Di Erential Equations & Linear Algebra - CUHK Mathematics

1y ago
17 Views
2 Downloads
1.01 MB
172 Pages
Last View : 13d ago
Last Download : 3m ago
Upload by : Troy Oden
Transcription

THE CHINESE UNIVERSITY OF HONG KONGDepartment of MathematicsMMAT5520Differential Equations & Linear AlgebraContents1 Ordinary differential equations of first-order11.1First-order linear ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2Separable equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41.3Exact equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71.4Homogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111.5Bernoulli’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121.6Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141.7Reducible second-order equations . . . . . . . . . . . . . . . . . . . . . . . . . . .162 Linear systems and matrices202.1Row echelon form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202.2Matrix arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252.3Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282.4Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332.5Linear equations and curve fitting41. . . . . . . . . . . . . . . . . . . . . . . . . .3 Vector spaces443.1Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443.2Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453.3Linear independence of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . .463.4Bases and dimension for vector spaces . . . . . . . . . . . . . . . . . . . . . . . .513.5Row and column spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543.6Orthogonal vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .584 Second and higher order linear equations624.1Second order linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .624.2Reduction of order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .674.3Homogeneous equations with constant coefficients . . . . . . . . . . . . . . . . . .684.4Method of undetermined coefficients . . . . . . . . . . . . . . . . . . . . . . . . .714.5Variation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .754.6Mechanical and electrical vibrations . . . . . . . . . . . . . . . . . . . . . . . . .784.7Higher order linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80i

5 Eigenvalues and eigenvectors895.1Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .895.2Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .935.3Power of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005.4Cayley-Hamilton theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Systems of first order linear equations1116.1Basic properties of systems of first order linear equations . . . . . . . . . . . . . . 1116.2Homogeneous linear systems with constant coefficients . . . . . . . . . . . . . . . 1136.3Repeated eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196.4Matrix exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.5Jordan normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336.6Fundamental matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396.7Nonhomogeneous linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457 Answers to exercises150ii

1Ordinary differential equations of first-orderAn equation of the formF (x, y, y 0 , · · · , y (n) ) 0, x (a, b),dydn ywhere y y(x), y 0 , · · · , y (n) n is called an ordinary differential equation (ODE)dxdxof the function y.Examples:1. y 0 xy 0,2. y 00 3y 0 2 0,3. y sin(dyd2 y) 2 0.dxdxThe order of the ODE is defined to be the order of the highest derivative in the equation. Insolving ODE’s, we are interested in the following problems: Initial value problem(IVP): to find solutions y(x) which satisfies given initial valueconditions, e.g. y(x0 ) y0 , y 0 (x0 ) y00 for some constants y0 , y00 . Boundary value problem(BVP): to find solutions y(x) which satisfies given boundaryvalue conditions, e.g. y(x0 ) y0 , y(x1 ) y1 for some constants y0 , y1An ODE is linear if it can be written as the formpn (x)y (n) pn 1 (x)y (n 1) · · · p1 (x)y 0 p0 (t)y g(x), pn (x) 6 0.The linear ODE is called homogeneous if g(x) 0, nonhomogeneous, otherwise. If an ODEis not of the above form, we call it a non-linear ODE.1.1First-order linear ODEThe general form of a first-order linear ODE isy 0 p(x)y g(x).The basic principle to solve a first-order linear ODE is to make left hand side a derivative of anexpression by multiplying both sides by a suitable factor called an integrating factor. To findintegrating factor, multiply both sides of the equation by ef (x) , where f (x) is to be determined,we haveef (x) y 0 ef (x) p(x)y g(x)ef (x) .Now, if we choose f (x) so that f 0 (x) p(x), then the left hand side becomesef (x) y 0 ef (x) f 0 (x)y d f (x) ey .dxThus we may takeZf (x) p(x)dx

Ordinary differential equations of first-order2and the equation can be solved easily as follow.y 0 p(x)y g(x)eRp(x)dx dydx eRp(x)dxp(x)y g(x)eRp(x)dxRd R p(x)dxey g(x)e p(x)dxdxZ RRp(x)dxp(x)dxey g(x)edxZ RRy e p(x)dxg(x)e p(x)dx dxNote:Integrating factor is not unique. One may choose an arbitrary integration constant forRp(x)dx. Any primitive function of p(x) gives an integrating factor for the equation.Example 1.1.1. Find the general solution of y 0 2xy 0.2Solution: Multiplying both sides by ex , we haveex2dy2 ex 2xy 0dxd x2e y 0dx2ex y Cy Ce x2 Example 1.1.2. Solve (x2 1)y 0 xy 2x, x 1.Solution: Dividing both sides by x2 1, the equation becomesxxdy y 2.dx x2 1x 1NowZx1dx ln(x2 1) C 12Thus we multiply both sides of the equation by11exp( ln(x2 1)) (x2 1) 22and get 1(x2 1) 2x2dyxy dx (x2 1) 12 1d 2(x 1) 2 y dx1(x2 1) 2 y 2x1(x2 1) 22x1(x2 1) 2Z2x1 dx(x2 1) 2 11y (x2 1) 2 2(x2 1) 2 C1y 2 C(x2 1) 2

