Exercises 2 - Elsevier

1y ago
19 Views
4 Downloads
6.23 MB
36 Pages
Last View : 26d ago
Last Download : 3m ago
Upload by : Warren Adams
Transcription

1Exercises 2.11. (a) yes; (b) no; (c) no3. f (x, y) y 1/5 , so fy (t, y) 15 y 4/5 is not continuous at (0, 0) so uniqueness 5/4is not guaranteed. Solutions:y 45 t,y 0( (p2 y, y 0y 1/2 , y 05. f (t, y) 2 y , so fy (t, y) is not 2 y, y 0 ( y)1/2 , y 0continuous at (0, 0). Therefore, the hypotheses of the Existence and UniquenessTheorem are not satisfied. 1dy3/2 y t dy t1/2 dt ln y 23 t3/2 C1 y Ce2t /3 .dty Application of the initial conditions yields y exp 23 (t3/2 1)9. Yes. f (t, y) sin y cos t and fy (t, y) cos y are continuous on a regioncontaining (π, 0).11. y sec t so y 0 sec t tan t y tan t and y(0) 1. fy (t, y) t is continuouson π/2 t π/2 and f (t, y) sec t is continuous on π/2 t π/2 so thelargest intervalpon which the solution 1is valid is π/2 t π/2.13. f (t, y) y 2 1 and fy (t, y) 2 (y 2 1) 1/2 ; unique solution guaranteedfor (a) only.7. Yes.15. (0, ). Solution is y 14 t 1 (t4 1).17. (0, ) because y ln t has domain t 019. ( , 1) because y 1/(t 1) has domain ( , 1) (1, ) and y 1/(t 3)has domain ( , 3) (3, )21. ( 2, 2)23. t 0, y t 1 sin t cos t, t 21.23.yy464322-6-42-2-21-4-2-1012t-646t

225. First, we solve the equation (see next section):dy y2dt1dy dty21 t Cy 1y .t CApplying the initial condition indicates that 1/C a C 1/a so a/(1 at). This solutions is defined for t 1/a or t -1.5-1.00.5-0.51.0t1.5-227. Separating variables (see next section) gives us y dy t dt 21 y 2 12 t2 C y C t2 . Applying the initial conditions indicates that C a2 soy a2 t2 (because y(0) a is positive). Thus, the interval of definition ofthe solution is t a26.27.y-2y22111-12t-21-1-1-1-2-22t

3Exercises 2.21. Separate variables and integrate:y 2 dy x dx1 31y x2 C3233y x2 C2 1/33 2y x C.21 2Cx C 2 x24x29 75. 3t 21 t4 52 y 14y C17. sinh 3x 2 cosh 4y C9. Separate variables and integrate:3. y 11dy dty 22t 11ln(2 y) ln(2t 1) C2 ln(2 y) ln 2t 1 C 2 y Celn 2t 1 2 y C 2t 1 y 2 C 2t 1. 11. y sin 1 34 cos x C13. Separate variables and integrate:dy kydt1dy k dtyln y kt Cy Ce ktIn the calculation above, remember that e kt C e kt eC . C is arbitrary so eCis positive and arbitrary. 1115. y cosh 1 120sinh 6t 16cosh 4t C17. y 31 ln 32 e2t C1119. 43 cos θ 12cos 3θ 16sin 4y sin y C221. y sin 2x 2xy 2y 5 4Cy 0 1123. 64 C cos (2 y (x)) 64 C cos (8 x 2 y) cos (8 x 2 y) 64 cos (2 y) 1

4 2 cos (8 x) 4 cos (4 x 2 y) 4 cos (4 x 2 y) 8 cos (4 x) 128 0 225. 41 x sin 2x 41 x 18 cos 2x 2 sin y C1127.58 6 sin (y) 2 cos (4 x) sin (y 4 x) sin ( y 4 x) 64 1 sin (y) 8 cos (2 x) 4 sin (y 2 x) 4 sin ( y 2 x) 64 C 64 C sin (y) 029. 32 (ln x)3/2 31 e3/y C31. Factor first, then separate, use partial fractions and simplify.dy/dt (t2 1)(y 2 1)1dyy2 1 111 dy2 y 1 y 1y 11ln2y 1y 1y 1 (t2 1) dt (t2 1)dt 1 2t t C32 2 Ce 3 t 2t2 2y 33. y 1 Ce 3 t1 Ce 2t2 23 t 2t13 12C 4x(3C 1)4C(x 1) 335.1dy dty3 1 12 y dy dt3(y 1) 3(y 2 y 1) 2y 1(y 1)1/3 3t 3 tan 1 3 ln C2(y y 1)1/63

5y-2yy2221111-12t-21-12t-21-1-1-1-1-2-2-2Figure 1: Direction fields for dy/dt y 3 y 2 , dy/dt y 3 y 2 , and dy/dt y 2 y 337.1dy dty3 y 1y 2dy dty y 1 1ln y ln y 2 1 t C2yp Cet2y 1Ce2ty2 1 Ce2trCe2ty 1 Ce2t39. 111 dy dt2(y 1) y 2(y 1)11ln y 1 ln y ln y 1 t C22py2 1 Cety1y2 1 Ce2tr1y 1 Ce2t2t

