IMPLEMENTATION OF TAGUCHI APPROACH FOR

2y ago
28 Views
2 Downloads
285.55 KB
5 Pages
Last View : 17d ago
Last Download : 3m ago
Upload by : Jacoby Zeller
Transcription

IMPLEMENTATION OF TAGUCHI APPROACH FOR PTIMIZATIONOF ABRASIVE WATER JET MACHINING PROCESS PARAMETERSLEELADHAR NAGDEVE1, VEDANSH CHATURVEDI2 & JYOTI VIMAL31,2&3Department of Mechanical Engineering, Madhav Institute of Technology & Science, Gwalior, Gwalior, IndiaE-mail : leeladhar.nagdeve7@gmail.com, vedansh.87@gmail.com, jyoti vimal@yahoo.comAbstract - In this paper, Taguchi method is applied to find optimum process parameter for Abrasive water jet machining(AWJM). Abrasive water jet machining is a non–traditional process of removal of material by impact erosion of highpressure, high velocity of water and entrained high velocity of grit abrasives on a work piece. Experimental investigationwere conducted to assess the influence of abrasive water jet machining (AWJM) process parameters on MRR and surfaceRoughness (Ra) of aluminium. The approach was based on Taguchi’s method and analysis of variance (ANOVA) tooptimize the AWJM process parameter for effective machining and to predict the optimal choice for each AWJM parametersuch as pressure, standoff distance, Abrasive flow rate and Traverse rate. For each combination of orthogonal array we haveconducted three experiments and with the help of ANOVA it is found that these parameters have a significant influence onmachining characteristics such as metal removal rate (MRR) and surface roughness (SR). The analysis of the Taguchimethod reveals that, in general the standoff distance significantly affects the MRR while, Abrasive flow rate affects thesurface Roughness. Experiments are carried out using (L9) orthogonal array by varying pressure, standoff distance, Abrasiveflow rate and Traverse rate respectively. Experimental results are provided to verify this approach.Keywords - Abrasive Water Jet Machine (AWJM), Taguchi’s method, ANOVA, MRR, SRI.Abrasive water jet machining is a relatively newmachining technology in that it makes use of theimpact of abrasive material to erode the work piecematerial. It is relies on the water to accelerated theabrasive material and deliver the abrasive to the workpiece. In addition the water afterwards carries boththe spent abrasive and the erode material solid tool tocut the material usually by a shearing process [6].Previous investigation [7-10] indicated that eventhrough some efforts have been made to increase thematerial rate (MRR), the taper ness of the drilledholes was not being reduce. Now an attempt has beenmade to increase MRR and to decrease the taper nessby varying standoff distance (S-O-D) with differentchemical environment and chemical concentration.The AWJM is a non-contact, inertia less and fastercutting process that offers some advantage likenarrow kerf width, negligible heat affected zone,reduced waste material and flexibility to machiningprocess in different way[11].There are numerousassociated parameters and factors of AWJM processthat can influence the surface quality of the AWJmachined surfaced [11-13].MRR increase by increasing abrasive mass flowrate. Increasing speed is also increase MRR. Fullfactorial design help for analysis as no separatecombination needs for confirmation test [14]. In thepresent study, the effect and optimization ofmachining parameters in terms of material removalrate (MRR) and surface roughness (Ra) will beinvestigated using Taguchi method and ANOVA.INTRODUCTIONAbrasive water jet machining makes use of theprinciples of both abrasive jet machining and waterjet machining. In abrasive water jet machining asmall stream of fine grained abrasive particles ismixed in suitable proportion, which in forced on awork piece surface through a nozzle material removaloccurs due to erosion caused by the impact ofabrasive particles on the work surface.AWJM is being used in different industries for along time. AWJM is especially suitable for machiningof brittle material like glass, ceramics and stones aswell as for composite materials and ferrous and nonferrous material. The characteristics of surfaceproduced by this technique depend on many factorslike jet pressure, Stand-off distance of nozzle fromthe target. Abrasive flow rate, Traverse rate, worksmaterials. Non contact of the tool with work piece, noheat affected zone, low machining force on the worksurface and ability to machine wide range ofmaterials has increase the use of abrasive water jetmachining over other machining processes. Manyresearchers have been carried out on differentparameters of AWJM Fecaier et al [1] and Ohlssonand Magnusson [2] investigated the force parametersinvolved during AWJ machining. Andreas andkavaeevic [3] investigated the properties andstructures of high speed jets. Tikhomirow [4] workedon the possible feed rate depending on the standoffdistance of the nozzle. Momer et al [5] investigatedthe influence of abrasive grain size distribution onabrasive water jet machining process. It’s a nonconventional machining process.II. METHODOLOGYA. Analysis of Variance (ANOVA)International Journal of Instrumentation, Control and Automation (IJICA) ISSN: 2231-1890, Vol-1 Iss-3,4, 20129