Ordinary differential equations of first-order3Example 1.1.3. Solve y 0 y tan x 4 sin x, x ( π2 , π2 ).Solution: An integrating factor isZexp( tan xdx) exp(ln(cos x)) cos x.Multiplying both sides by cos x, we havecos xdy y sin x 4 sin x cos xdxd(y cos x) 2 sin 2xdxZy cos x 2 sin 2xdxy cos x cos 2x CC cos 2xy cos x Example 1.1.4. A tank contains 1L of a solution consisting of 100 g of salt dissolved in water.A salt solution of concentration of 20 gL 1 is pumped into the tank at the rate of 0.02 Ls 1 , andthe mixture, kept uniform by stirring, is pumped out at the same rate. How long will it be untilonly 60 g of salt remains in the tank?Solution: Suppose there is x g of salt in the solution at time t s. Then x follows the followingdifferential equationdx 0.02(20 x)dtMultiplying the equation by e0.02t , we havedx 0.02x 0.4dte0.02tdx 0.02e0.02t x 0.4e0.02tdtZd 0.02tex 0.4e0.02t dtdte0.02t x 20e0.02t Cx 20 Ce 0.02tSince x(0) 100, C 80. Thus the time taken in second until 60 g of salt remains in the tankis60 20 80e 0.02te0.02t 2t 50 ln 2

Ordinary differential equations of first-order4Example 1.1.5. David would like to by a home. He had examined his budget and determinedthat he can afford monthly payments of 20,000. If the annual interest is 6%, and the term ofthe loan is 20 years, what amount can he afford to borrow?Solution: Let y be the remaining loan amount after t months. Thendydt 0.06y 20, 00012dy 0.005y 20, 000dte 0.005tdy 0.005ye 0.005t 20, 000e 0.005tdtd 0.005t(ey) 20, 000e 0.005tdt 20, 000e 0.005te 0.005t y C 0.005y 4, 000, 000 Ce0.005tSince the term of the loan is 20 years, y(240) 0 and thus4, 000, 000 Ce0.005 240 04, 000, 000e1.2 1, 204, 776.85C Therefore the amount that David can afford to borrow isy(0) 4, 000, 000 1, 204, 776.85e0.005(0) 2, 795, 223.15Note: The total amount that David pays is 240 20, 000 4, 800, 000. Exercise 1.11. Find the general solutions of the following first order linear differential equations.(a) y 0 y 4e3x7(b) 3xy 0 y 12x(d) x2 y 0 xy 1 (e) xy 0 y x(h) y 0 cos x y sin x 1(c) y 0 3x2 y x2(f) xy 0 y x2 sin x(i) xy 0 (3x 1)y e 3x(g) (x 1)y 0 2y (x 1) 22. Solve the following initial value problems.1.2(a) y 0 y e2x ; y(0) 1(d) (x 1)y 0 y ln x; y(1) 10(b) y 0 (1 y) cos x; y(π) 2(e) x2 y 0 2xy ln x; y(1) 2(c) (x2 4)y 0 3xy 3x; y(0) 3(f) xy 0 y sin x; y(π) 1Separable equationsA separable equation is an equation of the formdy f (x)g(y).dx

Ordinary differential equations of first-order5It can be solved as followsdyg(y)Zdyg(y) f (x)dxZ f (x)dxExample 1.2.1. Find the general solution of y 0 3x2 y.Solution:dy 3x2 dxyZZdy 3x2 dxyln y x3 C 0y Cex3where C eC0 dy y 2 1, x 0.Example 1.2.2. Solve 2 xdxSolution:dydx 12 xZZdydx y2 12 x tan 1 y x C y tan( x C)y2 Example 1.2.3. Solve the initial value problemxdy , y(0) 1.dxy x2 ySolution:dydxxy(1 x2 )ZZxydy dx1 x2Z11y2 d(1 x2 )221 x2y 2 ln(1 x2 ) C Since y(0) 1, C 1. Thusy 2 1 ln(1 x2 )py 1 ln(1 x2 )

