Introduction To Differential Geometry

2y ago
31 Views
2 Downloads
2.89 MB
160 Pages
Last View : 3m ago
Last Download : 3m ago
Upload by : Camryn Boren
Transcription

Introduction to Differential GeometryLecture Notes for MAT367

Contents1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1 Some history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2 The concept of manifolds: Informal discussion . . . . . . . . . . . . . . . . . .1.3 Manifolds in Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.4 Intrinsic descriptions of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1134562Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.1 Atlases and charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 Definition of manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3 Examples of Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.2 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.3 Real projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.4 Complex projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.5 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3.6 Complex Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.4 Oriented manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.5 Open subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.6 Compact subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7.1 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7.2 Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111117202121222424282829313333333Smooth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1 Smooth functions on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2 Smooth maps between manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.2.1 Diffeomorphisms of manifolds . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Examples of smooth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.1 Products, diagonal maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3.2 The diffeomorphism RP1 S1 . . . . . . . . . . . . . . . . . . . . . . . . .37374143454545-3

-2Contents3.3.3 The diffeomorphism CP1 S2 . . . . . . . . . . . . . . . . . . . . . . . . .3.3.4 Maps to and from projective space . . . . . . . . . . . . . . . . . . . . . .3.3.5 The quotient map S2n 1 CPn . . . . . . . . . . . . . . . . . . . . . . . .Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Smooth maps of maximal rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.1 The rank of a smooth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.2 Local diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.3 Level sets, submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.4 Example: The Steiner surface . . . . . . . . . . . . . . . . . . . . . . . . . .3.5.5 Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix: Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46474850555657586264694The tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1 Tangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2 Tangent map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2.1 Definition of the tangent map, basic properties . . . . . . . . . . . .4.2.2 Coordinate description of the tangent map . . . . . . . . . . . . . . .4.2.3 Tangent spaces of submanifolds . . . . . . . . . . . . . . . . . . . . . . . .4.2.4 Example: Steiner’s surface revisited . . . . . . . . . . . . . . . . . . . . .4.3 The tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71717676788084855Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.1 Vector fields as derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.2 Vector fields as sections of the tangent bundle . . . . . . . . . . . . . . . . . . . 895.3 Lie brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.4 Related vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.5 Flows of vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.6 Geometric interpretation of the Lie bracket . . . . . . . . . . . . . . . . . . . . . 1045.7 Frobenius theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.8 Appendix: Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.1 Review: Differential forms on Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.2 Dual spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.3 Cotangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.4 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186.5 Pull-backs of function and 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206.6 Integration of 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226.7 2-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.8 k-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246.8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246.8.2 Wedge product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256.8.3 Exterior differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.9 Lie derivatives and contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286.9.1 Pull-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303.43.53.6

Contents6.106.116.126.13-1Integration of differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Integration over oriented submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 133Stokes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Volume forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139ATopology of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141A.1 Topological notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141A.2 Manifolds are second countable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142A.3 Manifolds are paracompact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142A.4 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143BVector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147B.1 Tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147B.1.1 Vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148B.1.2 Tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150B.1.3 Some constructions with vector bundles . . . . . . . . . . . . . . . . . 151B.2 Dual bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Chapter 1Introduction1.1 Some historyIn the words of S.S. Chern, ”the fundamental objects of study in differential geometry are manifolds.” 1 Roughly, an n-dimensional manifold is a mathematical objectthat “locally” looks like Rn . The theory of manifolds has a long and complicatedhistory. For centuries, manifolds have been studied as subsets of Euclidean space,given for example as level sets of equations. The term ‘manifold’ goes back to the1851 thesis of Bernhard Riemann, “Grundlagen für eine allgemeine Theorie derFunctionen einer veränderlichen complexen Grösse” (“foundations for a generaltheory of functions of a complex variable”) and his 1854 habilitation address “Überdie Hypothesen, welche der Geometrie zugrunde liegen” (“on the hypotheses underlying geometry”).2However, in neither reference Riemann makes an attempt to give a precise definition of the concept. This was done subsequently by many authors, including Rie-12Page 332 of Chern, Chen, Lam: Lectures on Differential Geometry, World Scientifichttp://en.wikipedia.org/wiki/Bernhard Riemann1

