Flight-Test Results Of Autonomous Airplane Transitions Between Steady .

1m ago
1 Views
0 Downloads
7.26 MB
13 Pages
Last View : 1m ago
Last Download : n/a
Upload by : Lee Brooke
Transcription

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICSVol. 31, No. 2, March–April 2008Flight-Test Results of Autonomous Airplane TransitionsBetween Steady-Level and Hovering FlightEric N. Johnson, Allen Wu,† James C. Neidhoefer,‡Suresh K. Kannan,§ and Michael A. Turbe†Georgia Institute of Technology, Atlanta, Georgia 30332-0150DOI: 10.2514/1.29261Linear systems can be used to adequately model and control an aircraft in either ideal steady-level flight or in idealhovering flight. However, constructing a single unified system capable of adequately modeling or controlling anairplane in steady-level flight and in hovering flight, as well as during the highly nonlinear transitions between thetwo, requires the use of more complex systems, such as scheduled-linear, nonlinear, or stable adaptive systems. Thispaper discusses the use of dynamic inversion with real-time neural network adaptation as a means to provide a singleadaptive controller capable of controlling a fixed-wing unmanned aircraft system in all three flight phases: steadylevel flight, hovering flight, and the transitions between them. Having a single controller that can achieve andtransition between steady-level and hovering flight allows utilization of the entire low-speed flight envelope, evenbeyond stall conditions. This method is applied to the GTEdge, an eight-foot wingspan, fixed-wing unmannedaircraft system that has been fully instrumented for autonomous flight. This paper presents data from actual flighttest experiments in which the airplane transitions from high-speed, steady-level flight into a hovering condition andthen back again. f mNomenclature 2, B 1, A Aa a , a bv , bwegK, Rn1n2n3p Q q q0 ; q1 ; q2 ; q3 q Ti!b u t u, v, wV, W, v, wvX thrx, xxin , x zj , v , w linearized vehicle dynamicsacceleration or activation potentialtranslational dynamics and estimateneural network biaseserror between reference model and plantacceleration due to gravityinner-loop, outer-loop gain matricesnumber of neural network inputsnumber of neural neuronsnumber of neural network outputsposition vectorattitude error angle functionattitude quaternionEuler rotation to quaternion transformtransformation from inertial frame tobody framecontrol vector at time tbody axis velocity componentsneural network input and output weightsvelocitythrottle control derivativestate variable, state vectorneural network inputinput to jth hidden-layer neuronangular acceleration or angle of attackattitude dynamics and estimateneural network learning rate matricestotal function approximation error , , v , w ad , ad r , 0!! attitude correction throttle actuator deflection elevator, aileron, and rudder actuatordeflection actuator deflection and estimate damping ratio neural network thresholds E-modification parameter adaptive element signals robustifying signal neuron sigmoidal function, gradient angular velocity natural frequencyI. IntroductionFIXED-WING aircraft with the ability to hover have the potentialof providing a nearly stationary surveillance platform whilemaintaining the high-speed, maneuverable, long-endurance dashcapabilities associated with such vehicles. There is currentlysignificant commercial and military interest in developing suchsystems, which would be well suited for a variety of missions,especially in urban or other constrained environments. Militaryapplications include the provision of persistent intelligence,surveillance, and reconnaissance (ISR) with the ability to stare toenhance target identification. In the commercial sector, a hoveringmode could enhance the utility of unmanned aircraft systems (UASs)used for border patrol, traffic monitoring, and hazardous siteinspection. The potential for performing tail-sitting takeoffs andlandings also increases the operational domains of such aircraft.Although the ability to transition fixed-wing UASs betweensteady-level and hovering flight has been demonstrated withremotely piloted vehicles, performing such maneuvers autonomously presents unique challenges. One such challenge results fromthe highly nonlinear nature of the actual transition between the twoflight regimes. Thus, although linear systems could be used to modeland control the aircraft while in either steady-level flight or ideal(nearly stationary) hovering flight, transitioning the aircraft betweenthe two would require the use of a more complex system (such as anonlinear, scheduled-linear, or a stable adaptive system) capable ofmodeling (or controlling) the nonlinearities that occur duringtransition.Received 11 December 2006; revision received 25 May 2007; accepted forpublication 25 May 2007. Copyright 2007 by Eric N. Johnson, Allen Wu,James C. Neidhoefer, Suresh K. Kannan, and Michael A. Turbe. Published bythe American Institute of Aeronautics and Astronautics, Inc., withpermission. Copies of this paper may be made for personal or internal use, oncondition that the copier pay the 10.00 per-copy fee to the CopyrightClearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; includethe code 0731-5090/08 10.00 in correspondence with the CCC. Lockheed Martin Assistant Professor of Avionics Integration, AerospaceEngineering Department.†Graduate Research Assistant, Aerospace Engineering Department.‡Research Engineer, Aerospace Engineering Department.§Senior Research Scientist, Guided Systems Technologies, 75 Fifth Street,Northwest, Suite 336.358