Ordinary differential equations of first-order6Example 1.2.4. (Logistic equation) Solve the initial value problem for the logistic equationdy ry(1 y/K), y(0) y0dtwhere r and K are constants.Solution:dyy(1 y/K)Zdydty(1 y/K) Z 11/Kdt y 1 y/Kln y ln(1 y/K)y1 y/K rdtZ rdt rt rt C ert Cy Kert CK ert CTo satisfy the initial condition, we seteC and obtainy y01 y0 /Ky0 K.y0 (K y0 )e rtNote: When t ,lim y(t) K.t Exercise 1.21. Find the general solution of the following separable equations.(a) y 0 2xy 2 0 (b) y 0 3 xy2(c) y 0 6x(y 1) 3(e) yy 0 x(y 2 1)(d) y 0 y sin x(f) y 0 1 x y xy2. Solve the following initial value problems.(a) xy 0 y 2x2 y; y(1) 1(d) y 0 4x3 y y; y(1) 3(b) y 0 yex ; y(0) 2ex(c) 2yy 0 ; y(5) 22x 16(e) y 0 tan x y; y( π2 ) (f) y 0 3x2 (y 2 1); y(0) 13. Solve the logistic equation dyy 0.08y 1 dx1000with initial condition y(0) 100.π2

Ordinary differential equations of first-order1.37Exact equationsWe say that the equationM (x, y)dx N (x, y)dy 0is exact if(1.4.1) N M . y xIn this case, there exists a function f (x, y) such that( f x M f y NThen the differential equation can be written as f fdx dy 0 x ydf (x, y) 0Therefore the general solution of the differential equation isf (x, y) C.To find f (x, y), first note that f M. xZf (x, y) M (x, y)dx g(y).HenceDifferentiating both sides with respect to y, we haveZ N (x, y) M (x, y)dx g 0 (y) ysince f N. yNow N (x, y) yZM (x, y)dxis independent of x (why?). Therefore Z Z g(y) N (x, y) M (x, y)dx dy yand we obtainZf (x, y) M (x, y)dx g(y) ZZZ M (x, y)dx N (x, y) M (x, y)dx dy yRemark: Equation (1.4.1) is exact when F (M (x, y), N (x, y)) defines a conservative vectorfield. The function f (x, y) is called a potential function for F.

Ordinary differential equations of first-order8Example 1.3.1. Solve (4x y)dx (x 2y)dy 0.Solution: Since (4x y) 1 (x 2y), y xthe equation is exact. We need to find F (x, y) such that F F M and N. x yNowZF (x, y) (4x y)dx 2x2 xy g(y)To determine g(y), what we want is F x 2y yx g 0 (y) x 2yg 0 (y) 2yTherefore we may choose g(y) y 2 and the solution isF (x, y) 2x2 xy y 2 C. Example 1.3.2. Solvedyey x 2y.dxe xeySolution: Rewrite the equation as(ey x)dx (xey e2y )dy 0.Since y (e x) ey (xey e2y ), y xthe equation is exact. SetZF (x, y) (ey x)dx1 xey x2 g(y)2We want F xey e2y yxey g 0 (y) xey e2yg 0 (y) e2y

Ordinary differential equations of first-order9Therefore we may choose g(y) 12 e2y and the solution is11xey x2 e2y C.22 When the equation is not exact, sometimes it is possible to convert it to an exact equation bymultiplying it by a suitable integrating factor. Unfortunately, there is no systematic way offinding integrating factor in general.Example 1.3.3. Show that µ(x, y) x is an integrating factor of (3xy y 2 )dx (x2 xy)dy 0and then solve the equation.Solution: Multiplying the equation by x reads(3x2 y xy 2 )dx (x3 x2 y)dy 0.Now (3x2 y xy 2 ) 3x2 2xy y 3(x x2 y) 3x2 2xy xThus the above equation is exact and x is an integrating factor. To solve the equation, setZF (x, y) (3x2 y xy 2 )dx1 x3 y x2 y 2 g(y)2Now we want F x3 x2 y yx3 x2 y g 0 (y) x3 x2 yg 0 (y) 0Therefore g(y) is constant and the solution is1x3 y x2 y 2 C.2 Note: The equation in Example 1.3.3 is also a homogenous equation which will be discussed inSection 1.4.Example 1.3.4. Show that µ(x, y) y is an integrating factor of ydx (2x ey )dy 0 andthen solve the equation.Solution: Multiplying the equation by y readsy 2 dx (2xy yey )dy 0.

