Diffractive Optics: Design, Fabrication, And Applications

1y ago
952.46 KB
30 Pages
Last View : 7d ago
Last Download : 11m ago
Upload by : Jacoby Zeller

pplicationsG. MichaelMorrisThe Instituteof OpticsUniversityof RochersterRochester,New York 14627(716) 275-5140(716) 271-1027TELFAXandRochesterPhotonicsCorporation330 Clay RoadRochester,New York 14623(716) 272-3010(716) 272-9374TELFAXConf. on Binary Optics, 199331I:: I EPACE" BLANKNOTFW.I I D

Diffractive(or Binary)aturesFeI i LargeapertureOpticsandlightWeightelementsii.-:::i ii!ii:: :'. f opticalin weight: :: ' ' ::EliminatesSynthesisissuesgenerationthe needandnumberfor exoticof key ethods32andof lensesmaterialsdevelopmentleveragingfor massproduction

Diffractive(or ldImagingFourierTransformOpticsLensesCollimation& BeamF-ThetaScan olensarrays--HartmannSensors,Laser Diodes and DetectorArraysOptical InterconnectsNull Optics for d Diffractive/RefractiveAchromatsBeam Shapingfor Diode LasersBi-FocalContact& IntraocularLensesOpticalData StorageHead-up(HUD) and Head-MountedDisplaysAft-ImagerOptics for NASA SensorsIntegratedOptics33(HMD)

Diffractive(or ndows(cont'd)StructuredStructuredand Domes(ARS)Low Observable(Stealth)Detectorsand Solar CellsPolarizationLinearBeamSurfaces- rsStatic Filters(laser end mirrors)TunableFilters(laser mode tuners,optical switches)-: .SecurityApplications(Indentificationor friendSystems

DiffractiveLenses Phase Function of Lens(r) 2 (A r2 G r4 2 Diffractive Zone Boundariesrmis the radius such that (rm) 2 m Blaze Height Diffraction Efficiency(scalar diffraction theory)PeakBl. TeEfficiency100 %Polynomial99 %Unear16 level98.7 %95 %8 level81.1%4 level35r3

of earand to &properties)36


:\EC(,OC00-JII m,eifo'tONIt)o I'n'IIl,,.IILLz38

onsWavelengthSpot SizePixelSpacingEdge Location441.6ErrorPart SizeWrite ess39nm0.7- 10 m0.25 - 5 tm 0.7 mper 0.03 m/inch4" x 4" x 0.5"3.1 hrs/lO02 - 256 3 inch0.2 - 3 msq. mm

DiffractiveLandscapeLens odulationF/5.6Transfer FunctionsF 50mmZo 587.6 nm DiffractiveHolographic!!Landscape 1.0 r1.0 I'% :!\o ,, oo,.,m,, /:: ': o" "m0"00(lines/mm)'Spatial Frequency3001.0: m0.00miliuiu n JSpatial Frequency (lines/mini3001.0IHFOV -- 4.5 deg0.0I ,HFOV.4.5 uency(lineshnm)300---

Achromatic Lens Powersa Abbe numbers20 Vglass 90Va d)Va- ConventionalDoubletVbVDOE -3.45DoubletsVa 60Vb 36crownflinta 2.5(b -1.5( Hybrid doubletVa 60Vb - -3.45crownDOEa 0.95(:I:)b o.o5(t). Features of Hybrid Doubletslower curvatureslower F/#lower weightno need for exotic glasses41

Application- OpticalDataStorage General ODS elementF/0.9f - 3.0mmpositivesingletHFOV 1 Xo ---0.780:1: 0.011 mmonochromaticdiskcoating Conventional Glass DoubletConventional achromatic doubletadds weight and size Hybrid Doublet iHybridHybrid lens reduces weight, andhelps correct,other aberrations,12i

StrehlRatio vs Field Angle1.000.95HybridODouSlet.mn-" (D0.90OlympusTriplett.O9SF57 singlet0.0II0.20.4I0.6Field AngleNumerical(degrees)Apertures: HybridDoublet Olympus- 0.57Triplet SF57 Singlet- 0.50- 0,5343I0.8110

-1nn .,,Hybrid.ororiIJ,[ llum i"* ''Longitudinal .TI"ChromaticdaAberrationEHybrid Le n';" 'O.ooW0Mode-lndexLensU." - oo- oosoWavelengthError. &;k (nm) 10044s?

