Superfluidity Of Bose-Einstein Condensates In Ring Traps

3y ago
52 Views
2 Downloads
9.47 MB
47 Pages
Last View : 1d ago
Last Download : 3m ago
Upload by : Wren Viola
Transcription

2018/08/21 Seminar at Kochi University of TechnologySuperfluidity of Bose-Einsteincondensates in ring trapsYukawa Institute for Theoretical Physics,Kyoto UniversityMasaya Kunimi (國見 昌哉)References:MK and Y. Kato, Phys. Rev. A 91, 053608 (2015).MK and I. Danshita, arXiv:1712.09403.Collaborator:Yusuke Kato (University of Tokyo)Ippei Danshita (Kindai University)1

Contents Introduction to cold atomic gases and superfluidity Part 1. Multiple-swallowtail structures in 2D Bose-Einsteincondensate : MK and Y. Kato, Phys. Rev. A 91, 053608 (2015). Part 2. Superflow decay of Bose-Einstein condensate in the ringtraps : MK and I. Danshita, arXiv:1712.09403.2

Introduction : Cold Atomic GasesCold atomic gasesAtoms (typically alkali atoms) are trapped in a vacuum byusing a magnetic field or a laser beam.Bose-Einstein condensation (BEC, 1995) andFermi superfluid (2004) were experimentally realized.Important featuresT Tc Highly controllability Very clean systems.T TcT Tc Ideal quantum many-body systems!3W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).

Introduction : Cold Atomic GasesTypical scales of cold atomic gasesTemperature:10nK〜500nK TcBEC O(100nK)Density : 10-5 times the density of the airLength : 0.1µm〜100µmI. Bloch, Rev. Mod. Phys. 80, 885 (2008).Particle number:103〜107What we can do in cold atomic gasesTune of the inter-particle interaction BCS-BEC crossover, supersolidControl of spatial dimension and shape of the trap potential Ring trapControl of disorder Anderson localization, tuning the defect strengthSpin-orbit coupling Topological physicsQuantum gas microscope single site imaging, measurements of entanglement4

Methods : Hamiltonian of dilute Bose gasesHamiltonian for dilute Bose gasesĤ Z 2g††2ˆ2†ˆˆˆˆˆdrr (r) · r (r) U (r) (r) (r) (r) (r)2m2ˆ(r) :Field operator of bosons U (r) :external potentialV (r0r ) g (r4 2 ag m0r ):Contact interactiona :s-wave scattering lengtha 0 : repulsive interactiona 0 : attractive interaction latexit sha1 base64 "0Pq82NZEATMCdfX9tFjb7Eq45AU " qKh3mJkzZ u6riCkM3RdHTPUPs2o5QaqohdtTqZu9 qxe FGarvFb4VA5Yk8 9mq6v1vgVg6fDyjiS9ES31KVHuqNnev hedvdk 03Op9es3Ttrdwlo UuYDyKuQWg /latexit Heisenberg equation latexit sha1 base64 "q6BuQaL3krYeMjAC2iwq1kplclU " qKh3mJkzZ u6riCkM3RdHTPUPs2o5QaqohdtTqZu9 qxe FGarvFb4VA5Yk8 9mq6v1vgVg6fDyjiS9ES31KVHuqNnev hedvdk 03Op9es3Ttrdwlo UuYDxGmQWA /latexit @ ˆi (r, t) [ ˆ(r, t), Ĥ]@t5See, for example, L. Pitaevskii and S. Stringari,Bose-Einstein Condensation(Oxford University Press, Oxford, UK, 2003)

Introduction : Gross-Pitaevskii Equationh ˆ(r, t)i (r, t) Neglecting the fluctuations ˆ(r, t) !(r, t)Gross-Pitaevskii (GP) equation (Mean-field theory)@i (r, t) @t 2 22r (r, t) U (r, t) (r, t) g (r, t) (r, t)2mThis approximation is justified under the low temperature and the diluteconditions.n3dB3na 11 Thermal de Brogile wave length mean particle distances-wave scattering length mean particle distanceThe GP equation can correctly describe the static and dynamicalproperties of the BEC.6