359JOHNSON ET AL.The specific contributions of this work include 1) the use ofdynamic inversion with adaptation as a means to provide stableaircraft control in steady-level flight and hovering flight, as well asduring the transition between the two regimes, with a single unifiedcontroller, and 2) detailed hover-transition flight-test resultsgenerated using a fully instrumented research unmanned air vehicle(UAV) flying in windy conditions. In this approach, a neural networkis adapted in real time to account for errors in a single vehicle modelthat is linearized about a hover condition. Additionally,pseudocontrol hedging (PCH) allows the neural network to continueadapting when actuator nonlinearities, such as saturation, occur [1–3].Work on hovering fixed-wing aircraft is currently being performedby several research groups. William E. Green and Paul Y. Oh atDrexel University¶ have performed autonomous flight tests of afixed-wing, micro-UAS hovering in an urban environment. Theseexperiments involved the use of a Microstrain inertial measurementunit (IMU), a PIC16F87 microcontroller, and a linear controller tomaintain hover; however, transitions to and from hover wereperformed manually. Aerovironment’s SkyTote UAS†† [4] is a UASwith potential capabilities to hover, take off, and land vertically, andalso transition into conventional horizontal fixed-wing flight. Aprototype SkyTote is complete and hover testing is currentlyunderway. Aurora Flight Sciences’ GoldenEye family of UASs‡‡§§have been used in numerous flight tests throughout 2005 and 2006 inwhich autonomous transitions were made from vertical hoveringflight to horizontal flight and back again. Although the GoldenEyehas the ability to fly in a fixed-wing configuration, its wing is notactually “fixed,” in that it has the ability to vary the angle of incidenceof its wings during flight. The University of Sydney is developing aT-wing UAS [5,6] capable of vertical takeoffs and landings as well assustained forward fixed-wing flight. To date, the T-wing has beenflown in hover mode both manually and under automatic controlusing command augmentation system (CAS) controllers. Manyother widely varying methods for autonomously guiding andcontrolling UASs have been developed [7–10].Throughout this paper the term “hovering” is used to indicate aflight regime in which groundspeed is very small (or even zero).Thus, hovering in this context usually indicates a flight regimebeyond wing-stall, in which engine thrust is the primary forcekeeping the aircraft aloft. It is recognized that it is possible for a fixedwing airplane to fly at zero groundspeed while its wings are notstalled; however, in most cases, the high-wind conditions required toachieve this would preclude safe flight.This paper provides a description of the GTEdge UAS and theguidance and adaptive control architectures used to successfullytransition the aircraft between steady-level and hovering flightduring actual flight tests. A description of the GTEdge is given first,followed by a detailed discussion of the guidance system and theneural adaptive controller. The next section gives a justification forthe use of adaptive control and a description of the role of theadaptive element in this application. Finally, flight-test results arepresented, followed by a discussion of limitations in the presentarchitecture and suggestions for improving performance.II.Flight-Test Hardware DescriptionThe GTEdge UAS (see Fig. 1) consists of four major subsystems:1) the baseline commercial off-the-shelf (COTS) airframe, 2) the¶Green, W. E., and Oh, P. Y., “Autonomous Hovering of a Fixed-WingMicro Air Vehicle,” http://prism2.mem.drexel.edu/ billgreen/Publications/finalGreenIcra2006.pdf, Drexel Univ., Philadelphia (cited Dec. 2006). Green, W. E., and Oh, P. Y., “Micro Air Vehicle to Fly in Caves,Tunnels, and Forests,” http://www.pp.drexel.edu/ weg22/fwHovering/fixedWingHovering.html, Drexel Univ., Philadelphia (cited Dec. 2006).††U.S. Air Force Research Laboratory Web site, .asp (cited December 2006).‡‡Aurora Flight Sciences Web site http://www.aurora.aero/GE50/index.html (cited December 2006).§§International Online Defence Magazine, 50.htm (cited December 2006).Fig. 1 GTEdge research UAS is a modified 33% scale Edge 540T,selected for its ability to carry moderate payloads and performaggressive aerobatic maneuvers.avionics used for autonomous guidance, navigation, and control,3) the software that runs onboard the flight control computer, and4) the ground control station used for issuing commands to thevehicle. This section describes the specifications and role that eachsubsystem plays in the context of the operation of the GTEdge.A.GTEdge AirframeThe GTEdge is a modified commercially available Aeroworks33% scale Edge 540T aircraft. This baseline airframe was selectedfor its off-the-shelf availability and for its aerobatic capabilities,including a thrust-to-weight ratio greater than one, which allowshovering and accelerated vertical climbs. Payload requirementsgoverned the selection of the airplane’s scale. The GTEdge has thefollowing physical characteristics: 1) a wing span of 8.75 ft, wingarea of 13 ft2 , and length of 7.8 ft; 2) engine type is gasoline, DesertAircraft DA100 100 cc engine, 9.8 hp; 3) dry weight without payloadis 35 lb; 4) throttle, elevator, aileron, rudder actuated by JR8611Aultratorque digital servos; 5) actuators powered by lithium-ionbatteries; 6) endurance is approximately 30 min. at steady flight of70 ft s.B.FCS20-based Avionics SuiteA small, integrated guidance, navigation, and control (GN&C)hardware and software system, referred to as the Flight ControlSystem Version 20 (FCS20) [11,12], recently developed by theGeorgia Institute of Technology, is the cornerstone of the GTEdgeavionics suite. This miniature computer uses a floating point digitalsignal processor (DSP) for high-level serial processing and a fieldprogrammable gate array (FPGA) for low-level parallel processing,along with microelectromechanical systems (MEMS) sensors.The basic modules of the FCS20 are the EC20 processor board andthe SB20 sensor/power board. The EC20 processor board (see Fig. 2)handles FCS20 processing and internal and external communications. Embedded flash memory included in the processor boardallows for high data rate onboard data recording during flight. Pulsewidth modulation signals used for driving vehicle actuators aregenerated by the FPGA.The SB20 sensor/power board was designed to be compatible withthe EC20 processor board and provides three main functions:supplying regulated and filtered power to the system, supportingonboard or external navigation sensors, and serving as an interface toexternal components. The eight main sensor components of the SB20consist of three analog devices ADXR300 rate gyros, two analogdevices ADXL210E two-axis 10g accelerometers, a mBlox globalpositioning system (GPS) module, and Freescale absolute anddifferential pressure sensors.Other significant components of the GTEdge avionics suiteinclude a Novatel OEM4 differential GPS and a Freewave spread

