s Community College49.549.649.749.849.949.10General Physics IViscosity. . . . . . . . .The Reynolds Number . .Stokes’s Law. . . . . . .Fluid Flow through a PipeGases . . . . . . . . . .Superfluids. . . . . . . .Simpson & Simpson.20921121121221221450Hydraulics and Pneumatics21750.1 Hydraulics: The Hydraulic Press. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21750.2 Pneumatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21951Gravity51.1 Newton’s Law of Gravity .51.2 Gravitational Potential . . .51.3 The Cavendish Experiment51.4 Helmert’s Equation . . . .51.5 Earth Density Model. . . .51.6 Escape Velocity . . . . . .51.7 Gauss’s Formulation . . . .51.8 General Relativity . . . . .51.9 Black Holes . . . . . . . .220220220221221222224224228229Earth Rotation52.1 Introduction .52.2 Precession . .52.3 Nutation . . .52.4 Polar Motion.52.5 Rotation Rate.230230230230232232Geodesy53.1 Introduction . . . . . . . . . . . . . .53.2 Radius of the Earth . . . . . . . . . .53.3 The Cosine Formula . . . . . . . . . .53.4 Vincenty’s Formulæ: Introduction . . .53.5 Vincenty’s Formulæ: Direct Problem .53.6 Vincenty’s Formulæ: Inverse Problem .234234235235236236238525354.Celestial Mechanics24154.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24154.2 Kepler’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24154.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24254.4 Orbit Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24254.5 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24354.6 Right Ascension and Declination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24454.7 Computing a Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24554.8 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24654.9 Corrections to the Two-Body Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 24654.10 Bound and Unbound Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24754.11 The Vis Viva Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2477

Prince George’s Community College54.1254.1354.1454.1554.1654.1755General Physics IBertrand’s Theorem . . . . . . .Differential Equation for an OrbitLagrange Points . . . . . . . . .The Rings of Saturn . . . . . . .Hyperbolic Orbits . . . . . . . .Parabolic Orbits . . . . . . . . .Simpson & Simpson.248248249250252253Astrodynamics55.1 Circular Orbits . . . . . . . . . . . .55.2 Geosynchronous Orbits . . . . . . .55.3 Elliptical Orbits . . . . . . . . . . .55.4 The Hohmann Transfer . .

What is Physics? Physics is the most fundamental of the sciences. Its goal is to learn how the Universe works at the most fundamental level—and to discover the basic laws by which it operates. Theoretical physics concentrates on developing the theory and mathematics of these laws, while applied physics focuses attention on the

Related Documents:

Texts of Wow Rosh Hashana II 5780 - Congregation Shearith Israel, Atlanta Georgia Wow ׳ג ׳א:׳א תישארב (א) ׃ץרֶָֽאָּהָּ תאֵֵ֥וְּ םִימִַׁ֖שַָּה תאֵֵ֥ םיקִִ֑לֹאֱ ארָָּ֣ Îָּ תישִִׁ֖ארֵ Îְּ(ב) חַורְָּ֣ו ם

Physics 20 General College Physics (PHYS 104). Camosun College Physics 20 General Elementary Physics (PHYS 20). Medicine Hat College Physics 20 Physics (ASP 114). NAIT Physics 20 Radiology (Z-HO9 A408). Red River College Physics 20 Physics (PHYS 184). Saskatchewan Polytechnic (SIAST) Physics 20 Physics (PHYS 184). Physics (PHYS 182).

Advanced Placement Physics 1 and Physics 2 are offered at Fredericton High School in a unique configuration over three 90 h courses. (Previously Physics 111, Physics 121 and AP Physics B 120; will now be called Physics 111, Physics 121 and AP Physics 2 120). The content for AP Physics 1 is divided

General Physics: There are two versions of the introductory general physics sequence. Physics 145/146 is intended for students planning no further study in physics. Physics 155/156 is intended for students planning to take upper level physics courses, including physics majors, physics combined majors, 3-2 engineering majors and BBMB majors.

Physics SUMMER 2005 Daniel M. Noval BS, Physics/Engr Physics FALL 2005 Joshua A. Clements BS, Engr Physics WINTER 2006 Benjamin F. Burnett BS, Physics SPRING 2006 Timothy M. Anna BS, Physics Kyle C. Augustson BS, Physics/Computational Physics Attending graduate school at Univer-sity of Colorado, Astrophysics. Connelly S. Barnes HBS .

PHYSICS 249 A Modern Intro to Physics _PIC Physics 248 & Math 234, or consent of instructor; concurrent registration in Physics 307 required. Not open to students who have taken Physics 241; Open to Freshmen. Intended primarily for physics, AMEP, astronomy-physics majors PHYSICS 265 Intro-Medical Ph

21 years of experience teaching Physics at Louisiana State University and California State University Stanislaus. Courses taught include: General Physics of Physics Majors (PHYS 1201/02) General Physics Laboratory for Physics Majors (PHYS 1208/09) General Physics (PHYS 2001/02) Introductory Physics for Technical Students (PHYS 2101/02)

Academic literary criticism prior to the rise of “New Criticism” in the United States tended to practice traditional literary history: tracking influence, establishing the canon of major writers in the literary periods, and clarifying historical context and allusions within the text. Literary biography was and still is an important interpretive method in and out of the academy; versions of .