Introduction : Mean-field ApproximationPhysical quantities can be obtained by the order parameter.(r, t) pn(r, t)ei'(r,t):Order parameter2:local particle densityn(r, t) (r, t) :local velocity fieldv(r, t) r'(r, t)mFrom the single-valuedness of the order parameter,the circulation is quantized :Quantization of the circulation latexit sha1 base64 "yR9gXPkdUgV jzZAYhsXLxzbcWk " biJ4 4GiwXib6jp17j236nC92NeJZexgxjlx8tTpM7NnG fOX7g417x0eTOJJkaqroz8yGx5IlG DlXXauurrdgoEXi 6nm7K0W uk4v8lj/Kun1m23WYWW0jgK3Bm3UsRo134NjgAgSEwRQCGEJ 9k1It6RafliFlC/PsM3vLpuwje8e sMN/9srKHsVb9mj3Kq2K 2Udd22pvXy/HtUsruE6Fmget7GMh1hFl 79hCkO8cMJnWfOvvOiKnVmas0V/BHOm582mLxt /latexit I dr · v(r, t) mCI2 d' WmcW 2 Z : Winding number latexit sha1 base64 "lMLOwCiZXqUtNd/hO4ZvisTm2cE " miK8fOOp6Du7PL7twRs9wfCPYWqSJYhHQ2FtrZ 4pANsTe dIz W87lXM83VPr8S8ExYaWOKrugr3dAlfaPv9Ou/tbK8Ru8v 7yLvlbGzdFP47WfD6pC3g12/6juUQjOvt RS6jzuwc4wRnOrVmrZm1Ybj/VGig0Y/grLPkbCsqfzA /latexit 7

Introduction : SuperfluidityThe winding number is a topological number. The topological number can not be changed by a perturbation. The finite winding number states have long lifetime. Persistent current ! TLifetimeTexperimentSimply connected systems(Typical setup of cold atoms)Wallcore ofquantum vortex 0Multiply connected systems(Ring-shaped trap)no vorticesbut flow 0yxflow8

Introduction : BEC in a ring trapRing traps are ideal systems for studying superfluidity.Bose-Einstein condensates confined in a ring traphave been investigated by several experimental groups.Experimental studies for the ring trapRyu et al., PRL 99, 260401 (2007) : Persistent currentRamanathan et al., PRL 106, 130401 (2011) : Persistent currentMoulder et al., PRA 86, 013629 (2012) : Persistent currentBeattie et al., PRL 110, 025301 (2013) : Two-component BECWright et al., PRL 111, 025302 (2013) : RotationNeely et al., PRL 111, 235301 (2013) : TurbulenceRyu et al., New J. Phys. 16, 013046 (2014) : RotationEckel et al., Nature 506, 200 (2014) : HysteresisWright et al., PRL 111, 025302 (2013).Eckel et al., PRX 4, 031052 (2014) : Current-phase relationsCorman et al., PRL 113, 135302 (2014) : Kibble-Zurek mechanismKumar et al., PRA 95, 021602(R) (2017) : Temperature dependent Decay of persistent currentRed : Persistent current (no stirring)Blue : stirring the BEC in the ring trap9

Contents Introduction to cold atomic gases and superfluidity Part 1. Multiple-swallowtail structures in 2D Bose-Einsteincondensate : MK and Y. Kato, Phys. Rev. A 91, 053608 (2015). Part 2. Superflow decay of Bose-Einstein condensate in the ringtraps : MK and I. Danshita, arXiv:1712.09403.10