Ordinary differential equations of first-order10Now 2y 2y y (2xy yey ) 2y xThus the above equation is exact and y is an integrating factor. To solve the equation, setZF (x, y) y 2 dx xy 2 g(y)Now we want F 2xy yey y2xy g 0 (y) 2xy yeyg 0 (y) yeyZg(y) yey dyZ ydeyZy ye ey dy yey ey C 0Therefore the solution isxy 2 yey ey C. Exercise 1.31. For each of the following equations, show that it is exact and find the general solution.(a) (5x 4y)dx (4x 8y 3 )dy 0(d) (1 yexy )dx (2y xexy )dy 0(b) (3x2 2y 2 )dx (4xy 6y 2 )dy 0(e) (x3 xy )dx (y 2 ln x)dy 0(c) (3xy 2 y 3 )dx (3x2 y 3xy 2 )dy 0(f) (cos x ln y)dx ( xy ey )dy 02. For each of the following differential equations, find the value of k so that the equation isexact and solve the equation(a) (2xy 2 3)dx (kx2 y 4)dy 0(c) (2xy 2 3x2 )dx (2xk y 4y 3 )dy 0(b) (6xy y 3 )dx (4y 3x2 kxy 2 )dy 0(d) (3x2 y 3 y k )dx (3x3 y 2 4xy 3 )dy 03. For each of the following differential equations, show that the given function µ is anintegrator of the equation and then solve the equation.(a) (3xy y 2 )dx (x2 xy)dy 0; µ(x) x(b) ydx xdy 0; µ(y) y121(c) ydx x(1 y 3 )dy 0; µ(x, y) xy1(d) (x y)dx (x y)dy 0; µ(x, y) 2x y2

Ordinary differential equations of first-order1.411Homogeneous equationsA first order equation is homogeneous if it can be written as y dy f.dxxThe above equation can be solved by the substitution u y/x. Then y xu anddydu u x .dxdxTherefore the equation readsu xdudx f (u)duf (u) u dxxwhich becomes a separable equation.Example 1.4.1. Solvex2 y 2dy .dx2xySolution: Rewrite the equation asdydx 1 (y/x)22y/xwhich is a homogeneous equation. Using substitution y xu, we havedudxduxdx2udu2Z 1 u2udu1 u2 ln(1 u2 )u x dy1 u2 dx2u21 u 2u22udxZxdxxln x C 0(1 u )x e C20x2 y 2 Cx 00where C e C . Example 1.4.2. Solve (y 2xe y/x )dx xdy 0.Solution: Rewrite the equation asdydx y 2xe y/xy 2e y/x .xx

Ordinary differential equations of first-order12Let u y/x, we havedudxduxdxu x dy u 2e udx 2e udxeu du 2ZZxdxeu du 2xeu 2 ln x Cey/x 2 ln x C Exercise 1.41. Find the general solution of the following homogeneous equations. x2 2y 2(c) xy 0 y 2 xy(e) x2 y 0 xy y 2(a) y 0 2xypy0(b) xy y x2 y 2(d) x(x y)y 0 y(x y)(f) x2 y 0 xy x2 e x1.5Bernoulli’s equationsAn equation of the formy 0 p(x)y q(x)y n , n 6 0, 1,is called a Bernoulli’s equation. It is a non-linear equation and y(x) 0 is always a solutionwhen n 0. To find a non-trivial solution, we use the substitutionu y 1 n .Thendudxdydx (1 n)y n ( p(x)y q(x)y n ) (1 n)y ndu (1 n)p(x)y 1 n (1 n)q(x)dxdu (1 n)p(x)u (1 n)q(x)dxwhich is a linear differential equation of u.Note: Don’t forget that y(x) 0 is always a solution to the Bernoulli’s equation when n 0.dyExample 1.5.1. Solve y e x y 2 .dxSolution: Let u y 1 2 y 1 ,dudxdydx 2 yy e x y 2 y 2du y 1 e xdxdu u e xdx