Implementation of Taguchi Approach for Optimization of Abrasive Water Jet Machining Process ParametersAnalysis of variance (ANOVA) and F-testB. Material(standard analysis) are used to analysis theIn this investigation, the work piece materialexperimental data as given followsAluminium was used with the following mainproperties: Tensile Strength 90 MPa, Modulus ofNotation:Following Notation are used for calculation ofelasticity 69 GPa, and Density 2.71 g/cm3. TheANOVA methodabrasive used was garnet with mesh size of 80 andC.F. Correction factorhardness of 7.5 Mohs.T Total of all resultC. Equipmentn Total no. of experimentsThe equipment used for machining the samplesST Total sum of squares to total variation.was Abrasive Water Jet Machine of model 2626Xi Value of results of each experiments ( i 1 toOMAX Jet Machining Centre equipped with OMAX27 )High-Pressure Pump with the design pressure ofSY Sum of the squares of due to parameter Y (Y 345MPa (50,000 psi) and the nozzle diameter wasP, S, A, T)0.75mm. The OMAX variable speed, high-pressureNY1, NY2, NY3 Repeating number of each level (1, 2,pump is an electrically driven, variable speed,3) of parameter Ypositive displacement, crank shaft drive triplex pumpXY1, XY2, XY3 Values of result of each level (1, 2, 3)designed for use with the OMAX precision jetof parameter Ymachining system and other applications requiringFY Degree of freedom (D.O.F.) of parameter of Yhigh pressure water required by the OMAX jetfT Total degree of freedom (D.O.F.)machining system to operate. The pump control panelfe Degree of freedom (D.O.F.) of error termsprovides a keypad display screen, and pumpsVY Variance of parameter Ystart/stop controls. When the pump is attached to anSe Sum of square of error termsOMAX jet machining centre, controls shearedVe Variance of error termsbetween the Jet machining centre controller and theFY F-ratio of parameter of Ypump.SY’ Pure sum of squareD. Experimental Design:CY Percentage of contribution of parameter YThe experimental layout for the machiningCe Percentage of contribution of error termsparameters using the L9 orthogonal array was used inCF T2/nthis study. This array consists of four controlST i 1 to 27 Xi2 – CFparameters and three levels, as shown in table1. In theSY ( XY12/NY1 XY22/NY2 XY32/NY3) – CFtaguchi method, most all of the observed values arefY ( number of levels of parameter Y) – 1calculated based on ‘the higher the better’ and ‘thefT ( total number of results)-1smaller the better’. Thus in this study, the observedfe fT - fYvalues of MRR, and SR were set to maximum, andVY SY/fYminimum respectively. Next experimental trial wasSe ST - SYperformed with three simple replications at each setVe Se/fevalue. Next, the optimisation of the observed valuesFY VY/Vewas determined by comparing the standard analysisSY’ SY – (Ve*fz)and analysis of variance (ANOVA) which was basedCY SY’/ST * 100%on the Taguchi method.Ce ( 1- PY)*100%.Table 1 : Design Scheme of Experiments for Parameters and LevelsLevel123Control ParametersObserved ValuesMinimumIntermediateMaximumPressure,P (MPa)1552242931. Material Removal RateStand of distance,S (mm)2.53.54.5(mm3/min)Abrasive flow rate,A(g/s)4.56.58.52. Surface Roughness (Ra)Traverse rate,T(mm/s)1.52.53.5Table 2: Observed Values of MRR and SRNo.OfTrial12Control Parameter(Level)Abrasive TraversePressure S-O-Dflow .5Result /Observed Value3SR (µm)MRR (mm .855.165.495.33International Journal of Instrumentation, Control and Automation (IJICA) ISSN: 2231-1890, Vol-1 Iss-3,4, 201210