21 Introductionmann himself. 3 Henri Poincaré in his 1895 work analysis situs, introduces the ideaof a manifold atlas. 4The first rigorous axiomatic definition of manifolds was given by Veblen and Whitehead only in 1931.We will see below that the concept of a manifold is really not all that complicated; and in hindsight it may come as a bit of a surprise that it took so long toevolve. Quite possibly, one reason is that for quite a while, the concept as suchwas mainly regarded as just a change of perspective (away from level sets in Euclidean spaces, towards the ‘intrinsic’ notion of manifolds). Albert Einstein’s theoryof General Relativity from 1916 gave a major boost to this new point of view; In histheory, space-time was regarded as a 4-dimensional ‘curved’ manifold with no distinguished coordinates (not even a distinguished separation into ‘space’ and ‘time’);a local observer may want to introduce local xyzt coordinates to perform measurements, but all physically meaningful quantities must admit formulations that arecoordinate-free. At the same time, it would seem unnatural to try to embed the 4dimensional curved space-time continuum into some higher-dimensional flat space,in the absence of any physical significance for the additional dimensions. Someyears later, gauge theory once again emphasized coordinate-free formulations, andprovided physics motivations for more elaborate constructions such as fiber bundlesand connections.Since the late 1940s and early 1950s, differential geometry and the theory ofmanifolds has developed with breathtaking speed. It has become part of the basic education of any mathematician or theoretical physicist, and with applicationsin other areas of science such as engineering or economics. There are many subbranches, for example complex geometry, Riemannian geometry, or symplectic geometry, which further subdivide into sub-sub-branches.3See e.g. the article by Scholz http://www.maths.ed.ac.uk/ aar/papers/scholz.pdf for the long listof names involved.4http://en.wikipedia.org/wiki/Henri Poincare

1.2 The concept of manifolds: Informal discussion31.2 The concept of manifolds: Informal discussionTo repeat, an n-dimensional manifold is something that “locally” looks like Rn . Theprototype of a manifold is the surface of planet earth:It is (roughly) a 2-dimensional sphere, but we use local charts to depict it as subsetsof 2-dimensional Euclidean spaces. 5To describe the entire planet, one uses an atlas with a collection of such charts, suchthat every point on the planet is depicted in at least one such chart.This idea will be used to give an ‘intrinsic’ definition of manifolds, as essentiallya collection of charts glued together in a consistent way. One can then try to develop analysis on such manifolds – for example, develop a theory of integration anddifferentiation, consider ordinary and partial differential equations on manifolds, byworking in charts; the task is then to understand the ‘change of coordinates’ as oneleaves the domain of one chart and enters the domain of another.5Note that such a chart will always give a somewhat ‘distorted’ picture of the planet; the distanceson the sphere are never quite correct, and either the areas or the angles (or both) are wrong. Forexample, in the standard maps of the world, Canada always appears somewhat bigger than it reallyis. (Even more so Greenland, of course.)

41 Introduction1.3 Manifolds in Euclidean spaceIn multivariable calculus, you will have encountered manifolds as solution sets ofequations. For example, the solution set of an equation of the form f (x, y, z) ain R3 defines a ‘smooth’ hypersurface S R3 provided the gradient of f is nonvanishing at all points of S. We call such a value of f a regular value, and henceS f 1 (a) a regular level set. Similarly, the joint solution set C of two equationsf (x, y, z) a, g(x, y, z) bdefines a smooth curve in R3 , provided (a, b) is a regular value of ( f , g) in the sensethat the gradients of f and g are linearly independent at all points of C. A familiarexample of a manifold is the 2-dimensional sphere S2 , conveniently described as alevel surface inside R3 :S2 {(x, y, z) R3 x2 y2 z2 1}.There are many ways of introducing local coordinates on the 2-sphere: For example, one can use spherical polar coordinates, cylindrical coordinates, stereographicprojection, or orthogonal projections onto the coordinate planes. We will discusssome of these coordinates below. More generally, one has the n-dimensional sphereSn inside Rn 1 ,Sn {(x0 , . . . , xn ) Rn 1 (x0 )2 . . . (xn )2 1}.The 0-sphere S0 consists of two points, the 1-sphere S1 is the unit circle. Anotherexample is the 2-torus, T 2 . It is often depicted as a surface of revolution: Given realnumbers r, R with 0 r R, take a circle of radius r in the x z plane, with centerat (R, 0), and rotate about the z-axis.The resulting surface6 is given by an equation,p 2T 2 {(x, y, z) x2 y2 R z2 r2 }.(1.1)Not all surfaces can be realized as ‘embedded’ in R3 ; for non-orientable surfacesone needs to allow for self-intersections. This type of realization is referred to as an6http://calculus.seas.upenn.edu/?n Main.CentroidsAndCentersOfMass.