Ordinary differential equations of first-order13which is a linear equation of u. Multiplying both side by ex , we haveexdu ex u 1dxd x(e u) 1dxex u x Cu (C x)e xy 1 (C x)e xTherefore the general solution isy exor y 0C x Example 1.5.2. Solve xdy y xy 3 .dxSolution: Let u y 1 3 y 2 ,dudxdudxdu 2y 2 dxxdu 2u dxx 2y 3 dydx 2y 3 y xy 3x 2 2Rwhich is a linear equation of u. To solve it, multiply both side by exp( 2x 1 dx) x 2 , wehavex 2du 2x 3 u 2x 2dxd 2(x u) 2x 2dxx 2 u 2x 1 Cu 2x Cx2y 2 2x Cx21y2 or y 02x Cx2 Exercise 1.51. Find the general solution of the following Bernoulli’s equations.(a) xy 0 y x2 y 2(b) x2 y 0 2xy 5y 4(c) xy 0 y(x2 y 1)

Ordinary differential equations of first-order1.614SubstitutionIn this section, we give some examples of differential equations that can be transformed to oneof the forms in the previous sections by a suitable substitution.Example 1.6.1. Use the substitution u ln y to solve xy 0 4x2 y 2y ln y 0.Solution:dudxduxdxx2 y 0 /y 4x2 2 ln ydu 2xu 4x3dxd 2x u 4x3dxZ2x u 4x3 dxx2 u x4 CCu x2 2 xCy exp x 2x2 Example 1.6.2. Use the substitution u e2y to solve 2xe2y y 0 3x4 e2y .Solution:dudxduxdxduxdx11 du ux dx x2d u dx xuxudydx2y dy 2xedx 2e2y 3x4 e2y 3x2 3x2Z 3x2 dx x3 Ce2y x3 C1y ln(x4 Cx)2

Ordinary differential equations of first-order15An equation of the formy 0 p1 (x)y p2 (x)y 2 q(x)is called a Riccati’s equation. If we know that y(x) y1 (x) is a particular solution, then theequation can be transformed, using the substitutiony y1 1uto a linear equation of u.yy2Example 1.6.3. Solve the Riccati’s equation y 0 1 2 given that y x is a particularxxsolution.Solution: Lety x 1.uWe havedydx11y 1 2 y2xx1 duu2 dx1 duu2 dxdu 1 udx x1 duu2 dx1 du1 2u dx 11 2 11x x x2uxu11 xu x2 u21x2 1 which is a linear equation of u. An integrating factor is Z 1exp dx exp( ln x) x 1 .xThusx 1du x 2 u x 3dxd 1(x u) x 3dx1x 1 u 2 C 02x1 C 0xu 2xCx2 1u 2xTherefore the general solution isy x 2xor y x.Cx2 1

Ordinary differential equations of first-order16Example 1.6.4. Solve the Riccati’s equation y 0 1 x2 2xy y 2 given that y x is aparticular solution.Solution: Using the substitutiony x 1.uWe havedydx1 x2 2xy y 21 x2 2x(x 1 duu2 dx1 du 1 2u dx1 du 1 2u dx 1 11) (x )2uudu 1dxu C xTherefore the general solution isy x 1or y x.C x Exercise 1.61. Solve the following differential equations by using the given substitution.(a) xy 0 4x2 y 2y ln y 0; u ln y (b) y 0 x y; u x y(c) y 0 (x y 3)2 ; u x y 3(d) y 0 ey 1 0; u e y2. Solve the following Riccati’s equations by the substitution y y1 particular solution y1 (x).(a) x3 y 0 y 2 x2 y x2 ; y1 (x) x1.71with the givenu(b) x2 y 0 x2 y 2 2; y1 (x) 1xReducible second-order equationsSome second-order differential equations can be reduced to an equation of first-order by a suitable substitution. First we consider the simplest case when the zeroth order derivative term yis missing.Dependent variable y missing:F (x, y 0 , y 00 ) 0The substitutiondp p0 ,dxreduces the equation into a first-order differential equationp y 0 , y 00 F (x, p, p0 ) 0.

Ordinary differential equations of first-order17Example 1.7.1. Solve xy 00 2y 0 6x.Solution: Let p y 0 . Then y 00 p0 and the equation readsxp0 2p 6xx2 p0 2xp 6x2d 2(x p) 6x2dxx2 p 2x3 C1y 0 2x C1 x 2y x2 C1 x 1 C2 Example 1.7.2 (Free falling with air resistance). The motion of an free falling object near thesurface of the earth with air resistance proportional to velocity can be modeled by the equationy 00 ρy 0 g 0,where ρ is a positive constant and g is the gravitational acceleration. Solve the equation withdy(0) v0 .initial displacement y(0) y0 and initial velocitydtSolution: Let v dyd2 ydv. Then 2 anddtdtdtdv ρv gdtZ vdvv0 ρv g1ln(ρv g)ρln(ρv g) ln(ρv0 g) 0Z tdt0 t ρtρv g (ρv0 g)e ρtv (v0 vτ )e ρt vτwherevτ g lim v(t)ρ t is the terminal velocity. Thusdydt (v0 vτ )e ρt vτZ yZ t dy (v0 vτ )e ρt vτ dty00 t1 ρt (v0 vτ )e vτ tρ01(v0 vτ )(1 e ρt ) vτ t y0ρ y y0 y