Part 1 : NIST experimentThe NIST group observed hysteresis in stirred BEC.Laser beam(repulsive defect)Density profiles of BECWinding numberBECHow do we understand thisphenomenon?010.5Angular velocity of rotation [Hz] The swallowtail structure isa key concept tounderstand superfluidity.Eckel et al., Nature 506, 200 (2014)11

BEC in the ring trapFor simplicity, we consider a one-dimensional system with periodicboundary condition.The GP eq. in the laboratory frame@i 0@t000000(x0 , t0 ) latexit sha1 base64 "bevs0k0CFcqZtVRwRkHt2WEBPZE " xb0laK02g8nSSj sz5x75p5jH1038mSsEU8N89LlK1evTU2Xrt 4eWumfPvORhwOFBdNHnqh2nJZLDwZiKaW2hNbkRLMdz2x6e4 z GFW0lTqNWFrze9YjKh4uO57o6tbjQpBpt tpUvfTSYuMHJvsWVQuNMcmC72DCdOD7bqjZK v2xN0p1zFGuarch7YBahCsRph LUAcjdpf2HlWtgg2ozjzjXM3pKx69ipQVmMMv A7P8ATf4zf89U vJPfI/mWfTnekFVFn5nB2/ed/VT6dGvp/VBcoXOq OJOGLjzJs0jKFuVMlpKP/IevXp tP12bSx7gMX6nfG/wFD9SwmD4g79dFWtHUKIB2X R6bJ Yn8/Oo1TQKzV2YWObX3wdUx30 /latexit U (x , t ) U0 e 2 @ 20 0 0 U(x , t ) g 022m @x[ (x0 vt0 )2 /d2 ]0(x0 , t0 ) 20(x0 , t0 )Moving defect (Gaussian type) latexit sha1 base64 "r2QLQIGsz/Iq SxsJ9hjrAm0buw " cONYQi0qXMt 5513zn0 ZeqSqVI8qaVGNlPjCZn6Oq2VSBTr W9MjNWYKGYmysVMYYdVlKawEq 9XdEp3dLTf3vVwx6Nf9ni1Wh6hVfq2 1MJQfZiO6I7zHdINXXJCp/ZgHs LhQPEeEDqv N4DZYzaZXS6vz35MxsNKpODGAQIzyPH5jBT2Sh8b27 INzXCijSlbJKatNqdISeb7gr1KMZxdAmu8 /latexit 0(x L, t ) 00Periodic boundary condition0(x , t ) latexit sha1 base64 "HxbR9iCIy6f6 xEDd8MMhNbBTn4 " qUnBqanJ szPCympLEiNzU1Mz8tMy0xOLAEKxQvIxgQUZ6prVKhr golKhr2sL4YF68gLKBngEYKGAyDKEMZQYoCMgX2M4Qw5DCkM fH8XRLB3wnqygXSJQwZCF14dCQBVeP3UwlDGoMF2C 6AAphgAWW YgA /latexit L : system size latexit sha1 base64 "l0EuyafSlQRgu7dRQ27QiOZpU6c " GigkrobstY2C xbIPenamqlqbrxoLprbWhzqlmoqLXxTySNxXM3lqUBJmG uAYWdbWOUtwhs3sAa81Pm2lbMDndk2VqF1 xeMZs9LEFP2in3RPt3RJv npn7VaSY32X5q8Ox2tiKrDJ5/WHv r8nnX2H9RvaNwOPt9Txp7WEi8SPYWJUzbpdup3zj6cb 2WJ5qTdM5/WF/Z3RHN PJbwFSVU N3vOMclrowJY9lYMYqdVCOTasbwKozKM4DbmNk /latexit latexit sha1 base64 "/TivU7qGapjMLlZU7ABLprFqbsA " BFkjitoWkSkjRQiz8gbtWFKwUX4gf4AW78ARd gris4MaFt2lAtKh3mJkzZ AwpcHruQQbCZK6LBnMNID Jj3SHb3Qx6 1GkGN1l/qvKttrbD34yfjm GtN0Ta/s74qe6YEdmv6bdrMhcpeIcYPkn aSkrzbVTpUioGcO3kJY AUTWkCQ /latexit But,thisequationisnoteasytotreatvdue to the time dependence of the defect.12

