Lecture 05 - Nuu.edu.tw

1y ago
22 Views
2 Downloads
1.22 MB
29 Pages
Last View : 22d ago
Last Download : 2m ago
Upload by : Joao Adcock
Transcription

Lecture 05BJTs CircuitsMicroelectronic Circuit bymeiling CHEN1

topics Large-signal operation BJT circuits at DC BJT biasing schemesMicroelectronic Circuit bymeiling CHEN2

Large-signal Æ Bias (DC) signal (AC)Bias signalvo Vcc iC Rc Vcc Rc I S evBEVTvBE VBE viMicroelectronic Circuit bymeiling CHEN3

DC load line : VBB I B RB VBEMicroelectronic Circuit bymeiling CHEN4

VCC I C RC VCEMicroelectronic Circuit bymeiling CHEN5

head room (small)Leg room (small)VCC I C RCA VCE QAVCC I C RCB VCE QBRCB RCAMicroelectronic Circuit bymeiling CHEN6

BJT operate as a switchSwitch off:vI 0.5V i B 0 i C 0 v C VCCSwitch on:vC 0.2V 0VSwitch on Æ saturation modeSwitch off Æ cut-off modeMicroelectronic Circuit bymeiling CHEN7

Example 5.3BJT work in saturation modeVC VCE ( sat ) 0.2V50 β10 0.2I C ( sat ) 9.8mA1kI C ( sat ) 9.8mI B (max) 0.196mA50β min 150I C ( sat ) 9.8mI B (min) 0.0653mA150β maxI B I B (max) overdriveRB factor5 0.7 4.3 2.2kIB1.96Microelectronic Circuit bymeiling CHEN8

Example 5.4 (DC analysis)Reverse biasβ 100forward biasAssume BJT in active mode :VE 4 0.7V 3.3VIE VE3.3 1mARE 3.3k100 1mA 0.99mAI C αI E 100 1I B I E I C 0.01mAActive mode checkVC 10 I C 4.7 k 5.3VMicroelectronic Circuit bymeiling CHEN9

Example 5.5 (DC analysis)Assume BJT in active mode :VE 6 0.7V 5.3Vβ 100VE5 .3IE 1.6mARE 3.3k100 1.6mA 1.584mAI C αI E 100 1I B I E I C 0.016mAVC 10 I C 4.7 k 2.48VJC : forward bias Not in active modeJE : forward biasMicroelectronic Circuit bymeiling CHEN10

Assume BJT in saturation mode :VE 6 0.7V 5.3VVC VE VCE ( sat ) 5.3 0.2 5.5VIE 5 .3VE 1.6mAI E 3.3m10 5.5IC 0.96mA4 .7I B I E I C 0.64mAMicroelectronic Circuit bymeiling CHEN11

Example 5.6 (DC analysis)VBE 0VI B 0mAβ 100I E 0mAI C 0mAVC Vcc 10VMicroelectronic Circuit bymeiling CHEN12

Example 5.7 (DC analysis)forward biasActive mode checkβ 100reverse biasVE 0.7V10 0.7 4.65mA2kAssume BJT in active mode :100I C αI E 4.65m 4.6mA101VC I C RC 10V 4.6m 1k 10 5.4VIE I B I E I C 0.05mAMicroelectronic Circuit bymeiling CHEN13

Example 5.8 (DC analysis)Reverse biasforward biasβ 100Assume BJT in active mode :5V 100k I B VBE 100k I B 0.7 I B 0.043mAI C βI B 4.3mAVC 10 I C RC 10 4.3m 2k 1.4VMicroelectronic Circuit bymeiling CHEN14

Example 5.9 (DC analysis)β 30Assume BJT in active mode :VE VEB VBRBl arg e I B 05 0.7 4.3mA1kI C I E 4.3V VC 10k 4.3m 5V 38V (impossible)VE 0.7V I E I C (max) 0.5mA VC 0VMicroelectronic Circuit bymeiling CHEN15