1.4 Intrinsic descriptions of manifolds5immersion: We don’t allow edges or corners, but we do allow that different parts ofthe surface pass through each other. An example is the Klein bottle7The Klein bottle is an example of a non-orientable surface: It has only one side. (Infact, the Klein bottle contains a Möbius band – see exercises.) It is not possible torepresent it as a regular level set f 1 (0) of a function f : For any such surface onehas one side where f is positive, and another side where f is negative.1.4 Intrinsic descriptions of manifoldsIn this course, we will mostly avoid concrete embeddings of manifolds into any RN .Here, the term ‘embedding’ is used in an intuitive sense, for example as the realization as the level set of some equations. (Later, we will give a precise definition.)There are a number of reasons for why we prefer developing an ‘intrinsic’ theory ofmanifolds.1. Embeddings of simple manifolds in Euclidean space can look quite complicated.The following one-dimensional manifold8is intrinsically, ‘as a manifold’, just a closed curve, that is, a circle. The problemof distinguishing embeddings of a circle into R3 is one of the goals of knot theory,a deep and difficult area of mathematics.2. Such complications disappear if one goes to higher dimensions. For example, theabove knot (and indeed any knot in R3 ) can be disentangled inside R4 (with R3viewed as a subspace). Thus, in R4 they become unknots.3. The intrinsic description is sometimes much simpler to deal with than the extrinsic one. For instance, the equation describing the torus T 2 R3 is not especially7http://www.map.mpim- bonn.mpg.de/2- manifolds8http://math201s09.wdfiles.com/local- - files/medina- knot/alternating.jpg

61 Introductionsimple or beautiful. But once we introduce the following parametrization of thetorusx (R r cos ϕ) cos θ , y (R r cos ϕ) sin θ , z r sin ϕ,where θ , ϕ are determined up to multiples of 2π, we recognize that T 2 is simplya product:T 2 S1 S1 .(1.2)That is, T 2 consists of ordered pairs of points on the circle, with the two factorscorresponding to θ , ϕ. In contrast to (1.1), there is no distinction between ‘small’circle (of radius r) and ‘large circle’ (of radius R). The new description suggestsan embedding of T 2 into R4 which is ‘nicer’ then the one in R3 . (But does ithelp?)4. Often, there is no natural choice of an embedding of a given manifold inside RN ,at least not in terms of concrete equations. For instance, while the triple torus 9is easily pictured in 3-space R3 , it is hard to describe it concretely as the level setof an equation.5. While many examples of manifolds arise naturally as level sets of equations insome Euclidean space, there are also many examples for which the initial construction is different. For example, the set M whose elements are all affine linesin R2 (that is, straight lines that need not go through the origin) is naturally a2-dimensional manifold. But some thought is required to realize it as a surface inR3 .1.5 SurfacesLet us briefly give a very informal discussion of surfaces. A surface is the samething as a 2-dimensional manifold. We have already encountered some examples:The sphere, the torus, the double torus, triple torus, and so on:9http://commons.wikimedia.org/wiki/File:Triple torus illustration.png