Lab frame to Moving frameConvert from the laboratory frame to the moving frameUnitary transformation latexit sha1 base64 "3XjctUoDMClWQ6N2m9BvWHzjOf4 " YtZGKYmb4kj8xX37wMaYf5A 5cKbpScSH AH fLU6TPzZyvnzl 4uFC9dHkzCqbS4V0ncAO5bVsRd4XPu0ool2 Hklue7fIte3I3O9 KuYxE4N9XeyHve9bIF0PhWIqgQXXH7ESiMbuhq ayyXenItZNPgsT0 VD1TOH0nISkSbm2LZkmoONAjTSpJ168YO2uu7F qxuSjEaq2aR 1CwsRfT0YYAgJ6yMhTFIl8nOOFBXiTqmLU4dF6IT I9r1StSnfaYZ5WyHbnFpSWLqWGIf2Wt2yN6zN wT /lPrSTXyN6yR9kuuDwcLDy8svHtvyyPssL4N sYhk3dx3tSGOJW7kWQtzBHMpdOoR/vPz7cuL2 lCyzF wz AVwhLfe /latexit sha1 base64 "dO1RVWgbv0QBXFnWGIM/DJuxBX8 " S05YINpW3aQoLEF2B1cHDSxMH4AD6Aiy/gwCMYR0xcHPwoJEaJ r7Gq0v5p7/1fV4tXD6ZfqD4XK3X978lDHnu9FZ2 2z4xcauP5nbPLYW4/m dWxyDLs4wBHSyPN1NfRxIQWlLUke5ygFJoGu4FtJO59jaI2O /latexit sha1 base64 "24i2K18j07f sG7dUf1Y4YwtFaE " SFTAwz05fkkfly5mVIO8wf6M6VoisFF IP8Ae4Efcu hPEjVBBFBfemQmIFusd3tz7zrvnvHe4dujKWBEdz2nnzl 4eGn Frjzfy891ERLEM/AfqIBQ9zxr6ciAdSzHUr EjSytJV5ycOWuu0l 2EcDBBB4EfCiuXViI 2 9l pM/s7wUd0zt26CdfnVebYus5Kjwg4 9xnC52Wk2DmsYmYR43cQt1HsNdrOM 2ujwdR/wBd/xQxtrj7Wn5Si1udlMr OP0J79AoxXtok /latexit sha1 base64 "9IrwFPjxjL78jlimNxiaLJzNCr0 " DSqc3M8Nq Am8oLNa0PNsTW6YRMJu7rCm5tNmWL5jhmDbbNAcvkvPNkImAe qm0wIKCvBRog liKnCDH7Hz3iGh/gFT/DvlVpRqpG8ZYeymXGZ35l8M7X 60aWQ1lC/z/rGoZJ3dd7ktCFhdQLJ29 /igD5a2yr7zLWpWxnPMUzoXy8R9vRLfa /latexit i 1(x, t) expmv 2 t mvx0 2x x0 vt0 latexit sha1 base64 "SutZ0c3cAG1st7pU5Qw55R7ak54 " RKEqc6mCYxmQa1 AP gAtXii7ED/AD3PgDLvwEcangxoW3aUBU1Bsyc XX/dNAJhS0fklFS2WPd8YRRNW6yZezOV 7VQ IF0nRV16ImtorHjyIK0DMVUPpU8GNgU bBgJ QWf8Xm12dlGv30QNf0Qvd0Q0/0/uuscjSj8i HvJtVrfDyyZOe5bd/VUXeFXY/VX8oTO7 25NCAeORF8nevIipuLSq88Oj05fliaX m/8AZW VUw /latexit 0(x0 , t0 )t t0 latexit sha1 base64 "IEyKBUJMuxbCeF1uFq3gkJq DEM " 9Q4zc xu82ktYh0 V2oGodriV2yePitT6KUHuqYXuqcbeqL3X2uVwxqVv zzbla1wttMHHUtvP2rKvCusPOp kNhcvbfnhTyGA29SPbmhUzFpVWtXzo4eVkYm EltOkPCgmThg /latexit The GP eq. in the moving frame 2 @ 22 U(x) g (x,t) 2m @x2(x/d)2Static defectU (x) U0 e@i (x, t) @t latexit sha1 base64 "ySiIlAgexonq0ith7GD Eso8evo " 1pC5k0vBlfkkfffPDmJaRO5w9011UXrhRciD lX48UZ74r Zq7 YTI QpVOnEYvq6L6lZxccybu69aBoznQb9TSp lxeUYeGYyommtWR7Nzve2J1fZG3VGi19ftCdcpV7CG Irv8BA/43v8hr//6ZXkHtm/bNHujrU86kzv3Fr59V 9/gd8r3Gg/wEyUMhj 9t0t8 RWUaED23 y9w1980P5sdxq2kUmhtwbJlf/gCL/cTw /latexit (x, t) latexit sha1 base64 "oM6 m3KCpdKvTmFT wWGqN72SM " V8lCQdNZgmIUmLWvoD/oALNyq4qH6AH lmhrrK29o7Mr3t2z5tlFVxeKbpu2u6GpnjANSyi 4Ztiw3GFWtBMsa4dLNTu10vC9QzbWvWPHLFdUPcsY9fQVZ 7GFPGzoKKIAAQs hcq kFap1fMXm6rBzEMD1QlV7onm7oid5/rVUOatT csS7VtcKJ9d10p99 yCF3SM/u7oEe6Y4dW6VW/WhYrZ4hxg Tv7fgJ1tIpmVLy8kRidj5sVRQDGEKS zGJWWSwBIXfPcY5qriWBqQ5KSMt1lOlSKjpxZeQsh87kZZ5 /latexit (x L, t) eimvL/ (x, t) Twisted Periodic boundary condition latexit sha1 base64 "0/gYlaEQctN738CtO53K5SvzeLw " qUnBqanJ I1SPMgAKY0gH v53f /latexit Stationary solution :(x, t) eiµt/ (x) latexit sha1 base64 "WgQRVkxPQYxWV6iAYjx7QtR2Mn0 " IoRmVmfOrD vvnPPue8drunbMlREtwmtpfVDW3vHx rtuyw7lbT6Ud4yjWC/WRtiFmUpivTLRI pjP7S/1d71aIejbfs8m42tcJf6z74Mv/vXZXDu8LWo oNhcnstz0pbGAi8iLZmx8hDZdWs39177A Yk0fnoRmPgBqfpzm /latexit flowµ : chemical potential latexit sha1 base64 "X1h 7Ef3ZkEUiH/OrzM3GyZH4xQ " hjS5hYd8faXnnvQ3drK8SiTJM/kCJVkCgi2iB 7TlKlJ3Wu16 3BFRLAN/Vx F4sCzG76sS9fWTNWyC1Wvba6ZVS0 ODgA/NWMFGzN8 LBBC5g7QZS5iJJO8wDEyrG1zleAKm9kW/xt82k9Zn8 9nnGidvkWxStipYkluqYfdEdXdEa39PDPXt2kR 9Fy6/f6dT1/vims7S908ndAv9vedbuiSHfqd3 Fkp872ec4SfOjbzx3igapX6pMZRqZvFHGB8eAdN2nMs /latexit 13