Example 5.10 (DC analysis)Reverse biasβ 100forward biasThevenin’s equivalent circuitVBB I B RBB VBE I E REVBB 15VVBB I B RBB VBE ( βI B I B ) RERBB I B 0.0128mA50k 5V100k 50k 100k // 50k 33.3kAssume BJT in active mode : I E 101 I B 1.29mA I C 1.28mAMicroelectronic Circuit bymeiling CHEN16

Example 5.11 (DC analysis)β 100β 10015V ( I C1 I B 2 ) RC1 VC1 I C1 RC1 VC1 VC1 8.6VstartVE 2 VC1 0.7V 9.3V15 9.3 2.85mA2k αI E 2 2.82mAIE2 IC 2with I B 2 0.028mAFind correct currentby iterationVC 2 I C 2 2.7 k 7.62VI B2 IE2 0.028mA101Microelectronic Circuit bymeiling CHEN17

Exercise 5.30 (DC analysis)β 100β 100IC3VC 2Microelectronic Circuit bymeiling CHEN18

Example 5.12 (DC analysis)β 100β 100Q1 and Q2 cannot be conducting at same time.If Q1 ON than Q2 OFF, and vice versa.Assume Q1 on and Q2 off :Microelectronic Circuit bymeiling CHEN19

BJT’s biasing schemes1.2.3.4.5.self-biasBase fixed biasCollector-feedback biasTwo power supply version biasConstant current biasMicroelectronic Circuit bymeiling CHEN20

Why we need good biasing scheme?1.Temperature change ÆCollector biasing current change2.Device change Æ biasing current changeiCT1 T2 T3iC1iC 2vBEiC I S eVBEVTKT 1.38 10 23 ( o K )VT q1.6 10 19Microelectronic Circuit bymeiling CHEN21

VBB VBEIE RE 1R Bβ1. Self-BiasInsensitive to T and βConstrains:VBB VBERE Voltage-divider :RB1 βRRQ RB 1 2R1 R2RE Suggestion:( R1 R2 ) 0.1 I E VCCThe rule of thumb :(經驗法則)VBB 13 VCCI C RC 13 VCC R1 , R2 small I B Trade-offRB1 βVCE (orVCB ) 13 VCCMicroelectronic Circuit bymeiling CHEN22

1. Self-Bias (emitter feedback bias)VCCVCC VBEIE RBRE 1 βRCRBVEREThe rule of thumb :VBB 13 VCCI C RC 13 VCCVCE (orVCB ) 13 VCCMicroelectronic Circuit bymeiling CHEN23

Example 5.13 design the following self bias circuitVBB VBEIE RBRE 1 βThe rule of thumb :VB 13 12 4VVE 4 VBE 3.3VgivenI E 1mAVCC 12Vβ 100( R1 R2 ) 0.1 I E VCCRE VE 3.3 3.3kI E 1m134 ( R1 R2 ) 0.1 1 12 L (a ) RC 12 4kαI E 0.99 1mR2VCC L (b)VB 4V R1 R2R1 80k(a ), (b) R2 40kMicroelectronic Circuit bymeiling CHEN24

2. Base fixed biasVCCRCRBType 1IC β (VBB VBE )RBType 3Type 2IC β (VCC VBE )RBIC RBRB RB1 // RB 2VBBMicroelectronic Circuit bymeiling CHENβ (VBB VBE )RB 2 VCCRB1 RB 225

3. Collector-feedback bias (a)Constrains:RC VCC I E RC I BRB VBEV VI E I B I C CC RBERC 1 BβRB1 βT I C I C RC VCE I B I C Good biasing schemeMicroelectronic Circuit bymeiling CHEN26

3. Collector-feedback bias (b)VCCRBRCVCC ( I B I C ) RC I BRB VBE ( I B I C ) REVCC VBEI E I B IC RC RE 1R BβRET I C I E VCE I B I C Good biasing schemeMicroelectronic Circuit bymeiling CHEN27

