Technische Universität München Geothermal Combined Heat And . - CITIES

1y ago
4 Views
2 Downloads
1.52 MB
23 Pages
Last View : 21d ago
Last Download : 3m ago
Upload by : Grant Gall
Transcription

Lehrstuhl für Energiesysteme Fakultät für Maschinenwesen Technische Universität München Geothermal combined heat and power (chp) concepts Fabian Dawo, Christoph Wieland, Hartmut Spliethoff Technical University of Munich Department of Mechanical Engineering Institute for Energy Systems Zagreb, 03. April 2019

Outline 1. 2. 3. 4. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria Motivation for power generation from geothermal energy CHP plant modeling TUM-ORC and comparison with the state of the art parallel chp concept Zagreb 03. April 2019 Fabian Dawo 2

Deep Geothermal Energy in Germany District heating [2]: Hydrothermal doublet Installed capacity: 313,5 MW (2017) Production: 893,3 GWh (2017) Power Generation [2]: Installed capacity : 36 MW (2017) Production: 160 GWh (2017) Facilities in Bavaria: 800 – 5000 m vertical depth 60 – 150 C thermal water temperature [3], [4] Zagreb 03. April 2019 Fabian Dawo [1] 3

The Geothermal-Alliance Bavaria Technical University of Munich Friedrich-Alexander University Erlangen-Nuremberg University of Bayreuth Several local operators of geothermal facilities (district heating and power generation) Strengthen and promote geothermal energy research and applications Zagreb 03. April 2019 Fabian Dawo 4

Outline 1. 2. 3. 4. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria Motivation for power generation from geothermal energy CHP plant modeling TUM-ORC and comparison with the state of the art parallel chp concept Zagreb 03. April 2019 Fabian Dawo 5

Motivation: Why electricity from geothermal energy? Theoretical heat stored in the geothermal water: 308 GWh Heat demand: 113 GWh 63% excess heat Zagreb 03. April 2019 Fabian Dawo 6

Key influencing factors for combined heat and power (chp) production from geothermal energy cycle architecture thermal water What is the optimum design size for the power block in heat driven geothermal chp plants? Zagreb 03. April 2019 Fabian Dawo heat demand temperature massflow pressure Thermodynamic and economic CHP model Design specifications for power block Optimized operating strategy 7

Outline 1. 2. 3. 4. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria Motivation for power generation from geothermal energy CHP plant modeling TUM-ORC and comparison with the state of the art parallel chp concept Zagreb 03. April 2019 Fabian Dawo 8

Example: Parallel CHP MATLAB DHS data, geothermal brine EBSILON Professional Variation of design heat demand Power plant design for fixed heat demand REFPROP Optimized operation strategy Economic evaluation Optimum? no yes plant design, operation strategy Zagreb 03. April 2019 Fabian Dawo 9

Input: District Heating System data, geothermal brine Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Ökonomische Economic evaluation Bewertung Optimum? no Heat demand [MW] of design Variation Anpassung heat demand Auslegungspunkt District Heating System data Return temperature 50 C Supply temperature 75 C Geothermal brine Temperature 122 C Mass flow 125 kg/s pressure 9 bar time [d] ja yes plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 10

Design: Design point and assumptions Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Sorted annual heat demand curve of design Variation Anpassung heat demand Auslegungspunkt Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Ökonomische Economic evaluation Bewertung Optimum? Heat demand [MW] Assumptions and boundary conditions: Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf DP Pressure losses neglected Heat losses neglected Heat exchanger efficiency 0.9 Pump efficiency 0.8 Turbine efficiency 0.8 Live vapor superheating 3K Condensation temperature 40 C Ambient temperature 15 C Working fluid R245fa nein no ja yes Thermodynamic optimization of the net power output Component sizes for economic evaluation plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 11

Optimized operation strategy Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf of design Variation Anpassung heat demand Auslegungspunkt Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Calculation of optimum power output for varying district heating demands Varying district heating demands result in varying brine mass flows for the power block and varying optimum working fluid mass flows The off-design behavior of the components has to be considered power [kW] Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Ökonomische Economic evaluation Bewertung Heat demand [kW] Optimum? no ja yes Optimum power output for varying district heating demands plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 12