Ordinary differential equations of first-order18Independent variable x missing:The substitutiondpdp dydpp y 0 , y 00 pdxdy dxdyreduces the equation to the first-order equation dpF y, p, p 0.dyExample 1.7.3. Solve yy 00 y 02 .Solution: Let p y 0 . Then y 00 pdpand the equation readsdydpdydppZdppln p p2pdyZ dxdyyln y C1 yyp dyyZdyy ln y C 0 C1 yZ C1 dx C1 x C 0y C2 eC1 x Example 1.7.4 (Escape velocity). The motion of an object projected vertically without propulsion from the earth surface is modeled byd2 rGM 2 ,dt2rwhere r is the distance from the earth’s center, G 6.6726 10 11 Nm2 kg2 is the constant ofuniversal gravitation and M 5.975 102 4kg is the mass of the earth. Find the minimum initialvelocity v0 for the projectile to escape from the earth’s gravity.Solution: Let v d2 rdv drdvdrdv. Then 2 v anddtdtdtdr dtdrGM2Z vZr rGMvdv dr2v0r0 r 1 2112(v v0 ) GM 2r r0 1122v0 v 2GM r0 rvdvdr

Ordinary differential equations of first-order19where r0 6.378 106 m is the radius of the earth. In order to escape from earth’s gravity, rcan be arbitrary large and thus we must have2GM2GM v2 r0r0r2GM 11, 180(ms 1 )r0v02 v0 Exercise 1.71. Find the general solution of the following differential equations by reducing them to firstorder equations.(a) yy 00 (y 0 )2 0(c) xy 00 y 0 4x(e) yy 00 (y 0 )2 yy 0(b) y 00 4y 0(d) x2 y 00 3xy 0 2(f) y 00 2y(y 0 )32. Find the general solution of the following differential equations.(a) y 0 xy 3x2 2y(b) y 0 x1 9x2 y(c) y 0 x 4y (d) xy 0 2y 6x2 y(g) y 0 1 x2 y 2 x2 y 2(h) x2 y 0 2xy x 1(i) (1 x)y 0 y x 0(j) y 0 6xy 3 2y 4 09x2 y 2 8xy 3(e) x2 y 0 xy y 2 0(k) x3 y 0 x2 y y 3(f) x2 y 0 2xy 2 y 2(l) 3xy 0 x3 y 4 3y 0

2Linear systems and matricesOne objective of studying linear algebra is to understand thewhich is a system of m linear equations in n unknowns a11 x1 a12 x2 · · · a1n xn a21 x1 a22 x2 · · · a2n xn. . am1 x1 am2 x2 · · · amn xnThe above system of linear equations a11 a12 a21 a22 . .am1 am2solutions to a linear system b1b2. . bmcan be expressed in the following matrix form · · · a1nb1x1 · · · a2n x2 b2 . . . . . . bmxn· · · amnFor each linear system, there associates an m (n 1) matrix a11 a12 · · · a1n b1 a21 a22 · · · a2n b2 . . . .am1 am2 · · · amn bmwhich is called the augmented matrix of the system. We say that two linear systems areequivalent if they have the same solution set.2.1Row echelon formTo solve a linear system, we may apply elementary row operation to its augmented matrix.Definition 2.1.1. An elementary row operation is an operation on a matrix of one of thefollowing forms.1. Multiply a row by a non-zero constant.2. Interchange two rows.3. Replace a row by its sum with a multiple of another row.Definition 2.1.2. We say that two matrices A and B are row equivalent if we can obtain Bby applying successive elementary row operations to A.We can use elementary row operations to solve a linear system because of the following theorem.Theorem 2.1.3. If the augmented matrices of two linear systems are row equivalent, then thetwo systems are equivalent, i.e., they have the same solution set.Definition 2.1.4 (Row echelon form). A matrix E is said to be in row echelon form if itsatisfies the following three properties:1. The first nonzero entry of each row of E is 1.