641. dy x3 dx y 41 x4 C. y(0) 14 · 04 C 0 C 0 so y (x) 1/4 x443. Integrating gives us x sin y C and applying the initial condition gives usC 2 so x (y) sin (y) -6-42-2 y (t) 2/3 9 3 t3/2y (t) 1 1 2 et 2 x, y (x) e 2 xy (x) ey (x) arctan (x) 1y 3 4(3x 1)1/3 y ln 12 e2x 12 e46y1, and for (c) it is57. The solution for (a) is y esin t , for (b) it is y 1 sin t 1y 4 r sin t sin2 t .4y1512.5107.552.5-7.5-5t-2.52.5-2.559. y 2x(x 2) 157.5

767. Use partial fractions.1dt dt12 4y y 2 11 dy 8 dty 2 y 6y 2 8t Clny 6y 2 Ce8ty 63Ce8t 1.y 2Ce8t 171. y exp c (t 1)t73. L(t) L e rB tExercises 2.31. The integrating factor is µ(t) e t . Multiplying through by the integratingfactor, applying the theorem, integrating and solving for y gives usdy y 10dte tdy ye t 10e tdtd t e y 10e tdte t y 10e t Cy 10 Cet .The preferred solution is to use undetermined coefficients. A general solution ofthe corresponding homogeneous equation, y 0 y 0 is yh Cet . The forcingfunction is f (t) 10. The associated set of functions for a constant is F {1}. Because no multiple of 1 is a solution to the corresponding homogeneousequation, we assume that a particular solution takes the form yp A · 1 A.Differentiating yp0 0 and substituting into the nonhomogeneous equation givesus yp0 yp A 10 so A 10 and yp 10. Therefore, a general solutionof the nonhomogeneous equation is y yh yp 10 Cet3. The integrating factor is µ(t) e t . Multiplying through by the integrating

8factor and integrating we havedy y 2 cos tdte tdy e t y 2e t cos tdtd t e y 2e t cos tdte t y e t cos t e t sin t Cy Cet cos t sin t.Observe that in integrating eat cos bt dt and eat sinbt dt either required integration1eat (a cos bt b sin bt)by parts twice or a table of integrals, eat cos bt dt 2a b21and eat sin bt dt 2eat ( b cos bt a sin bt).a b25. y Cet 2te t e t7. y 12 t Ct 1dy119. First write the equation in standard form y e x to see thatxxR dxp(x) 1/x. Then, an integrating factor is e 1/x dx xln x x. Multiplyingthrough by the integrating factor and integrating gives usdy y e xdxd(xy) e xdxxy e x Cxy Cx 1 x 1 e x . 11. y 4t2 1 C 4t2 1R13. An integrating factor is µ(t) e cot t dt e ln csc t sin t. Multiplyingthrough by the integrating factor, integrating the result, and solving for y resultsindy y cos t sin t cos tdtd(y sin t) sin t cos tdt1y sin t sin2 t C21y sin t C csc t,2Rwhich is equivalent to y 21 cos t cot t C csc t because sin t cos t dt 12 cos2 t C when choosing u cos t rather than u sin t when calculating the integral.sin t

915. An integrating factor is Zµ(t) exp 4t112.dt exp ln(4t 9) 4t2 924t2 9Multiplying through by the integrating factor, integrating the result, and solvingfor y results in dy4t11 y 4t2 9 dt4t2 9 4t2 9 d1 y dt4t2 91 y 4t2 9t4t2 9t 4t2 91p 24t 9 C4p1y (4t2 9) C 4t2 9.4 R17. An integrating factor is µ(t) e2 cot x dx e 2 ln csc x sin2 x. Multiplyingthe equation by the integrating factor, integrating and solving for y yieldssin2 x2dy 2y sin2 x cot x sin2 x cos xdx dsin2 x y sin2 x cos xdx1sin2 x y sin3 x C31y sin x C csc2 x.319. θ 1 Cer /221. x(y) 1 y Cey23. x(t) C/(t3 1)25. v(s) se s Ce s27. Use undetermined coefficients to find a general solution of the equation.yh Ce t . The associated set of functions for the forcing function f (t) e t isF {e t }. Because e t is a solution to the corresponding homogeneous equation,multiply F by tn where n is the smallest integer so that no element of tn F is asolution to the corresponding homogeneous equation. In this case, tF {te t }so we assume that a particular solution of the nonhomogeneous equation has theform yp Ate t . Differentiating yp , yp0 Ate t Ae t , and substituting intothe nonhomogeneous equation yields yp0 yp Ate t Ae t Ate t Ae t e t so A 1 and yp te t . Therefore a general solution of the nonhomogeneousequation is y yh yp Ce t te t . Application of the initial condition yields

10y1234t5!0.2y e t (t 1).!0.4!0.6!0.8!12R29. An integrating factor is µ(t) e 2t dt et . Multiplying the equation bythe integrating factor, integrating and solving for y yieldset222dy 2tet y 2tetdt2d t2 e y 2tetdt22et y et C2y 1 Ce t .y10.52Applying the initial condition yields y 1 2e t .12345!0.5!131. A general solution is y 2t 1 (t 1)et Ct 1 . Applying the initial conditionst