360JOHNSON ET AL.data recording to supplement the data recorded by the GTEdgeonboard computer. GCS operators can also issue commands such asflight plans or requests for specific data by sending the appropriatemessage type from the GCS to the GTEdge.III. Guidance and Control SystemsFig. 2FCS20 with EC20 processor board on top.spectrum transceiver for communications with the ground controlstation. A diagram of the complete system can be seen in Fig. 3.C.Extended-Kalman-Filter-Based Navigation SystemAn integral component of the FCS20 is the 16-state extendedKalman filter (EKF) which uses data from the sensors on the SB20processor board to generate a navigation solution that closelyestimates the state of the system [13,14]. The EKF serves severalimportant functions, including 1) estimating the orientation of thesystem from accelerations and angular rates, 2) removing processand measurement noise from the measurements, and 3) providingstate estimates at 100 Hz, even though the GPS updates at a slowerrate of 10 Hz. Similar EKF implementations can be found forcomparison [15].D.Ground Control StationThe ground control station (GCS) is a laptop that communicateswith the GTEdge over a wireless serial link. The GTEdge sends aprimary message packet containing information needed for operationdown to the GCS at 10 Hz, and another message packet containingless vital information once every second. These message packetsprovide the GCS with data used to display vehicle information to theGCS operator and are also recorded on the GCS to provide redundantFig. 3An adaptive neural net-based controller [2] developed and flighttested on other UASs [16] is used to control the GTEdge in steadylevel flight, hovering flight, and the transition between. An overviewof the controller architecture and the motivation for its use in thisapplication are included here. A proof of the underlying theory is alsoavailable [17].In this implementation, the controller consists of an outer loop fortracking translational states and an inner loop responsible for vehicleattitude dynamics. Both the inner and outer loops are organized insimilar fashion into four primary components: a reference model, anapproximate inversion, a linear proportional plus derivative (PD)compensator, and a hedging block, as shown in Fig. 4. Each loop usesfeedback linearization and, more specifically, dynamic inversion, asthe control strategy. The reference model is nonlinear and selected toimpose a desired closed-loop response and also impose limits on theevolution of states. Any step changes in the external command thusappear as continuous signals to the linear PD compensator.Dynamic inversion, when used alone, requires accurate systemmodels for all flight regimes and these models can be costly anddifficult to obtain [3]. However, in this application, a simple model ofthe vehicle, linearized about a hover condition, is used in theapproximate dynamic inversion, and a neural network is trainedonline to correct for the modeling errors. In this approach, certainnonlinear effects (such as actuator saturation) can create difficultiesfor the adaptive element [1,2]. Thus, a technique calledpseudocontrol hedging (PCH) has been implemented to keep thenetwork from continuously trying to adapt to these effects, byadjusting the reference model with a hedging signal.In the cascaded inner- and outer-loop architecture shown in Fig. 4,the inner loop appears to the outer loop as an actuator that generatestranslational accelerations by means of a commanded attitude. Thus,in the case of a fixed-wing aircraft, the outer loop generates a throttlecommand and an attitude augmentation to be added to the externalattitude command for the inner loop to achieve the desired vehicleposition and velocity. The inner loop combines the desired attitudefrom the outer loop with the commanded attitude from the trajectorygenerator to compute the appropriate moment actuator deflections. InFig. 4, a and are used to denote linear and angular acceleration,respectively.FCS20 data flow diagram.