Swallowtail structure in 1D ringEnergy vs rotation velocity (non-interacting case)g 0 and U 6 0g 0 and U 0 latexit sha1 base64 "lLJKWLnneWE6bpjxGVEAS8y3ylU " UkcazBNAnJtFiLP sRWWlJW Q9X glwxY542CpcZ rCD cz8gK7wWOEWNtmbMEZ YY3GX6q8G02t8AoDJyPrb/ qSrxL7H T3SHTt0Kq/m1ZrInCHGDdK t Mn2JxOapTU1mYSqcWoVV0YwzimuB zSGEFaWT53SrOcY26MqqklGVltZmqtESaYXwJJfMBfSCWng /latexit W 1EE latexit sha1 base64 "ifz89V hqdFT6OPT89bvKz/zGyY " Rb3DzJw5c8 IACl0cRMgg2cyU0mHMY6cG9wAmirK1yluAMhdkjXg/4VAxZk89 Dp Pb7v6oK7x4Ov1R/KFTO/tuThzJSgRedvdkB47vUWvVrx lNML8dX1sFURTGAKM9yPJaxiE1vI8ruHOMM5LqQ aU5alFKtVKkj1IzhW0hrnzlKkIc /latexit latexit sha1 base64 "AfXEGAT3 nIakiTUjm