Implementation of Taguchi Approach for Optimization of Abrasive Water Jet Machining Process 92934.56.51.535.3636.1237.23Table 3 : Analysis of Varience and F Test for ure 2.686028.714428.509714.2287Sum SquareVarianceF-ratio (FY)Pure Sum(SY)(VY)(SY’) 21.16360.581815.68611.089425.28752.643771.2779 5.2133215.30827.6541206.3655 15.234022.16101.080529.1318 2.0868180.66770.03709Table 5 : Summarization of Sifnificant Parameters on Response of AWJMPercent(CY)4.430621.202761.95718.4871DOF (fY)222218Sum SquareVarianceF-ratio (FY)(SY)(VY)18.36789.183951.3353 23.153611.576864.7110 22.991111.495664.2571 11.65375.826932.5707 3.22180.1789Table 4 : Analysis of Varience and F Test for SRDOF (fY)ParametersMRRSRPressure,P (MPa) Stand of distance,S (mm) Abrasive flow rate,A(g/s) Traverse rate,T(mm/s) Most Significant Sub significant Parameter Fig. 1 : Main influence of each parameter on MRRInternational Journal of Instrumentation, Control and Automation (IJICA) ISSN: 2231-1890, Vol-1 Iss-3,4, 201211

Implementation of Taguchi Approach for Optimization of Abrasive Water Jet Machining Process ParametersFig. 2 : Main influence of each parameter on SR.III. RESULTS AND DISCUSSIONIV. CONFIRMATION TESTThe confirmation experiments were conductedusing the optimum combination of the machiningparameters obtain from Taguchi analysis. Theseconfirmation experiments were used to predict andverify the improvement in the quality characteristicsfor machining of Aluminium. For MRR predictedprocess combination is P3S3A2T1 and for SRP3S1A1T2 and found MRR 34.12 mm3/min andSR 3.34µm.The following discussion focuses on thedifferent of process parameters to the observedvalues (MRR and SR) based on the Taguchimethodology.A. Material Removal RateMain effects of MRR of each factor for variouslevel conditions are shown in figure1. According tofigure 1 the MRR increases with four majorparameter P, S, T, A. MRR is maximum in the caseof pressure at level 3 (293), in the case of SOD atlevel 3 (4.5), in the case of Abrasive flow rate MRRwill be maximum at level 2 (6.5), and in the case ofTraverse rate at the level 1 (1.5).So the optimalparameter setting for the MRR found P3S3A2T1.B. Surface RoughnessFigure 2 evaluates the main effects of eachfactor for various level conditions. According to thefigure 2 the surface Roughness decreases with fourmajor parameter P, S, A, T. SR will be minimum inthe case of pressure at level 3(293), in the case ofSOD at level 1 (2.5), and in the case of Abrasiveflow rate at level 1(4.5) and in the case of Traverserate condition surface Roughness will be minimumat level 2 (2.5). So the optimal parameter setting forminimum surface roughness is P3S1A1T2.TABLE. 6 : Predicted Optimum Condition for 1.51TABLE.7: Predicted Optimum Condition for .52V. CONCLUSIONSThis paper presents analysis of variousparameters and on the basis of experimental results,analysis of variance (ANOVA), F-test; the followingconclusions can be drawn for effective machining ofaluminium by AWJM process as follows:1. Pressure is the most significant factor on MRRduring AWJM. Meanwhile standoff distance,Abrasive flow rate and Traverse rate are subsignificant in influencing. The recommendedparametric combination for optimum materialremoval rate is P3S3A2T1.2. In case of surface Roughness Abrasive flow rateis most significant control factor and hence theoptimum recommended parametric combinationfor optimum surface Roughness is P3S1A1T2.VI. ACKNOWLEDGMENTAuthors would like to thanks to the director ofinstitute who gave the permission for conducting theexperiments for this research work and the technicalstaff who helped during the experiments.REFERENCES[1]Fekaier,A.J.C. Guinot, A. Schmitt and G. Houssaye,1994.Optimization of the abrasive jet cutting surface quality bythe workpiede reaction forces analysis, 12th Intl. Conf.Jet Cutting Tehnol., pp:127-134.International Journal of Instrumentation, Control and Automation (IJICA) ISSN: 2231-1890, Vol-1 Iss-3,4, 201212