Linear systems and matrices212. Every row of E that consists entirely of zeros lies beneath every row that contains a nonzeroentry.3. In each row of E that contains a nonzero entry, the number of leading zeros is strictly lessthan the number of leading zeros in the preceding rows.Theorem 2.1.5. Any matrix can be transformed into a row echelon form by applying successiveelementary row operations. The process of using elementary row operations to transform amatrix to a row echelon form is called Gaussian elimination.To find the solutions to a linear system, we can transform the associated augmented matrix intorow echelon form.Definition 2.1.6 (Leading and free variables). Suppose we transform the augmented matrix ofa linear system to a row echelon form.1. The variables that correspond to columns containing leading non-zero entries are calledleading variables.2. All other variables are called free variables.After the augmented matrix of a linear system is transformed to a row echelon form, we maywrite down the solution set of the system easily by back substitution.Example 2.1.7. Solve the linear system x1 x2 x3 52x1 x2 4x3 2 . x1 2x2 5x3 4Solution: The augmented matrix of the system is 1 1 1 5 2 1 4 2 1 2 5 4Using Gaussian elimination, we have R2 13 R2 1 1 1 5 2 1 4 2 1 2 5 4 1 1 2 5 0 1 2 4 0 3 6 9R2 R2 2R1R3 R3 R1 R3 R3 3R2 1 1 25 0 3 6 12 0 3 6 9 1 1 2 5 0 1 2 4 0 0 0 3The third row of the last matrix corresponds to the equation0 3which is absurd and thus has no solution. Therefore the solution set of the original linear systemis empty. In other words, the linear system is inconsistent.

Linear systems and matrices22Example 2.1.8. Solve the linear system x1 x2 x3 x4 x5 2x1 x2 x3 2x4 2x5 3 . x1 x2 x3 2x4 3x5 2Solution: Using Gaussian elimination, we have 1 1 1 1 1 2 1 1 1 2 2 3 1 1 1 2 3 2 R2 R2 R1R3 R3 R1 R3 R3 R2 1 00100100100100100110111111 1 21 1 2 0 21 1Thus the system is equivalent to the following system x1 x2 x3 x4 x5 2x4 x5 1 . x5 1The solution of the system is x5 1x4 1 x5 2 x1 2 x2 x3 x4 x5 1 x2 x3Here x1 , x4 , x5 are leading variables while x2 , x3 are free variables. Another way of expressingthe solution is(x1 , x2 , x3 , x4 , x5 ) (1 α β, α, β, 2, 1), α, β R. Definition 2.1.9 (Reduced row echelon form). A matrix E is said to be in reduced row echelon form (or E is a reduced row echelon matrix) if it satisfies all the following properties:1. E is in row echelon form.2. Each leading non-zero entry of E is the only nonzero entry in its column.A matrix may have many different row echelon forms. However, any matrix is row equivalentto a unique reduced row echelon form.Theorem 2.1.10. Every matrix is row equivalent to one and only one matrix in reduced rowechelon form.Example 2.1.11. Find the reduced row echelon form of the matrix 1 2 1 4 3 8 7 20 .2 7 9 23

Linear systems and matrices23Solution: R2 12 R2 R1 R1 2R2 1 3 21 00 1 002872131791270 31 20 1 420 23 44 15 44 3R2 R2 3R1R3 R3 2R1 R3 R3 3R2 R1 R1 3R3R2 R2 2R3 1 0 01 00 1 00223210010147121001 48 15 44 3 5 2 3 Example 2.1.12. Solve the linear system x1 2x2 3x3 4x4 5x1 2x2 2x3 3x4 4 . x1 2x2 x3 2x4 3Solution: R2 R2 1 00 R1 R1 3R2 111200100 2 3 4 52 2 3 4 2 1 2 3 534111 2 2 2 2 0 1 20 1 1 1 0 0 0 0R2 R2 R1R3 R3 R1 R3 R3 2R2 1 2 34 0 0 1 10 0 2 2 1 2 3 4 0 0 1 10 0 0 0 5 1 2 51 0Now x1 , x3 are leading variables while x2 , x4 are free variables. The solution of the system is(x1 , x2 , x3 , x4 ) (2 2α β, α, 1 β, β), α, β R. Theorem 2.1.13. LetAx bbe a linear system, where A is an m n matrix. Let R be the unique m (n 1) reduced rowechelon matrix of the augmented matrix (A b). Then the system has1. no solution if the last column of R contains a leading non-zero entry.2. unique solution if (1) does not holds and all variables are leading variables.3. infinitely many solutions if (1) does not holds and there exists at least one free variable.Now let’s consider a homogeneous systemAx 0The system has an obvious solution x 0. This solution is called the trivial solution.