4. Two-power supply versionI B RB VBE I E RE VEEVEE VBE IE RE 1R BβConstrains:VBB VBERBRE 1 βMicroelectronic Circuit bymeiling CHEN28

5. Constant current bias by Current mirrorI REF I C1 I B1 I B 2Q Q1 Q2 I B1 I B 2 I BI REF I C1 2 I B ( β 2) I BI I C 2 I C1 ( β 2) I BIV ( VEE ) VBEI Re f CCRVCC VEE VBEI I Re f RI REFMicroelectronic Circuit bymeiling CHEN β( β 2) β29

BJTs Circuits. Microelectronic Circuit by meiling CHEN 2 topics Large-signal operation BJT circuits at DC BJT biasing schemes. Microelectronic Circuit by meiling CHEN 3 BE BE i o cc C c cc c S v V v v V i R V R I eVT vBE . Example 5.4 (DC analysis) V I k V I I I mA I I mA mA mA R k V I V V V C C B E C C E E E E E .

Related Documents:

Introduction of Chemical Reaction Engineering Introduction about Chemical Engineering 0:31:15 0:31:09. Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20 Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 28 Lecture

Ensure the NUU Riptide is fully charged before using as a USB speaker. Your computer's USB port may not be able to supply enough power to charge and play music at the same time. h & i Aux-In & Aux-Out The NUU Riptide can connect to any device with a 3.5mm headphone 13 Riptide_UserManual_Final.indd 14 7/17/2014 3:07:13 PM

Lecture 1: A Beginner's Guide Lecture 2: Introduction to Programming Lecture 3: Introduction to C, structure of C programming Lecture 4: Elements of C Lecture 5: Variables, Statements, Expressions Lecture 6: Input-Output in C Lecture 7: Formatted Input-Output Lecture 8: Operators Lecture 9: Operators continued

Lecture 1: Introduction and Orientation. Lecture 2: Overview of Electronic Materials . Lecture 3: Free electron Fermi gas . Lecture 4: Energy bands . Lecture 5: Carrier Concentration in Semiconductors . Lecture 6: Shallow dopants and Deep -level traps . Lecture 7: Silicon Materials . Lecture 8: Oxidation. Lecture

TOEFL Listening Lecture 35 184 TOEFL Listening Lecture 36 189 TOEFL Listening Lecture 37 194 TOEFL Listening Lecture 38 199 TOEFL Listening Lecture 39 204 TOEFL Listening Lecture 40 209 TOEFL Listening Lecture 41 214 TOEFL Listening Lecture 42 219 TOEFL Listening Lecture 43 225 COPYRIGHT 2016

Partial Di erential Equations MSO-203-B T. Muthukumar tmk@iitk.ac.in November 14, 2019 T. Muthukumar tmk@iitk.ac.in Partial Di erential EquationsMSO-203-B November 14, 2019 1/193 1 First Week Lecture One Lecture Two Lecture Three Lecture Four 2 Second Week Lecture Five Lecture Six 3 Third Week Lecture Seven Lecture Eight 4 Fourth Week Lecture .

Introduction to Quantum Field Theory for Mathematicians Lecture notes for Math 273, Stanford, Fall 2018 Sourav Chatterjee (Based on a forthcoming textbook by Michel Talagrand) Contents Lecture 1. Introduction 1 Lecture 2. The postulates of quantum mechanics 5 Lecture 3. Position and momentum operators 9 Lecture 4. Time evolution 13 Lecture 5. Many particle states 19 Lecture 6. Bosonic Fock .

electromagnetic compatibility and product safety. 5 3. Test plan Before proceeding with any testing, the vendor needs to submit a test plan for approval by the designated Project Officer, who will assess the test plan and notify the vendor in writing as to whether the test plan has been approved or rejected. If rejected or incomplete, the Project Officer will state the reason and allow the .