WaveguidetB 0.67gmCorning7059PyrexLens Comparisont L 0.371amLN B 1.532, N L 1.497AN -0.035tfocal length 10mm,.':': '":".'. ""Mode-IndexDiffractiveF/5LensLensh0 17.51am# zones 54smallestzone 6.1 JamHybrid AchromaticMode-indexsurfaceLensf 5.3ramDiffractive surfaceIlllfd -11.5ramh0 17.51am# zones 47smallest45zone 7.0gin

WaveguideLens PerformanceComparison chromaticI)i firaciil.ensi','70%4oe/ ,70%'WaveiengthRangeRatio 0.8/25(tlybridof focus 44 tm)1te,,,-,",a[]-25t)-51111M tlc-imlcxHybrid:i,cIINil nmMode/Index:Diffractive:.o--for Strehi1.cns(Depth'-Efficiency40% I.cns.%i--Diffraction40e,4,Lens]--- -l oss 5 nm49-nm- - --7 ()571)It580 5, o , 610 (,2o (,3oWavelength(rim)46

DiffractiveLens Imaging Undiffracted light forms background in image planeDiffractiveImageLensPlanem lOpticalAxism 2m 0f/2f Point Spread ion47Primary.DiffractionOrder

Diffraction AnalyticEfficiencyresult for diffractionefficiencysin2[ :(o -m)] [ ( . rn)]2 Wavelengthdetuning parametero (X)"; o n(X)- 1n(%o).'1"t00 eoige::i40o121%%2O"',m 2 :!%%%m JJ0 z%.Jj0.45l a-.0.500,55:zWavelength.a ,-0.60 0.65(pro) ,18

PolychromaticXO 0.55k nax 0.7 I.l,m11int,poly (0.95)(0.914) 0.868I mP 8Examplesmin -- 0.4F/5.6.u,m1.0[-.0.8 ' "'-.iii- :I-",,, ",,,,,0"0050DiffractionLimit100150Spatial Frequency Xo 10. 0 l m,minContinuous profile 200250300(lines/mm)8.0 pmF/212.0 l mTlint,poly 0.955max %%'%%0.8F "-"%.IDiffraction Limito41%%%0.28 I m - 12 m oo 2o3040go.6'0Spatial Frequency (lines/mm)49

i . . Ji\I.I.1,-III---I.I.I.I. -. 0OI.L II{niII"-'viccJ50

Phase Grating Synthesis11 x 11 Array, Equal Intensity Diffracted ctedFourierModulus51

Phase Grating SynthesisTriangular Array, Equal Intensity Diffracted OrdersDesiredFourierModulus ! .PhaseGrating-3 t : !iE. zReconstructedFourierModulusrA W52E

Sub- Wavelength StructuredSurfacesConceptUse gth)comparedto synthesizeto theanindex of refractionniA p eof FresnelField-of-ViewReflectionsand SpectralBandwidthAdvantagesover-I-hinFilm CoatingsNo CohesionProblemsBirefringentSurface53

ARS Surfaces RequireONL Y Ro and TO non-evanescentincident wave 01niRmV/#RoRmd.-TmA-- k1Max[ni,n s] ni sinemax.L .! PeriodA smallerthan wavelength;k i iveMedium.ininiZ-aasMulti-level ProfileLight averages opticalstructuredregionFilm Stackpropertiesof--"Em 54Z

Angle of IncidenceSensitivityofGaAs 2-D Multilevel ARS Surfaces Performancefor randomly-polarizedradiation1.00 levelBinary4 level010203040Angle of Incidence ARS Surfaceni l,Profile50.I6070(deg.)Parametersn s 3.27,Ax Ay 2.4801JmProfile depth (pm) 5( v/oI

-Spectral Sensitivity of GaAs2-D Multi-level ARS Surfaces 4-level-r-Pyramidal89Profile10111213Wavelength 8-level Pyramidal-r-8914151617( m)Profile1011-'121314Wavelength (pm)56151617

Experimental Work2-D Binary ARS Surface for GaAs Preliminary Results: CAIBE etched GaAs4.22k Magnification' ".10.00k Magnification16.50k MagnificationSurfacesFabricatedat Cornell'sNationalNanofabrication5'7Facilities(NNF)

Polarization ComponentsForm Birefringence High-FrequencySurface-ReliefGratingsE LKFn ?usingn EIlK i'K Birefringence An nE LK-nEIIKAn is a function of filling factor ff a/A-aximUm-- -Bin frin g ence M; 0-0.25"qm-0.5-0.75E - 3-1-1.25-1.5-1.751258ns/n i 34mm