Linear systems and matrices24Theorem 2.1.14. Let A be an n n matrix. Then homogeneous linear systemAx 0with coefficient matrix A has only trivial solution if and only if A is row equivalent to the identitymatrix I.Proof. The system Ax 0 has at least one solution namely the trivial solution x 0. Nowthe trivial solution is the only solution if and only if the reduced row echelon matrix of (A 0) is(I 0) (Theorem 2.1.13) if and only if A is row equivalent to I.Exercise 2.11. Find the reduced row echelon form of the following matrices. 3 7 151 2 4(a) 2 4 32 5 11(f) 3 6 11 2 3(b) 1 4 1 1232 1 9 22(g) 15 2 5 1 2 1(c) 9 4 7 4 1 73 6 1 7 1 4 2 5 10 8 18(h)(d) 3 12 1 2 4 5 92 85 2 2420 0 2 0(e) 1 1 4 3 (i) 2 4 10 62 7 19 32 4 5 62. Solve the following systems of linear equations. x1 3x2 4x3 7(a)x2 5x3 2 3x1 x2 3x3 4x1 x2 x3 1(b) 5x1 6x2 8x3 8 2x1 x2 5x3 15 x1 3x2 x3 4(c)x 4x2 6x3 11 13x1 9x2 3x3 12 x1 x2 2x3 x4 9x2 x3 2x4 1(d) x3 3x4 5 x1 2x2 x3 x4 1x1 2x2 x3 x4 1(e) x1 2x2 x3 5x4 5 3x1 6x2 x3 13x4 153x1 6x2 3x3 21x4 21(f) 2x1 4x2 5x3 26x4 23 51 4 4534 2 3 1347 26 7 1212 28 5 1

Linear systems and matrices2.225Matrix arithmeticA matrix is a rectangular array of real (or complex) numbers of the form

The linear ODE is called homogeneous if g(x) 0, nonhomogeneous, otherwise. If an ODE is not of the above form, we call it a non-linear ODE. 1.1 First-order linear ODE The general form of a rst-order linear ODE is y0 p(x)y g(x): The basic principle to solve a rst-order linear ODE is to make left hand side a derivative of an

Related Documents:

1.2. Rewrite the linear 2 2 system of di erential equations (x0 y y0 3x y 4et as a linear second-order di erential equation. 1.3. Using the change of variables x u 2v; y 3u 4v show that the linear 2 2 system of di erential equations 8 : du dt 5u 8v dv dt u 2v can be rewritten as a linear second-order di erential equation. 5

PSI AP Physics 1 Name_ Multiple Choice 1. Two&sound&sources&S 1∧&S p;Hz&and250&Hz.&Whenwe& esult&is:& (A) great&&&&&(C)&The&same&&&&&

69 of this semi-mechanistic approach, which we denote as Universal Di erential 70 Equations (UDEs) for universal approximators in di erential equations, are dif- 71 ferential equation models where part of the di erential equation contains an 72 embedded UA, such as a neural network, Chebyshev expansion, or a random 73 forest. 74 As a motivating example, the universal ordinary di erential .

First Order Linear Di erential Equations A First Order Linear Di erential Equation is a rst order di erential equation which can be put in the form dy dx P(x)y Q(x) where P(x);Q(x) are continuous functions of x on a given interval. The above form of the equation is called the Standard Form of the equation.

Argilla Almond&David Arrivederci&ragazzi Malle&L. Artemis&Fowl ColferD. Ascoltail&mio&cuore Pitzorno&B. ASSASSINATION Sgardoli&G. Auschwitzero&il&numero&220545 AveyD. di&mare Salgari&E. Avventurain&Egitto Pederiali&G. Avventure&di&storie AA.&VV. Baby&sitter&blues Murail&Marie]Aude Bambini&di&farina FineAnna

General theory of di erential equations of rst order 45 4.1. Slope elds (or direction elds) 45 4.1.1. Autonomous rst order di erential equations. 49 4.2. Existence and uniqueness of solutions for initial value problems 53 4.3. The method of successive approximations 59 4.4. Numerical methods for Di erential equations 62

Unit #15 - Di erential Equations Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Basic Di erential Equations 1.Show that y x sin(x) ˇsatis es the initial value problem dy dx 1 cosx To verify anything is a solution to an equation, we sub it in and verify that the left and right hand sides are equal after

Ordinary Di erential Equations by Morris Tenenbaum and Harry Pollard. Elementary Di erential Equations and Boundary Value Problems by William E. Boyce and Richard C. DiPrima. Introduction to Ordinary Di erential Equations by Shepley L. Ross. Di