Economic Evaluation Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Annual gross electricity distribution Pgross Pnet QDH Net Bestimmung der Optimized operation optimalen strategy Betriebsstrategie QDH of design Variation Anpassung heat demand Auslegungspunkt Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf ACC-Fan Pump Ökonomische Economic evaluation Bewertung Optimum? Thermal water pump no ORC ja yes plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 𝐸𝑛𝑒𝑡 1931 MWh 𝐸𝑔𝑟𝑜𝑠𝑠 9587 MWh 13

Economic Evaluation Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Assumptions and boundary conditions: of design Variation Anpassung heat demand Auslegungspunkt Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Ökonomische Economic evaluation Bewertung Optimum? Two cases: Optimized for net power output German Case: The gross produced electricity is sold and the power demand for pumps and ACCfans is bought from the grid. running time 20a availability 85% electricity sale price (EEG feed-in tariff) 25.2 ct/kWh electricity purchase price 10 ct/kWh personnel costs function of transferred heat other operating equipment 1% Invest maintenance 3% Invest insurance no 0.6% Invest inflation 1.5% calculatory interest rate 6.5% ja yes plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 14

Economic Evaluation Fernwärmedaten, DHS data, geothermale geothermal brine Quelle Assumptions and boundary conditions: Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Ökonomische Economic evaluation Bewertung net present value [ ] of design Variation Anpassung heat demand Auslegungspunkt German Case 20a availability 85% electricity sale price (EEG) 25.2 ct/kWh electricity purchase price 10 ct/kWh personnel costs function of transferred heat other operating equipment 1% Invest maintenance 3% Invest insurance Net Power Optimized Optimum? running time no 0.6% Invest inflation 1.5% calculatory interest rate 6.5% ja yes plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo Net Power Optimized: negative NPV for this specific design point German Case: positive NPV for this specific design point 15

Variation of the design point: economic evaluation Fernwärmedaten, DHS data, geothermale geothermal brine Quelle of design Variation Anpassung heat demand Auslegungspunkt Bestimmung der Optimized operation optimalen strategy Betriebsstrategie Ökonomische Economic evaluation Bewertung net present value after 20 years [ ] German Case Auslegung des Power plant design Kraftwerks für for fixed heat definierten demand Fernwärmebedarf optimal design points Net Power Optimized Optimum? no ja yes No design point with positive NPV for Net Power Optimized Case. German Case is highly profitable with an optimal design point at about 1/3 of the maximum heat demand. design district heating demand [kW] plant design, Kraftwerksgröße, operation strategy Betriebsstrategie Zagreb 03. April 2019 Fabian Dawo 16

Outline 1. 2. 3. 4. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria Motivation for Power Generation from Geothermal Energy CHP plant modeling TUM-ORC and comparison with the state of the art parallel chp concept Zagreb 03. April 2019 Fabian Dawo 17

TUM-ORC Operating mode: 1. Low district heating demand Zagreb 03. April 2019 Fabian Dawo

TUM-ORC Operating mode: 1. Low district heating demand 2. Medium district heating demand Zagreb 03. April 2019 Fabian Dawo

TUM-ORC Operating mode: 1. Low district heating demand 2. Medium district heating demand 3. High district heating demand Zagreb 03. April 2019 Fabian Dawo

Comparison: Annual gross electricity distribution TUM-ORC Parallel ORC Net ACC-Fan Pump ACC-Fan Pump Net Thermal water pump Thermal water pump Annual produced electricity: Zagreb 03. April 2019 Fabian Dawo Parallel-ORC TUM-ORC 𝐸𝑛𝑒𝑡 [MWh] 1947 5626 𝐸𝑔𝑟𝑜𝑠𝑠 [MWh] 9319 14880 21

Comparison: NPV after 20 years for varied design points net present value after 20 years [ ] German Case: TUM-ORC German Case: parallel ORC Net Power Optimized: TUM-ORC NPV is higher for TUM-ORC and also the net power optimized case is economically viable with the TUMORC concept. Net Power Optimized: parallel ORC design district heating demand [kW] Zagreb 03. April 2019 Fabian Dawo 22