11y42yields y (2tet 2et 1)/t.246810t!2!4y42t2 1633. y 2t 4246810t!2!439. (a) y Cet 1; (b) y Ce t t; (c) y Ce t sin t; (d) y Cet e t43. y 0 y t has solution y t 1 Ce t . y(0) 1 C 2 so y t 1 2e tfor 0 t 1. When t 1, y 1 1( 2e 1 2/e. The solution to y 0 y 0,t 1 2e t , 0 t 1y(1) 2/e is y 2e t . Thus, y(t) .2e t , t 1(e 2t , 0 t 145. y(t) e2 4t , t 147. y (t) 2/5 cos (2 t) 1/5 sin (2 t) Cet49. y (t) (t C) e t51. y (t) 1/25 1/5 t Ce5 t53. y (t) 2 cos (t) 4 sin (t) 4 et Ce1/2 t55. y (t) 2/11 et Ce 10 t57. y (t) (2 t C) et59. y (t) cos (t) sin (t) t 1 Ce t63. y (t) t 1 Ce t , y (t) 1/2 cos (t) 1/2 sin (t) Ce t , y (t) 1/2 cos (t) 1/2 sin (t) Ce t , y (t) 1/2 et Ce t65. y (t) t 1 e t , y (t) t 1, y (t) t 1 e t , y (t) t 1 2 e t ,y (t) t 1 3 e t

12Exercises 2.41. My (t, y) 2y 12 t 1/2 Nt (t, y), exact3. My (t, y) cos ty ty sin ty Nt (t, y), exact5. The equations is exact because t (sty 2 ) 3y 2 y (y 3 )7. My (t, y) sin 2t 6 2 sin 2t Nt (t, y), not exact9. My (t, y) y 1 Nt (t, y), exact11. y C t313. y 0, ty 2 C (2t y 3 ) 3y 2 (3ty 2 4).15. Observe that the equation is exact because y t32LetR F (t,3y) have 2total 3derivative (2t y ) dt (3ty 4) dy. Then, F (t, y) (2t y ) dt t ty g(y). Differentiating F with respect to y, Fy (t, y) 3ty 2 g 0 (y) 3ty 2 4 g 0 (y) 4 so g(y) 4y and F (t, y) t2 ty 3 4y. Ageneral solution is then t2 ty 3 4y C or t2 ty 3 4 y (t) C. 217. The equation is exact because(2ty) 2t (t y 2 ). Let F (t, y) y tRsatisfy Ft (t, y)dt Fy (t, y)dy 2ty dt (t2 y 2 ) dy. Then, F (t, y) 2ty dt t2 y g 0 (y) t2 y 2 so g 0 (y) y 2 g(y) 31 y 3 . Therefore F (t, y) t2 13 y 3and a general solution of the equation is t2 31 y 3 C. Observe that solvingthis as a homogeneous equation of degree 2 (see the nextsection) results in the !y 3 t2 y 2 ln (t) C.following form of the solution: 1/3 lnt3 19. The equation is exact because(sin2 y) 2 sin y cos y sin 2y (t sin 2y). y t2LetF(t,y)satisfyF(t,y)dt F(t,y)dy sinydt tsin2ydy.Then,F (t, y) tyRsin2 y dt t sin2 y g(y) so g 0 (y) 0 g(y) 0 and F (t, y) t sin2 y. Ageneral solution is then t sin2 y C or ln t 2 ln sin y C. t(e sin y) et cos y (1 et cos y).21. The equation is exact because y tLet F (t, y)R satisfy Ft (t, y)dt Fy (t, y)dy et sin y dt (1 et cos y) dy. Then,F (t, y) et sin y dt et sin y g(y) so g 0 (y) 1 g(y) t. Thus, F (t, y) et sin y t and a general solution of the equation is et sin y y -2-4-4-6-646t-4 23. y 0, y C sec t2 tan t225. The equation is exact because (1 y 2 cos ty) 2y cos ty ty 2 sin ty y