Implementation of Taguchi Approach for Optimization of Abrasive Water Jet Machining Process Parameters[2]Ohlsson, L. And C. Magnusson, 1994. Mechanisms ofstriation formation in abrasive water jet cutting, 12th Intl.Conf. Jet Cutting Technol., ofenvironment sensitive fracture processes, J. Mater Sci.9 (1974) 1871- 1995.[3]Andreas, W.M. and R. Kovacevic, 1998. Properties andstructure of High Speed water Jets. Principle of AbrasiveWater Jet Machining.[9]Hashish, M., 1991, “advances in composite Machiningwith Abrasive-Waterjets”. Process. Manuf. Comp. Mat.49 (27): 93-111[4]Tikhomirov, R.A., V.F. Babanin, E.N. Petukhov, I.D.Starikove and V.A. Kovalev,1992. High Pressure JetCutting, ASME Press, New York.[10]Y.Enomoto, Sliding fracture of soda-lime glass in liquidenvironment, J. Mater. Sci. 6 (1981) 3365-3370.[11][5]Momer, A.W., R. Kovacevich and R. Schuneman, 1996.The influence of abrasive grain size distribution onabrasive water jet machining process. Proceedings of the25th Nor American Manufacturing Research Conference,Society of Manufacturing Engineers, Deavborn.M. Hashish, A Model of Abrasive Water Jet Machining,J. Eng. Mater. Techol. Trans. ASME (1989) 154-162.[12]Ramulu, M. And Arola, D., 1994, “The Influence ofAbrasive Waterjet Cutting Conditions on the SurfaceQuality of Graphite/Epoxy Laminates”, Int. J. Mach.Tools Manuf. 34 (3): 295-313.[6]Module 9, lesson 37, non-conventional machining,version 2 ME, IIT Kharagpur.[13][7]M. Hashish, Pressure effect i AWJ machining, J. Eng.Mater. Technol. 3 (1989) 221-228.Konig, W. And Rummenholler, S., 1993 “Technologicaland Industrial Safety Aspects in Milling FRPs”, ASMEMach. Adv. Comp. 45 (66): 1-14.[14]Vaubhav.j.limbachiya1*,Prof Dhaval.M.Patel2 Vol. 3 No.7 July 2011, “An Investigation of Different Material onAbrasive Water jet Machine”. ISSN: 0975-5462 International Journal of Instrumentation, Control and Automation (IJICA) ISSN: 2231-1890, Vol-1 Iss-3,4, 201213

the influence of abrasive grain size distribution on abrasive water jet machining process. It’s a non-conventional machining process. Abrasive water jet machining is a relatively new machining technology in that it makes use of the impact of abr

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

The Taguchi method is an approach associated with robust quality management that combines engineering and statistical methods in order to reduce commodity loss and improve its quality (Ross, 1996; Taguchi, 1993). Taguchi stated that maintaining the high quality of

Genichi Taguchi (1924 – 2012) quality “guru”, responsible for many innovations developed many tools and methods Tolerance design was Taguchi’s last resort method for improving quality Taguchi’s concept of quality Taguchi equated “qual

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

the Taguchi Method (Society of Manufacturing Engineers, 1990) introduced basic concepts through application examples and case studies. This led to my second book, Design of Experiments Using the Taguchi Approach (John Wiley & Sons, 2001), which covered a minimal amount of t