361JOHNSON ET AL.Fig. 4 Architecture used for control of a fixed-wing UAS during steady-level and hovering flight, as well as the transition between them.A.Figures 5 and 6 show the NN output during an actual flight test(more data from the same test is presented in Sec. IV). Because thisdata was taken in actual flight conditions (not in an ideal simulation),the influence of process noise (wind, turbulence, etc.), measurementnoise, lag, and other real-world effects can clearly be seen in theoverall noise level of the data. In addition, these same real-worldeffects make it much more difficult for the closed-loop aircraft toachieve perfect “steady-level” or “stationary hovering” flight.However, the aforementioned trend is still clearly visible in the data,particularly in Figs. 5a, 6a, and 6c: namely, the NN output exhibitsrelatively constant characteristics (e.g., amplitude and frequency)during steady-level flight (the nonshaded areas in the plots) which aredifferent than the relatively constant characteristics exhibited duringhovering flight (the shaded areas in the plots) and the flight phases;including the gray transitions, which approximately cover thetransitions between steady-level and hovering flight, are readilyidentifiable in the data. It is also noted here that in each experimentthe neural network weights were initialized to zero so that, during theexperiments, significant and meaningful adaptation of the weightsoccurred.Need for 0-4(1)0-5-10-15-200time (sec)a) x axisp v0-10Controller SynthesisThe aircraft dynamics are described with the following nonlinearequations [2]:13015B.ν ad for a z65ν ad for a yν ad for axAs mentioned earlier, although linear systems can be used toadequately model and control an aircraft either in steady-level flightor in ideal (nearly stationary) hovering flight, the same cannot be saidfor the highly nonlinear transition between these two regimes.Accurately modeling or controlling an aircraft during this transitionwould require the use of systems capable of dealing with thesenonlinearities, such as nonlinear systems, multiple scheduled-linearsystems, or stable adaptive systems.In this work, a stable adaptive controller was used to address thischallenge; the adaptive element within the controller was a singlehidden-layer perceptron neural network (NN) used to model the errorbetween the linear hover model and the actual nonlinear aircraftsystem. Using an adaptive controller offers potential advantages overboth nonlinear systems and multiple scheduled-linear systems. Forexample, traditional methods (such as Lyapunov synthesis [18]) fordeveloping a stable nonlinear (nonadaptive) controller can provedifficult in nonideal applications; likewise, the cost of developing themultiple linear systems required for scheduling can preclude theusefulness of that approach.Based on the controller formulation used in this work, certaincharacteristics of the neural network output during flight can bepredicted. In particular, because during both steady-level andhovering flight, the aircraft can be adequately represented with alinear model; the NN output (which represents the error between alinear model and the actual model) should have relatively constantcharacteristics during each of these two flight phases.1020304050607080-250time (sec)b) y axis1020304050607080time (sec)c) z axisFig. 5 Output from the neural network adaptive element for translational accelerations of the outer loop in the slow transition, expressed as componentsof the body-fixed axes; vertical axis is in units of ft s2 .