13 (sin ty ty cos ty). Let F (t, y) satisfy Ft (t, y)dt Fy (t, y)dy (1 y 2 cos ty) dt tR(sin ty ty cos ty) dy. Then, F (t, y) (1 y 2 cos ty) dt t y sin ty g(y) soFy (t, y) sin ty ty cos yt g 0 (y) so g 0 (y) 0 and g(y) 0. Then F (t, y) t y sin(yt) and a general solution of the equation is t y sin yt C. ((3 t) cos(t y) sin(t y)) cos(t 27. The equation is exact because y y) (3 t) sin(t y) ((3 t) cos(t y)). Let F (t, y) satisfy Ft (t, y)dt tFy (t, y)dy R ((3 t) cos(t y) sin(t y)) dt (3 t) cos(t y) dy. Then,F (t, y) ((3 t) cos(t y) sin(t y)) dt (3 t) sin(t y) g(y) soFy (t, y) (3 t) cos(t y) g 0 (y) (3 t) cos(t y) g 0 (y) 0 g(y) 0so F (t, y) 3 sin(t y) t sin(t y) and 3 sin(t y) t sin(t y) C. t 2 y 2 ey/t 1 t 3 yey/t (2t y) 29. The equation is exact because y y/te (1 y/t) . Let F (t, y) satisfy Ft (t, y)dt Fy (t, y)dy t 2 y 2 ey/t 1 dt t ey/t (1 y/t) dy. Then, F (t, y) t 2 y 2 ey/t 1 dt t yey/t g(y). Next,Fy (t, y) ey/t (1 y/t) g 0 (y) ey/t (1 y/t) so g 0 (y) 0 g(y) 0. Thus,F (t, y) yey/t t and yey/t t -2-2-2-4-4-4-6-6-646t 2ty 2 4ty 2t2 y . Let F (t, y) y tRsatisfy Ft (t, y) dt Fy (t, y) dy 2ty 2 dt 2t2 y dy. Then, F (t, y) 2ty 2 dt t2 y 2 g(y) so Fy (t, y) 2t2 y g 0 (y) 2t2 y, which means that g 0 (y) 0 g(y) 0. Therefore F (t, y) t2 y 2 and a general solution (or, integral curves) ofthe differential equation are t2 y 2 C. Application of the initial condition resultsin y 2 t2 1 0.31. This equation is exact becauseObserve that dividing the differential equation by 2ty yields y dt t dy 0,dy1dy y 0 or y 0. This is a first order linearwhich is equivalent to tdtdttRhomogeneous equation with integrating factor µ(t) e 1/t dt t. Multiplying

14through by the integrating factor, integrating and solving for y gives ustdy y 0dtd(ty) 0dtty Cy Ct 1 .Observe that squaring both sides of the equation and solving for C gives us thesame result as that obtained by solving the equation as an exact equation. 2 2ty 3t2 2t t 1 . Let33. The equation is exact because y t 22F (t, y) satisfyF(t,y)dt F(t,y)dy 2ty 3tdt t 1 dy. Then,ty R2232F (t, y) 2ty 3t dt t y t g(y) so Fy (t, y) t g 0 (y) t2 10 g (y) 1 g(y) y. Therefore, F (t, y) t2 y t3 y and the integralcurves are t2 y t3 y C. Applying the initial condition and solving for y gives t3 1us y .(t 1) (t 44t y(e 2ty) ey 2t tey t2 . y t Let F (t, y)R satisfy Ft (t, y) dt Fy (t, y) dy (ey 2ty) dt tey t2 dy. Then,F (t, y) (ey 2ty) dt tey t2 y g(y). Differentiating with respect to y,Fy (t, y) tey t2 g 0 (y) tey t2 g 0 (y) 0 g(y) 0 so F (t, y) tey t2 yand the integral curves are tey t2 y C. Applying the initial condition resultsin tey t2 y 0. 37. The equation is exact becausey 2 2 sin 2t 2y (1 2ty). Let y t 2F (t, y) satisfyR F2 t (t, y) dt F (t, y) dy2 y 2 sin 2t dt (1 2ty) dy. Then,F (t, y) y 2 sin 2t dt ty cos 2t g(y). Differentiating with respect to y, Fy (t, y) 2ty g 0 (y) 1 2ty g 0 (y) 1 g(y) y soF (t, y) ty 2 cos 2t y and the integral curves are ty 2 cos 2t y C. Applying the initial condition results in ty 2 cos (2 t) y 2 0.35. The equation is exact because

44t 12 y 2y ( 2ty).21 t t 1Let F (t, y) satisfy Ft (t, y) dt Fy (t, y) dy y 2 dt 2ty dy. Then,21 t R12 ydt tan 1 t ty 2 g(y). Differentiating with reF (t, y) 1 t2spect to y, Fy (t, y) 2ty g 0 (y) 2ty g 0 (y) 0 g(y) 0 soF (t, y) tan 1 t ty 2 and the integral curves are tan 1 t ty 2 C. Aparctan (t)plying the initial condition results in y 2 0.t39.The equation is exact because y 38.39.y-6-4y6644222-246t-6-42-2-2-2-4-4-6-646t41. (a) The equation is exact because ( 2x y cos(xy)) cos(xy) xy sin(xy) (2y x cos(xy)) . y xThe integral curves for the solution take the form F (x, y) C, whereZF (x, y) ( 2x y cos(xy)) dx x2 sin(xy) g(y).Because F (x, y) x2 sin(xy) g(y) 2y x cos(xy) g 0 (y), y yg 0 (y) 2y so g(y) y 2 , F (x, y) y 2 x2 sin(xy), and the integral curves ofthe equation are given by y 2 x2 sin(xy) C. Applying the initial condition