2 Contents Introduction to cold atomic gases and superfluidity Part 1. Multiple-swallowtail structures in 2D Bose-Einstein condensate : MK and Y. Kato, Phys. Rev. A 91, 053608 (2015). Part 2. Superflow decay of Bose-Einstein condensate in the ring

Related Documents:

Bose-Einstein condensation and superfluidity Key concepts in low temperature physics . Recent major progress in atomic quantum gases (main object of the present course) 2-BEC (can be defined at equilibrium) -Superfluidity (mainly related to transport phenomena) Natural link between BEC and superfluidity provided by order parameter Ψ ΨeiS

In both cases Bose-Einstein Condensation is the key phenomenon. The simplest model of BEC is best illustrated basing on 4He effects at the low temperature region. SUPERFLUIDITY To start a deliberation on the superfluidity it is necessary to move into the certain range of values of the basic thermodynamic quantities – the temperature T and .

Using the Bose-Einstein distribution (18) and the density of states (26), this becomes: V 4π2 2m 2 3 2 Z 0 ε Be ε kT 1 dε N. (28) Statistical Physics 16 Part 5: The Bose-Einstein Distribution The Bose-Einstein gas To simplify things a little, we define a new variable, y, such that: y ε kT. (29) In terms of y, the equation .

Bose-Einstein Condensation in Alkali Gases 1. Bose-Einstein Condensation At the beginning of the twentieth century, the quantum nature of thermal electromagnetic radiation was a subject of intense interest. This was sparked by Max . superfluidity could be a manifestation of bosonic condensation of the helium atoms. This

Liquid 4He undergoes Bose-Einstein condensation to enter a superfluid state without viscosity when it is cooled below a critical temperature of 2.176K. In 1995, similar superfluidity behavior was also realized by the Bose-Einstein condensation of alkali atoms in gaseous phase [1,2]. An interesting question comes out: “Does

transition: Bose–Einstein condensation. You will have a “superfluid of light.”1 Quasiparticles of light and matter may be our best hope for harnessing the strange effects of quantum condensation and superfluidity in everyday applications. The new era of POLARITON CONDENSATES

Bose-Einstein Condensation with superfluidity (liquid He4, 3D Bose and Fermi gases) Measurement of BEC in ultracold atomic gases 1996 Mit coherence wave nature 1995 (Jila Mit) Macroscopic occupation of sp state) N 0 / N z0 \ neiM Phase transition (Jila 1996) N 0 (T)/ N 1999

Water Jet Machining & Abrasive Water Jet Machining Peiman Mosaddegh, Ph.D. Isfahan University of Technology Fall 2020. Peiman Mosaddegh –Non-traditional Machining Department of Mechanical Engineering راشفاب کیراب یارجم اب لزان زا یا هدش لرتنک هتسیپ ریسم زا شرب رازبا نانع هب بآ ،شر نیا رد دام هارمه هب بآ ای .