362JOHNSON ET AL.8-0.26-0.3876-0.452-0.5ν ad for α zν ad for α yν ad for α e (sec)a) x axis01020304050607080-20time (sec)b) y axis1020304050607080time (sec)c) z axisFig. 6 Output from the neural network adaptive element for angular accelerations of the inner loop in the slow transition, expressed as components ofthe body-fixed axes; vertical axis is in units of rad s2 .v a p; v; q; !; f ; m x; ; h! des (2)(11)in whichq q q;! (3) a x; a x; a x; ; x; ; x; x; x; ; p; v; q; !; f ; m !(4)represents the acceleration that is not cancelled out exactly in thefeedback linearization due to errors in the model inversion.Furthermore, actuator saturation can introduce limitations on theachievable pseudocontrol, and so the desired pseudocontrol may beunrealizable; this effect introduces the ah and h terms in the closedloop dynamical equations. System stabilization can be achieved bychoosing the pseudocontrols in the following manner [2]:in which quaternions are used to express vehicle attitude.The control architecture is governed by nested outer and innerloops that handle the translational dynamics [Eq. (2)] and the attitudedynamics [Eq. (4)], respectively. The state vector of the vehicle isx pT vT qT !T TThe vector of control signals is written as:hiT Tf Tm(5)(6)where f represents the propeller thrust, and m represents theelevator, aileron, and rudder aerodynamic moment actuators. Theactuator dynamics are unknown but are assumed to be asymptoticallystable.A transformation is introduced to provide approximate feedbacklinearization. This transformation is [2] v; q; !; qdes ; fdes ; m a p;ades des p;v; q; !; f ; mdes (7) and are mappings selected to approximate the actualwhere a translational and rotational accelerations a and of the vehicle.Here, ades and des are commonly referred to as the pseudocontrolsignals and are analogous to desired translational and angularaccelerations. The control inputs and attitude needed to produce thedesired pseudocontrols are fdes , mdes , and qdes , respectively, and fand m are estimated actuator positions. If the accelerationapproximations are chosen to be invertible, expressions for thedesired control inputs and attitude can be calculated as fdes a 1 p; v; q; !; ades ; m (8)qdes mdes 1 p; v; q; !; f ; des (9)This approximate inversion provides the following closed-loopdynamics: a x; ; ahv ades (10)a des acr apd a ad(12) des cr pd ad(13)in which acr and cr are output from the vehicle dynamic referencemodels, apd and pd are output from the PD compensator, and a adand ad are output from the adaptive element designed to cancel the modeling error .The following sections outline the determination of the signalsused in the computation of the pseudocontrols. The proper selectionof these signals guarantees the boundedness of the error between theplant output and the reference model output given by the vector23pr p6 vr v 77(14)e 6 r ; q 54 Q q!r ! is a function that, given two quaternions, results in an errorwhere Qangle vector with three components, as follows: Q p;q 2 q1 p1 q2 p2 q3 p3 q4 p4 23 q1 p2 q2 p1 q3 p4 q4 p34 q1 p3 q2 p4 q3 p1 q4 p2 5 q1 p4 q2 p3 q3 p2 q4 p1The tracking error dynamics can be found by directly differentiatingEq. (14) to get23vr v6 v r v 77(15)e 64 !r ! 5! r !Furthermore, the linear PD compensator has the following form:

363JOHNSON ET AL. apdRp 0 pdC.Rd00Kp 0eKd ; e Ae B ad x;2Reference Model and Pseudocontrol HedgingCare must be taken in designing the reference model to ensure thatthe effects which introduce ah and h in Eqs. (10) and (11) are notpresent in the tracking error dynamics. Otherwise, the referencemodel will continue to generate commands as if there were noactuator saturation, and the adaptive element would try to correct forthis discrepancy. This can be avoided through the use of PCH in thereference model dynamics as follows [2]:v r acr pr ; vr ; pc ; vc ah! r cr qr ; !r ; qc06 RpA 64 00000 Kp300 77;I 5 Kda ad ad2 30 0(20)6I 0767B 40 050 IThus, the linear gain matrices must be chosen such that A is Hurwitz, and ad needs to be chosen to cancel the effect of .In this implementation, the following reference model was used:a cr Rp pc pr Rd vc vr (21)v r acr ah(22)(16)qdes ; !c h(17) c cr Kp Q qwhere the subscript c refers to commands and r to the referencemodel, and the expression qc qdes represents the combination oftwo quaternion vectors through quaternion multiplication. Thesignals ah and h , which represent the error between the commandedand realized pseudocontrol, are given as follows: qdes ; fdes ; m a x; f ; m ades a x; f ; m a h a x;(18) f x; f ; m des x; f ; m h x;(19)As can be seen from the reference model dynamics, the hedgingsignals shift the reference models by an estimate of the amount theplant did not move due to the saturation of any actuators. This meansthat when the estimated actual position of the actuators is the same asthe desired positions of the actuator (i.e., the actuator is notsaturated), then the ah and h terms vanish, and the reference modelis unaffected. In the presence of saturated actuators, however, the ahand h terms are nonzero and therefore are subtracted from thereference model dynamics to effectively hide the error due tosaturation in the error dynamics. The pseudocontrol hedging conceptis relevant to this application as the actuators often saturate during thehover-transition maneuvers and during hovering flight. The utility ofPCH for enabling valid adaptation in these types of conditions hasbeen demonstrated [19–21].Substituting Eqs. (16–19) into the error dynamics of Eq. (15), itcan be shown that the error dynamics become [2]Table 1I Rd00 ad qdes ; qr Kd !c !r ! r cr h(23)(24)The four gain matrices (Rp;d and Kp;d ) in the preceding equationswere chosen to result in desirable closed-loop pole placement and arethe same as those in the PD compensator (specific values of Rp;d andKp;d are given in Table 1). Formulas for the gain values are given as[2]Rp !2o !2i!2i 4 o !o i !i !2o(25)!o !i o !i !o i !2i 4 o !o i !i !2o(26)Kp !2i 4 o !o i !i !2o(27)Kd 2 i !i 2 o !o(28)Rd 2where !i;o represent the natural frequencies for the inner and outerloops, and i;o represent the damping ratios. These scalar gains areplaced in the diagonal gain matrices shown in Eqs. (21) and (23).Controller design parameters used in this zRdx;y;zKpx;y;zKdx;y;zKrn1n2n3bvbwaj w v 1A 2A BX thr ftrim1 s2 1 s1 s2 1 sN/AN/AN/AN/AN/AN/AN/AN/AN/AN/A1 srad ft srad s2 ft s2 %maximum 1000.49, 0.3623, 0.241.4, 1.0145, 0.86.25, 8.64, 17.255.0, 4.8, 7.00.018560.50.50.2, 0.4, 0.6, 0.8, 1.0 for j 1; . . . ; 5Diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0)5.00.1diag(0.0, 0.0, 0.0)diag(0.0, 0.0, 0.0)diag(50.0, 15.0, 50.0)45.00.2344inner-loop proportional gaininner-loop derivative gainouter-loop proportional gainouter-loop proportional gaingain for robustifying termnumber neural network inputsnumber of neuronsnumber of neural network outputsneural network inner biasneural network outer biasactivation potentialsneural network outer learning rateneural network inner learning rateweight for damping term in adaptation lawmatrix for inner-loop reference modelmatrix for inner-loop reference modelcontrol effectiveness; inner-loop reference modelthrottle control derivativethrottle trim value for hover