16y(0) 0 results in 0 C so that the solution to the initial value problem isy 2 x2 sin(xy).Observe in the following figure that the initial condition y(0) 0 does not resultin a unique b) Writing the differential equation in differential form gives usdy2x y cos(xy) .dx2y x cos(xy){z} f (x,y)Using the notation in the theorem, x 4 x2 y 2 sin(xy) cos(2xy) 9 f . y2(x cos(xy) 2y)2The results do not contradict the Theorems because neither of these functions iscontinuous on a region containing the origin, (0, 0).43. Here,dx2xyy2 xdy p pand. Then,dtdtx2 y 2x2 y 2dy/dty2 xdy dxdx/dt2xy x y 2 dx 2xy dy 0.Using the notation in section, M (x, y) x y 2 so My (x, y) 2y and N (x, y) 2xy so Nx (x, y) 2y so the equation x y 2 dx 2xy dy 0 is exact. LetF (x, y) be the potential function. Then,Z F (x, y) x y 2 dx1F (x, y) x2 xy 2 g(y).2

17Next, Fy (x, y) 2xy g 0 (y) 2xy so g 0 (y) 0. We choose g(y) 0 so that11F (x, y) x2 xy 2 and the integral curves are given by x2 xy 2 /3(et t2 ) t C 0y 1 t2254yt t (y) 1/4 t4 Ccos (y (t)) t2 sin (y) t Ct2 y cos ty C159. (a) (i) y t, t2 2ty y 2 C (ii) y Ct C 112 2y 1920 Ct 20 39C t 40CHiL110 HiiLy-1.02-2-249. y 51.y 10C 2 t2 10 .51.0t-1.0-0.50.5-0.5-0.5-0.5-1.0-1.0-1.01.0tx

18Exercises 2.5dwdy1. This is Bernoulli with n 1. Let w y 1 ( 1) y 2 2ydtdtdy1 1 dw y. Then,dt2dtdy 1 ydt21 1 dw 1y y2dt2dw y2dtdw wdt ty 1 ty 1 2t 2t.Use undetermined coefficients to solve for w. A general solution of the corresponding homogeneous equation is wh Cet . The associated set of functions forthe forcing function f (t) 2t is F {t, 1}. Because no element of F is a solutionto the corresponding homogeneous equation we assume that a particular solutionhas the form wp At B wp0 A. Substituting wp into the nonhomogeneousequation yields wp0 wp At (A B) 2t so A 2 and B 2 sowp 2t 2. A general solution is then w wh wp Cet 2t 2. Becausew y 2 , y Cet 2t 2.dwdy3. This is Bernoulli with n 3 so we let w y 1 3 y 2 . Then, 2y 3dtdt1 3 dwdyso y . Substituting into the equation gives us2 dtdtdw y 2ty 3 cos tdtdw 1 2 y 2 cos tdttdw 1 w 2 cos tdttd(tw) 2t cos tdttw 2 cos t 2t sin t C ty 3w 2t 1 cos t 2 sin t Ct 11 2t 1 cos t 2 sin t Ct 1y21y . 2t 1 cos t 2 sin t Ct 1p (2 cos (t) 2 t sin (t) C) t2 cos (t) 2 t sin (t) C935. y 3/2 20cos (t) 20sin (t) Ce3 t 0or y

193tt3 3C9. This is a Bernoulli equation with n 2 so we let w y 1 2 y 1 1/y.dwdydydwThen, y 2so y 2. Then,dtdtdtdt7. y dy 1 ydtt12 dw y ydttdw 1 1 ydttdw 1 wdtty2ty2 t1 t1 .t R11dw w is µ(t) e 1/t dt eln t t, t 0.The integrating factor fordtttMultiplying through by the integrating factor and solving for w gives us:dw 11 w dtttdw w 1tdtd(tw) 1dttw t Cw Ct 1 1.Because w 1/y, y 1/w, so 1/y Ct 1 1 which means that y 1/(Ct 1 1)or y Ct/(1 Ct).11. Homogeneous of degree 013. Not homogeneous15. Not homogeneous17. The equation is homogeneous of degree 1. Let t vy. Then, dt vdy ydv.

20Substituting into the equation, separating and integrating yields2tdt (y 3t)dy 02vy(vdy ydv) (y 3vy)dy 02v(vdy ydv) (1 3v)dy 0(2v 2 3v 1)dy 2vydv1 2vdy 2dvy2v 3v 1 111dy 2 dvy2v 1 v 1ln y ln(2v 1) 2 ln(1 v) C2v 1y C(v 1)2(2t y)yy C(t y)22(t y) C.2t y y ty 2tAnother form of the solution is 2 ln ln ln (t) C.tt19. The equation is homogeneous of degree 2. Observe that either t vy or y ut results in an equivalent problem. We choose to use y ut dy udt tdu.Then,(ty y 2 )dt t(t 3y)dy 0(t2 u t2 u2 )dt t(t 3ut)(udt tdu) 0(u u2 )dt (1 3u)(udt tdu) 02u(1 2u)dt t(1 3u)du 02u(1 2u)dt t(3u 1)du13u 1dt dut2u(1 2u) 1 111dt dut2 u 2u 111ln t ln u ln(2u 1) C24 4 ln t 2 ln u ln(2u 1) C1 Cu2 (2u 1)t41y 2 (t 2y) Ct4t32ty (t 2y) C.