ResonanceStructuresIIncidentWavet' rRonoRegion 0.R , . ,,,,,,, ,, ,,,,,,,,,,,, ,,, , ,,, ,,,z n 1R m., :: ff ; : ., , ,rdl Regl,:,!:!!. :: :::: ::: ::: ::: ::::::::: ::::::::;:: ::: :;i:: : :::: ::'. : ;hi:i:: C:::. : i-: '?C?- ""7':7 :::LT:L::,?" ' " ?"Y"15i i i i! !i! ! ! i i;ili ii i :: i ! ] :: ::i i :;i ::i::i:: ::i:;::i::ii :"!;!'::;" ii ; ;"'""":, ; ii iii i!iiiiiiiiiii;iiiii "':':'T:':::'(71:,:i .:ii:. ::i:: iiii:iiii i ii i i i iiiii:: :E:I! :!: :I:E:I:I11." .i!i'/ iiiii!ii ' ;i ili {i i':Lea::i ii!i h:::::: : de. ' i i i !!i!iiiii ! ii ! !:!::::!:E: EE;!i i i! iliill; ii i' 'r: : ' ; i ! iii i i iii!i i' U:-:i:iii ! ij:ij:i i i:i:i:; i:i:i. .iiiiii:i:i:i:i:}:}:!:i:}:!:i:i:i: :: : !!i,}iiiiiii:!il;iiiiii;; .: : iiiii.{.i,i::::ii!iiii' d2 Regi " "::: : '. t' 2'n .:::. ::: :A: :: '. :: :T: m : :[ : ." : : : .m: :: .j .::::::::::::::::::::::::::::::::::::::::::::: Only Zeroth Orders Coupling Extremely Example:Propagatingoccurs betweennarrrowRegion 3(A X)incidentwave and leaky waveFWHM possible.FWHM of 2A1.00-'Parameters:N rmal lncidenc(EIIK P larizatiorx 0.75- .%) II.i0.25-0.000.610IA 0.401.tmIdl 0.301.tmm-) L. D6 s / :0.6150.620Wavelength:no l .0,n 1 n3 1.5./Itl.n2 2"00.50-n 59n 20.625(ILtm)0.630

FutureDirectionsin DiffractiveDiffractiveOpticsOpticsi!iiiii! !!ii!i!i!i ii!i! i i! iiiiiiiiiiirz6O

Design, Fabrication, and Applications G. Michael Morris The Institute of Optics University of Rocherster Rochester, New York 14627 (716) 275-5140 TEL (716) 271-1027 FAX and Rochester Photonics Corporation 330 Clay Road Rochester, New York 14623 (716) 272-3010 TEL (716) 272-9374 FAX 31 I::_I_E_ PACE" BLANK NOT FW.I_I_D Conf. on Binary Optics, 1993

Related Documents:

Diffractive Beam Splitter. Abstract Direct design of a non-paraxial diffractive beam splitters is still challenging. Due to the relatively large splitting angle, the feature size of the element is equivalent to or smaller

Diffractive Beam Splitter A single incident laser beam is split into a 1-dimensional or 2-dimensional array of beams. Typically diffractive beam splitters are used in combination with a focusing lens. If so, the output beam array becomes an arra

over ordinary lenses is their ability to reduce nonlinear phase-retardation. In contrast, in this paper we propose to utilize the nonlinear-phase in order to engineer DOEs that change their properties as a function of intensity: Nonlinear Diffractive Optical Elements (NDOE). The basic idea is simple: a NDOE is a diffractive optical element with

22 Laser Lab 22 Laser Lab - Optics 23 LVD 23 LVD - Optics 24 Mazak 31 Mazak - Optics 32 Mazak - General Assembly 34 Mitsubishi 36 Mitsubishi - Optics 37 Mitsubishi - General Assembly 38 Precitec 41 Precitec - Optics 42 Prima 43 Prima - Optics 44 Salvagnini 45 Strippit 46 Tanaka 47 Trumpf 51 Trumpf - Optics

PAFMO257 Physical Optics 78 PAFMO260 Quantum Optics 80 PAFMO265 Semiconductor Nanomaterials 82 PAFMO266 Strong-Field Laser Physics 84 PAFMO270 Theory of Nonlinear Optics 85 PAFMO271 Thin Film Optics 86 PAFMO272 Terahertz Technology 88 PAFMO280 Ultrafast Optics 90 PAFMO290 XUV and X-Ray Optics 92 PAFMO901 Topics of Current Research I 93

Using a 1 3 diffractive beam splitter, we have split a single laser beam into three parallel and have beamsirradiated them sequentially in a row at a constant speed to overlap three pulses in each irra

Goodman, “Introduction to Fourier Optics,” W. H. Freeman 2004. This comprehensive textbook is the standard reference when it comes to Fourier optics. Peng et al., “The Diffractive Achromat: Full Spectrum omputational Imaging

Russell, S. and P. Norvig Artificial Intelligence: A Modern Approach. (Upper Saddle River, NJ: Prentice Hall, c2010) third edition [ISBN 9780132071482 (pbk); 9780136042594 (hbk)]. Russell and Norvig is one of the standard AI textbooks and covers a great deal of material; although you may enjoy reading all of it, you do not need to. The chapters that you should read are identified in the .