364JOHNSON ET AL. P P1 Fig. 7P2 Neural network with a single hidden layer.Specific values for parameters used in this implementation aregiven in Table 1.D.P100P2 1 b2w 1R R2 p d 0Rp 1K K2 p d 0Kp1n4 2R2p 12 Rp R2d1R R2 p dKp2 12 Kp Kd21K K2 p dIn the preceding equations, the NN weight matrices are updatedaccording to the adaptation laws 0 V T x r T kekW wW(32) v x r T W T 0 kekV V(33)Adaptive Neural NetworkA single-hidden-layer perceptron neural network (NN) is used toapproximate the modeling error. As shown in Fig. 7, the number ofinputs, neurons, and outputs are given by n1 , n2 , and n3 , respectively.In the NN, the input-output relationship is given by adk bw wk n2Xwjk j zj (29)j 1where k 1; . . . ; n3 , bw is the outer-layer bias, wk is the kththreshold, and wjk represents the weights of the outer layer. Thesigmoidal activation function is j zj 1 1 e azj where w and v are positive definite matrices, and is a positivescalar. The 0 matrix is the Jacobian of the vector, and the B matrixcomes from the error dynamics in Eq. (20). The Z value is a bound onthe norm of the Z matrix corresponding to the ideal NN weightingmatrices in accordance with the universal approximation property.It has been proven [2] that Lyapunov analysis carried over the errordynamics in Eq. (20) using these weight adaptation rules given inEqs. (32) and (33) will result in the ultimate boundedness of thetracking error e and the NN weights with the bounds being explicitlydefined in terms of system dynamics, and the Lyapunov equationmatrices [2].(30)E.with the neuronal activation potential given as a. For the jth neuron,the input iszj bv vj n1Xvij xini(31)i 1where bv is the inner-layer bias, vj is the jth threshold, vij representsthe weights of the inner layer, and xini represents the NN inputs. Boththe inner- and outer-layer biases are chosen based on experie

dynamic inversion with adaptation as a means to provide stable aircraft control in steady-level flight and hovering flight, as well as during the transition between the two regimes, with a single unified controller, and 2) detailed hover-transition flight-test results generated using a fully instrumented research unmanned air vehicle

Related Documents:

Page 2 Autonomous Systems Working Group Charter n Autonomous systems are here today.How do we envision autonomous systems of the future? n Our purpose is to explore the 'what ifs' of future autonomous systems'. - 10 years from now what are the emerging applications / autonomous platform of interest? - What are common needs/requirements across different autonomous

1.1 why performance flight testing 1.1 1.2 flight test manual objective 1.2 1.3 flight test manual organization 1.3 1.3.1 manual organization 1.3 1.3.2 chapter organization 1.4 1.4 effective test planning 1.5 1.5 responsibilities of test pilot and flight test engineer 1.5 1.5.1 the test pilot 1.5 1.5.2 the flight test engineer 1.7

Flight Operation Quality Assurance (FOQA) programs are today customary among major . EASA European Aviation Safety Agency F/D Flight Director . FAF Final Approach and Fix point FCOM Flight Crew Operating Manual FCTM Flight Crew Training Manual FDAP Flight Data Analysis Program FDM Flight Data Monitoring FLCH Flight Level Change FMC Flight .

Using ASA’s Flight Planner A flight log is an important part in the preparation for a safe flight. The flight log is needed during flight to check your groundspeed and monitor flight progress to ensure you are staying on course. The Flight Planner has two sections; the Preflight side is used for pre-

‘757 Captain’ Sim FLIGHT MANUAL Part III – Normal Procedures DO NOT USE FOR FLIGHT AMPLIFIED PROCEDURES EXTERIOR INSPECTION Prior to each flight, a flight crew member or the maintenance crew must verify the airplane is acceptable for flight. Check: - Flight control surfaces unobstructed and all surfaces clear of ice, snow, or frost.

means before the flight becomes official. A flight of less than 60 seconds duration will be considered a delayed flight; one delayed flight shall be allowed for each of the five official flights. After a delayed flight, the next launch shall result in an official flight being recorde

offically licensed cessna products from saitek pro flight avilable at: www.saitek.com pro flight cessna rudder pedals flight pedals with toe brakes pro flight cessna yoke system flight yoke and 3 lever quadrant modual pro flight cessna trim wheel