21 Another form of the solution is 1/4 ln t 2 yt 1/2 ln y t ln (t) C.21. y 3 (3 ln (t) C) t3 023. This is homogeneous of degree 1. (Also, observe that this is a first orderlinear equation in y.) Solving it as a homogeneous equation, we let y ut dy udt tdu. Then,(t y)dt tdy 0(t ut)dt t(udt tdu) 0(1 u)dt udt tdu 0dt tdu1dt dutln t u Cyln t Cty t(C ln t). 3y 2t t 2 y25. 2/3 ln 1/2 ln ln (t) Ctt27. The equation is homogeneous of degree 2. Let t vy dt vdy ydv.Then,y 2 dt (ty 4t2 )dyy 2 (vdy ydv) (vy 2 4v 2 y 2 )dyvdy ydv (v 4v 2 )dyydv 4v 2 dy14 dy 2 dvyv1 4 ln y Cvy4 ln y C.t y yAnother form of the solution is 1/4 ln ln (t) Ct ! 2 t2 t ty y(t 2 y) 3 1/3 3 arctan 1/3 ln (t) 29. y t, 1/2 lnt2tC 131. 1/2 ( y t) y 1 e t/y ln (y) C33. y 0 2y t2 y 1/2 is Bernoulli with n 1/2. Let w y 1 1/2 y 1/2 . Then,

22dw1dydydw y 1/2 2y 1/2. Substituting into the equation yieldsdt2dtdtdtdy 2ydtdw 2y2y 1/2dtdw y 1/2dtdw wdt t2 y 1/2 t2 y 1/21 2t21 t2 .2 Using undetermined coefficients, a general solution is w Ce t 21 t2 t 1.Thus, y (Ce t 21 t2 t 1)2 . Applying the initial condition results iny543y 41 (4 8 t 8 t2 4 t3 t4 ).21t 35. y 1/2 2 2 t2 t37. y 1/2 1/2 t2p339. y 3 ln (t) 061504100502-4-224t12345t41. y 4 dt (t4 ty 3 )dy 0 is homogeneous of degree 4. Let t vy dt

23vdy ydv. Then,y 4 dt (t4 ty 3 )dy 0y 4 (vdy ydv) (v 4 y 4 vy 4 )dy 0(vdy ydv) (v 4 v)dy 0v 4 dy ydv11dy 4 dvyv1ln y 3 C3vy33 ln y 3 C.t y 1 y3 ln ln t 8/3 ln 2 0.3 t3t 43. We need to solve dy/dt y/t t/y subject to y( e) e. The equation ishomogeneous of degree 2. To see so, we rewrite the equation:Applying the initial condition results indyy 2 t2 dtyt2yt dy (y t2 )dt.Now, we let y ut dy udt tdu. Substituting then gives usut2 (u dt t du) (u2 t2 t2 ) dtu(u dt t du) (u2 1) dttu du dt1dt u2 dut1ln t u3 C31 y3ln t C.3 t3 Now apply the initial condition and solvepfor y, y 2 t ln t. 45. Solve y 2 dx (x2 y 2 ) dy 0; y x2 x4 C47. The general solution is y 3 (3 cot x C) sin3 x or y 0. So, the solutionto the initial value problem is y 0.49. Because M (t, y)dt N (t, y)dy 0 is homogeneous, we can write the equationin the form dy/dt F (y, t). If t r cos θ and y r sin θ, dt cos θ dy r sin θdθ

24and dy sin θ dr r cos θ dθ. Substituting into the equation gives usdy/dt F (t, y) sin θ dr r cos θ dθr sin θ F F (tan θ)cos θ dr r sin θdθr cos θsin θ dr r cos θ dθ F (tan θ) cos θ dr F (tan θ)r sin θdθF (tan θ)r sin θdθ r cos θ dθ F (tan θ) cos θ dr sin θ drF (tan θ) sin θdθ cos θ1 dr.F (tan θ) cos θ sin θr53. f (t) t 1; g(t) t2 t; General solution: (tc y) 1 c2 c d 0 2d(ty 0 y 1) (y ) y 0 y ct 1 c c2 ; Singular solution:dtdtty 00 y 0 2y 0 y 00 y 00 (t 2y 0 1)y 00 0 y 0 21 (t 1) y 14 t2 12 t 34 .55. f (t) 1 2t; g(t) t 2 ; General solution: 1 2(tc y) c 2 y 1 2 2ct 1); Singular solution: y 12 (3t2/3 1)2 (c59. We see that the equation is a Lagrange equation by rewriting it in the formy ty 02 (3y 02 2y 03 ) and identifying f (y 0 ) y 02 and g(y) 3y 02 2y 03 .Differentiating with respect to t yields the equation y 0 y 02 2ty 0 y 00 6y 0 y 00 6y 02 y 00 and substituting p y 0 results indpdpdp 6p 6p2dtdtdt dpp p2 2xp 6p 6p2dxdx2xp 6p 6p2 dpp p22p6p p2dx 2x .dp p pp p2p p2 2tpThe solution of this linear equation is x y xp2 3p2 2p3 2p3 21p2 36p 6Cso6 (p2 2p 1)2p3 21p2 36p 6C 2p 3p2 2p3 .6 (p2 2p 1)61. Differentiating the equation gives us y 0 (2 y 0 ) xy 00 4y 0 y 00 . Now, we let