Thank you for your attention. TUM-ORC test rig Fabian Dawo fabian.dawo@tum.de Technical University of Munich Department of Mechanical Engineering Institute for Energy Systems Bibliography: [1] Bayrisches Landesamt für Umwelt, www.lfu.bayern.de [2] GeotIS: Geothermische Standorte, www.geotis.de [3] Thorsten Agemar, Josef Weber, and Rüdiger Schulz. Deep geothermal energy production in Germany. Energies, 7(7):4397–4416, 2014. [4] Schifflechner C. Assessment of Hydrothermal Deep Geothermal Plants for combined Heat and Power Production with Respect to a Novel Monitoring Software. Master‘s thesis, 2019 Zagreb 03. April 2019 Fabian Dawo 23

1. Deep Geothermal Energy in Germany and the Geothermal Alliance Bavaria 2. Motivation for power generation from geothermal energy 3. CHP plant modeling 4. TUM-ORC and comparison with the state of the art parallel chp concept Zagreb 03. April 2019 Fabian Dawo 5 Outline

Related Documents:

Lehr- und Lernsystem Technische Mechanik t Technische Mechanik (Lehrbuch) von A. Böge t Aufgabensammlung Technische Mechanik von A. Böge und W. Schlemmer t Lösungen zur Aufgabensammlung Technische Mechanik von A. Böge und W. Schlemmer t Formeln und Tabel

11Department of Physics and Astronomy, College of Charleston, 58 Coming St., Charleston, SC 29424, USA 12Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, Canada 13Universit ats-Sternwarte Mu nchen, Ludwig-Maximilians-Universita t, Scheinerstr. 1, 81679 Mu nchen, Germany 14Eureka Scientific, 2452 Delmer, Suite 100, Oakland CA 96002, USA

A comparison of Gap statistic de nitions with and without logarithm function Mojgan Mohajer 1 ;2, Karl-Hans Englmeier 1, Volker J. Schmid 2 1 Institute for Biological and Medical Imaging, Helmholtz Ze ntrum Mu nchen 2 BioImaging group, Department of Statistics, Ludwig-Maximi lians-Universita t Mu nchen Abstract The Gap statistic is a standard method for determining the num ber

6.4 Activity-Based Design of Interactive Systems 6.5 Object-Oriented Design of Interactive Systems: Metaphors 6.6 Tools and Methods for Prototype Design 6.7 Describing and Specifying Interactive Systems 6.8 Design Patterns for HCI Ludwig-Maximilians-Universit t M nchen Prof. Hu§mann Mensch-Maschine-Interaktion Ð 6 - 6 Interaction paradigms

3 Scienti c and Organizing Committees 3.1 Scienti c Committee ( ) Liliane Basso Barichello (UFRGS, Porto Alegre, lbaric@mat.ufrgs.br)( ) Piermarco Cannarsa (Universit a di Roma Tor Vergata, Roma,cannarsa@axp.mat.uniroma2.it)( ) Ciro Ciliberto (Universit a di Roma Tor Vergata, Roma, cilibert@axp.mat.uniroma2.it)- co-chair ( ) Giorgio Fotia (Universit a di Cagliari, Giorgio.Fotia@crs4.it)

Clemens Berger, Universit e de Nice-Sophia Antipolis: cberger@math.unice.fr Richard Blute, Universit e d’ Ottawa: rblute@uottawa.ca Lawrence Breen, Universit e de Paris 13: breen@math.u

4 4 Animal Science Anywhere Michigan 4 outh Develoment Michigan State Universit Etension Coright 2014 Michigan State Universit Boar of Trustees Michigan State Universit is an armative actioneual oortunit emloyer. 4IDENTIFYING CUTS O

Facility location models for distribution system design Andreas Klose a,b,*, Andreas Drexl c a Universit at St. Gallen, 9000 St. Gallen, Switzerland b Institut f ur Operations Research, Universit atZ rich, 8015 Z rich, Switzerland c Christian-Albrechts-Universit at zu Kiel, Olshausenstr. 40, 24118 Kiel,