GLOSSARY ACMS: Aircraft Condition Monitoring System AFDAU: Auxiliary Flight Data Acquisition Unit APM: Aircraft Performance Monitoring ASR: Aviation Safety Report CRM: Crew Resource Management CVR: Cockpit Voice Recorder DFDR: Digital Flight Data Recorder FDA: Flight Data Analysis FDAU: Flight Data Acquisition Unit FDEP: Flight Data Entry Panel FDM: Flight Data Monitoring

Autonomous Differential Equations 1. A differential equation of the form y0 F(y) is autonomous. 2. That is, if the right side does not depend on x, the equation is autonomous. 3. Autonomous equations are separable, but ugly integrals and expressions that cannot be solved for y make qualitative analysis sensible. 4.

AUTOMATIC FLIGHT CONTROL SYSTEM Flight Control and Guidance REV3,May03/05 Flight Crew Operating Manual CSP C--013--067 Course Pointer Control and Indication 1015 Figure 03---20---4 10 10 Primary Flight Display Pilot’s and Copilot’s Instrument Panels Flight Control Panel Center

Flight Attendants 1 1 7,792 31 Flight Crew Training Instructors 0 0 0 0 Flight Deck Crew Members 1 1 11,675 47 Flight Dispatchers 2 2 115 . Flight Engineers 0 0 0 0 Flight Simulator Engineers 0 0 0 0 Ground School Instructors 0 0 0 0 Mainte

Developing a Pre-flight Safety Plan for UAV/UAS Operations . Pre-flight Planning . Each flight in each location should have a pre-flight plan fully developed and conveyed to all relevant parties before the first flight, i

CAP Cadet Flight C/Maj Michael Lucero PCR AK 071 1,000 CAP Cadet Flight C/2dLt Joseph Mccollum NER PA 337 1,000 CAP Cadet Flight C/2dLt Laurel Munger MER VA 088 1,000 CAP Cadet Flight C/2dLt Timothy Richner NCR MO 139 1,000 CAP Cadet Flight C/1stLt Ayaan Shaikh GLR MI 202 1,000 CAP Cadet Flight C/MSgt Garrett West PCR WA 002 1,000

Pre-Flight Procedures Manual AIRBUS A320-200 . 3 Index Introduction 4 Flight Planning 4 Flight Plan Form 5 Real Flight Plan Example 7 Sending Flight Plan to Vatsim 8 Briefing 8 Arriving at the Aircraft 10 Final Comments 11 . 4 Introduction

FLIGHT LEVEL An altitude expressed in hundreds of feet indicated on an altimeter set to 29.92 inches of mercury or 1013.2 millibars. FLIGHT PLAN Specified information submitted in accordance with the Canadian Aviation Regulations relative to the intended flight of an aircraft. IFR FLIGHT A flight conducted in accordance with instrument flight .

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 82 -0i 22 050 .4Wh1 .- .r/ . 5.5.2.3 Test Flight No. 3 75 5.5.3 DCI Flight Test Data Analysis 78 SECTION VI RESULTS SUMMARY AND CONCLUSIONS 86 6.1 Geneial 86 6.2 Lessons Learned 86

Theory and Flight Test Techniques 1.4 In particular, a thorough knowledge of the flight control system is essential if the test pilot is to do a creditable job of stability and control testing. Many of the characteristics which shape the pilot's opinion of the airplane in performing a particular task are the direct result of the flight control .

Flight Test ' Guide, dated 1962, outlines the previous requirements. This flight test guide; AC 61-59, has been prepared by Flight Standards Service of the Federal Aviation Administration to assist the applicant and his instructor in preparing for the flight test for the Private o

Fraunhofer CML Autonomous Vehicles’ Impact on Port Infrastructure Requirements Hamburg Port Authority AöR 10 78 Management Summary 1 Management Summary Autonomous solutions are developed for road, rail and waterborne transport. Autonomous driving describes the independent locomotion of vehicles and is a

Am I My Brother's Keeper? Grounding and Motivating an Ethos of Social Responsibility in a Free Society (Thisisadraftpriortopublication. Forpublishedversion,&see cal(Philosophy, Vol.&12,&No.&4,&December&2009,&559–580. Pleaseusepublished&versionforallcitations). David Thunder Matthew J. Ryan Center for the Study of Free Institutions and the .