25p y 0 and solve for dx/dp:y 0 (2 y 0 ) xy 00 4y 0 y 00dpdpp 2 p x 4pdxdxdp2p 2 (x 4p)dxdxx 4p dp2(p 1)dx14p x .dp 2 2p2(p 1) This linear equation has solution x 83 34 p 43 p2 C 2 2p so p48 4y x(2 o) 2p2 1 p p2 C 2 2p (2 p) 2p2 1.3 33ky0k ay0a65. General solution:2t2 ln t t2 Ct2 . Initial value problem has two soluptions: y 2 t2 (ln 4 ln t).63. limt y(t) -464.65.yy44222-24t-42-2-2-2-4-4Exercises 2.61. 47.3742, 63.25723. 1.8857, 2.098475. 79.8458, 123.0487. 1.95109, 1.953889. 83.6491, 88.603511. 2.37754, 2.4189713. 185.34, 206.9814t

2615. 1.95547, 1.9560917. 90.6405, 90.692719. 216.582, 216.99223. 1.95629, 1.9562925-27. (a) y(t) e t , y(1) 1/e 0.367879h 0.1h 0.00525. (Euler’s)0.3486780.35848626. (Improved)0.3685410.36803927. (4th-Order RK) 0.4290690.41483129. y(0.5) 0.566144, 1.12971, 1.68832, 2.23992, 2.78297h 0.0250.3632320.3679180.36788Chapter 2 Review Exercises 325 t6 125Cdy113. The equation y y 2 is Bernoulli with n 2. Let w y 1 2 y 1 .dtttThen, dw/dt y 2 dy/dt so y 2 dw/dt dy/dt. With this substitution wehave,1. y 1/51dy 1 y y2dttt11 22 dw y y ydttt1dw 1 1 y (Divide by y 2 .)dtttdw 11 w .dtttRdw11An integrating factor for w , t 0, is µ(t) e 1/t dt eln t t.dtttdw 11Multiplying w by the integrating factor and solving for w gives usdtttdw 11 w dtttdw11t t w t ·dtttd(t w) 1dttw t CCw 1 t1 t C ytty . t C5. y 4 dy e5t dt 51 y 5 51 e5t C y 5 e5t C y (e5t C)1/5

27 2 t7. y (t) e e C9. For this first-order linear equation, the preferred method of solution is usingthe method of undetermined coefficients to find a particular solution of the nonhomogeneous equation. The corresponding homogeneous equation is y 0 3y 0which is the first order linear homogeneous equation with constant coefficients,y 0 ky 0, which has general solution y Ce kt with k 3 so y 0 3y 0 hasgeneral solution yh Ce 3t .Now, look at the forcing function, f (t) 10 sin t. Thethis forcing function is F {cos, sin t} and because neither ofof the corresponding homogeneous equation, we assume thatyp A cos t B sin t with derivative yp0 A sin t B cos t.the non homogeneous equation gives usassociated set forthese is a solutionyp takes the formSubstituting intoyp0 3yp (3A B cos t ( A 3B sin t 10 sin tso3A B 0 A 3B 10,which has solution A 1 and B 3. Therefore, yp cos t 3 sin t andy yh yp Ce 3t cos t 3 sin t.If you preferredto use the integrating factor approach, the integrating factorRis µ(t) e 3 dt e3t . Now multiply through by the integrating factor andintegrate the result. Observe that integrating the right hand side by hand involvesintegration by parts twice.y 0 3y 10 sin te3t y 0 3e3t y 10e3t sin td 3t e y 10e3t sin tdte3t y e3t cos t 3e3t sin t Cy cos t 3 sin t Ce 3t .11. The equation (y t) dt (t y) dy 0 is homogeneous of degree 1. Eithery ut or t vy result in an equivalent problem. We choose to use y ut

28dy u dt t du. Then,(y t) dt (t y) dy 0 u2 2u 1 dt t(u 1)du1u 1dt 2dutu 2u 11ln t ln u2 2u 1 C2 t 2 C u2 2u 1 t 2 Ct 2 y 2 2ty t2y 2 2ty t2 C. y t C1 2C 2 t2 113. The equation y 2 dt (ty t2 ) dy 0 is homogeneous of degree 2. We lett vy so dt v dy y dv. Then, substituting and separating variables gives usy 2 dt (ty t2 ) dy 0y 2 (v dy y dv) (vy · y (vy)2 ) dy 0(v dy y dv) (v v 2 ) dy 0(Divide by y 2 .)(2v v 2 ) dy y dv11dv dy y2v v 2 1 111 dv dy y2 v v 21 ln y (ln v ln(2 v)) C2 12 vln y ln C2vr2 vy C.vNow replace v with t/y and solve for C.r2 vvs2 t/yt/yy Cy Cy2 C2 t/yt/yty 2 C.t 2y

29 C C 2 Ct2Solving for y instead of C results in y .t x 2 t5x 2t1x5 ln (t) C ln ln15. ln 8t8t4t17. 13 t3 y cos t sin y C19. 12 t2 ln y y C221. y 1 Ce t /2 123. r t (cos t t sin t C)25. y t 1 (6et 6tet 3t2 et C)1/327. y 2 2 ln( 2/t), y Ct 2 ln Cp 3/21,6 t 6 t2 12 C29. y 1/3 t 6 t 6 t2 12 C 54p 3/2122y 1/3 t 6 t 6 t 12 C 54 6 t 6 t 12 C,p 3/21,y 1/3 t 6 t 6 t2 12 C 54 6 t 6 t2 12 Cp 3/21y 1/3 t 6 t 6 t2 12 C 54 6 t 6 t2 12 C31. y sin(t y) π33. t sin y y sin t 035. t ln y y ln t 037.