1.5 Surfaces7All of these are ‘orientable’ surfaces, which essentially means that they have twosides which you might paint in two different colors. It turns out that these are allorientable surfaces, if we consider the surfaces ‘intrinsically’ and only consider surfaces that are compact in the sense that they don’t go off to infinity and do nothave a boundary (thus excluding a cylinder, for example). For instance, each of thefollowing drawings depicts a double torus:We also have one example of a non-orientable surface: The Klein bottle. More examples are obtained by attaching handles (just like we can think of the torus, doubletorus and so on as a sphere with handles attached).Are these all the non-orientable surfaces? In fact, the answer is no. We have missedwhat is in some sense the simplest non-orientable surface. Ironically, it is the surfacewhich is hardest to visualize in 3-space. This surface is called the projective planeor projective space, and is denoted RP2 . One can define RP2 as the set of all lines(i.e., 1-dimensional subspaces) in R3 . It should be clear that this is a 2-dimensionalmanifold, since it takes 2 parameters to specify such a line. We can label such linesby their points of intersection with S2 , hence we can also think of RP2 as the setof antipodal (i.e., opposite) points on S2 . In other words, it is obtained from S2by identifying antipodal points. To get a better idea of how RP2 looks like, let ussubdivide the sphere S2 into tw

Chapter 1 Introduction 1.1 Some history In the words of S.S. Chern, ”the fundamental objects of study in differential geome-try are manifolds.” 1 Roughly, an n-dimensional manifold is a mathematical object that “locally” looks like Rn.The theory of manifolds has a long and complicatedFile Size: 2MB

Related Documents:

DIFFERENTIAL – DIFFERENTIAL OIL DF–3 DF DIFFERENTIAL OIL ON-VEHICLE INSPECTION 1. CHECK DIFFERENTIAL OIL (a) Stop the vehicle on a level surface. (b) Using a 10 mm socket hexagon wrench, remove the rear differential filler plug and gasket. (c) Check that the oil level is between 0 to 5 mm (0 to 0.20 in.) from the bottom lip of the .

Differential and Riemannian Geometry 1.1 (Feragen) Crash course on Differential and Riemannian Geometry 3 (Lauze) Introduction to Information Geometry 3.1 (Amari) Information Geometry & Stochastic Optimization 1.1 (Hansen) Information Geometry & Stochastic Optimization in Discrete Domains 1.1 (M lago) 10 Cra

Introduction to Advanced Numerical Differential Equation Solving in Mathematica Overview The Mathematica function NDSolve is a general numerical differential equation solver. It can handle a wide range of ordinary differential equations (ODEs) as well as some partial differential equations (PDEs). In a system of ordinary differential equations there can be any number of

Introduction The goal of these notes is to provide an introduction to differential geometry, first by studying geometric properties of curves and surfaces in Euclidean 3-space. Guided by what we learn there, we develop the modern abstract theory of differential geometry. The approach ta

course. Instead, we will develop hyperbolic geometry in a way that emphasises the similar-ities and (more interestingly!) the many differences with Euclidean geometry (that is, the 'real-world' geometry that we are all familiar with). §1.2 Euclidean geometry Euclidean geometry is the study of geometry in the Euclidean plane R2, or more .

www.ck12.orgChapter 1. Basics of Geometry, Answer Key CHAPTER 1 Basics of Geometry, Answer Key Chapter Outline 1.1 GEOMETRY - SECOND EDITION, POINTS, LINES, AND PLANES, REVIEW AN- SWERS 1.2 GEOMETRY - SECOND EDITION, SEGMENTS AND DISTANCE, REVIEW ANSWERS 1.3 GEOMETRY - SECOND EDITION, ANGLES AND MEASUREMENT, REVIEW AN- SWERS 1.4 GEOMETRY - SECOND EDITION, MIDPOINTS AND BISECTORS, REVIEW AN-

DIFFERENTIAL EQUATIONS FIRST ORDER DIFFERENTIAL EQUATIONS 1 DEFINITION A differential equation is an equation involving a differential coefficient i.e. In this syllabus, we will only learn the first order To solve differential equation , we integrate and find the equation y which

750-454 2 AI 4-20 mA, Differential Inputs 750-454/000-001 2 AI (4-20mA) Differential Inputs, RC low pass 5 Hz 750-454/000-002 2 AI (4-20mA) Differential Inputs, special data format 750-454/000-003 2 AI (4-20mA) Differential Inputs, Diagnosis for extended measuring range 750-454/000-200 2 AI (4-20mA) Differential Inputs with Siemens (S5-FB