3039.1. V (x) Rx0πy 2 dt, W (x) ρV (x) ρRx0πy 2 dtF (x)A(x)where F (x) W (x) L and A(x) πy 2 . ρx3. y(x) K exp 2σ. If y(0) 1, then K 1.2. σ(x) 1 kx2 , x(0) 100, x(1) 60. x(t) kt Cso that C 1/100 and 31 1100k 1/150. When t 3, x(3) 150 100 3 33.33 grams.41.dxdtDifferential Equations at Work

31A. Modeling the Spread of a .40.40.20.20.00246810t0.0024B. Linear Population Model with Harvesting1((ay0 h)eat h) (d) limt aa 1 (e) limt h/a (f) limt ; y(t) 0 when t ln 1 y0ah2. (a) y 2 (b) y (y0 2)et/2 2 (c) (d) 2 (f) ; 2 ln 43. y 21 (2 et ) 0 when t ln 2 0.693; y 21 (4 3et/2 0 whent 2 ln(4/3) 0.5754. y 12 (2 et/2 0 when t 2 ln 2 1.3865. Firstsolve y 0 21 y 21 , y(0) 1/2 to obtain y 1 12 et/2 . Then, y(1) 1 1 2 e 0.176. Then, for year two, solve y 0 21 y 12 , y(1) 1 21 e to obtain y 1 2e(t 1)/2 21 et/2 so y(2) 1 2 e 12 e 0.938. y 0 11y 21 et/2 2r (2r 1)e(t 1)/2 so2 y r, y(1) 1 2 e has solution111y(2) 2 e 2r (2r 1) e 2 y(0) when r 4 ( e 1) 0.162. 6. Set r 0 in the above. Then, y(2) e 12 e 0.290. y(T ) e(t 1)/2 21 t/2 12 y(0) when T

dt dt 1 y 2 1 y 6 dy 8dt ln y 2 y 6 8t C y 2 y 6 Ce8t y 2 3Ce8t 1 Ce8t 1: 71. y exp c t (t 1) 73. L(t) L 1 e r Bt Exercises 2.3 1. The integrating factor is (t) e t. Multiplying through by the integrating factor, applying the theorem, integrating and solving for ygives us dy dt y 10 e t dy dt ye t 10e t d d

Related Documents:

Sep 30, 2021 · Elsevier (35% discount w/ free shipping) – See textbook-specific links below. No promo code required. Contact Elsevier for any concerns via the Elsevier Support Center. F. A. Davis (25% discount w/free shipping) – Use the following link: www.fadavis.com and en

9782294745027 Anatomie de l'appareil locomoteur-Tome 1 Elsevier Masson French Health Sciences Collection 2015 9782294745294 Méga Guide STAGES IFSI Elsevier Masson French Health Sciences Collection 2015 9782294745621 Complications de la chirurgie du rachis Elsevier Masson French Health Sciences Collection 2015 9782294745867 Le burn-out à l'hôpital Elsevier Masson French Health Sciences .

piano exercises czerny, czerny piano exercises imslp, carl czerny 101 exercises piano pdf, carl czerny 101 exercises piano, czerny hanon piano exercises, czerny piano exercises youtube May 4, 2020 — I always teach Hanon, since it exercises all five fingers equally, and I

The Elsevier Foundation is a corporate not-for-profit 501(c) (3), funded by Elsevier, a global information analytics business specialized in science and health. Since 2006, the Elsevier Foundation provides over 1 million USD a year in grants to knowledge-centered institutions around the world, which address the UN Sustainable Development

The Human Body in Health and Illness Hardcopy 2018 Herrlihy Elsevier strong 6th /strong Ed. 978-0323498449 NUR120 Geriatric Nursing Basic Geriatric Nursing Hardcopy 2020 Williams Elsevier 7th Ed. 978-0323554558 NUR120 Geriatric Nursing Simulation Learning System for LPN/LVN Electronic 2012 Elsevier Elsevier 11th Ed. 978-1455700110 NUR125

Mar 31, 2020 · Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier

t22 mahon textbook of diagnostic microbiology latest elsevier 123 murray medical microbiolosy latest elsevier 124 nagoba medical microbiology and parasitology: prep manual for undergraduates latest elsevier t25 parija textbook of microbiology and immunology latest elsevier t26 patwardhan neeta handbook of practical examination in microbiology

Stroke Exercises for Your Body 15 Intermediate Balance Exercises The intermediate level exercises use the same basic ideas as the basic exercises, but without something to hold onto. After practicing the basic level exercises for a while, you should be able to perform them without assistance. However, for safety, always have a