LAPLACE TRANSFORM - WordPress

2y ago
65 Views
6 Downloads
1.07 MB
62 Pages
Last View : Today
Last Download : 3m ago
Upload by : Eli Jorgenson
Transcription

LAPLACETRANSFORMEE602 : CIRCUIT ANALYSISSARIATI DALIBJABATAN KEJURUTERAAN ELETRIK,POLITEKNIK MERLIMAU27.11.2014

Laplace TransformChapter 2: Laplace Transform2.1 Understand the use of Laplace Transform and Inverse Laplace Transform insolving network analysis2.1.1 Define the Laplace Transform of an expression by using the integraldefinition. 𝐹(𝑠) 0 𝑒 𝑠𝑑𝑓(𝑑) 𝑑𝑑2.1.2 Determine the Laplace Transform of a function by using table.Table Laplace Transform2.1.3 Use the linearity property.a) 𝐿{𝑓 𝑠} 𝐿{𝑓 } 𝐿{𝑠}b) 𝐿 {π‘˜π‘“} π‘˜ 𝐿 {𝑓} if k is constant2.1.42.1.5Use the first shift theorem.𝑙{𝑒 π‘Žπ‘‘ 𝑓(𝑑)𝑠} 𝐹(𝑠 π‘Ž)Use the Laplace Transform of derivatives.𝑛𝐿 {𝑑 𝑛 𝑓(𝑑)}𝑠 ( 1) 𝐹 𝑛 (𝑠)2.1.6Use the Laplace Transform of integrals.𝐿 {𝑑 𝑓(𝑑)𝑠} 𝐹 β€² (s)2.1.7Determine the Inverse Laplace Transforms of some standard functions.Table Inverse Laplace Transform 1𝐿Linearity Property :{𝐹(𝑠)} 𝑓(𝑑)𝐿{𝑓 𝑠} 𝐿{𝑓 } 𝐿{𝑠}𝐿 {π‘˜π‘“} π‘˜ 𝐿 {𝑓}First Shift Theorem:𝐿 1 {𝐹 (𝑠 π‘Ž)} 𝑒 π‘Žπ‘‘ 𝑓(𝑑)}2.1.82.1.92.1.102.1.112.1.12Compute the Inverse Laplace Transforms using partial fractions.Compute the Inverse Laplace Transforms by completing the square.Compute the Laplace Transform of first and second derivatives.Apply the Laplace Transform to solve differential equations.Apply the Laplace Transform in RLC circuit analysis:a.RL Series circuitb.RC Series circuitc.LC Series circuitd.RLC Series circuite.RLC Parallel circuitSARIATI DALIBPage 1

Laplace TransformChapter 2 : Laplace TransformIntroduction:The main idea behind the Laplace Transformation is that we can solve anequation (or system of equations) containing differential and integral termsby transforming the equation in "t-space" to one in "s-space". This makes theproblem much easier to solve. The kinds of problems where the LaplaceTransform is invaluable occur in electronics.If needed we can find the inverse Laplace transform, which gives us thesolution back in "t-space".Definition of Laplace TransformLetbe a given function which is defined forfunction. If there exists aso that,Thenis called the Laplace Transform of. Notice the integratorwhere, and will be denoted byis a parameter which may bereal or complex.Thus,The symbolwhich transformintois called the Laplace transformoperator.SARIATI DALIBPage 2

Laplace TransformLaplace Transform by Direct IntegrationTo get the Laplace transform of the given functionand integrate with respect to, multiplybyfrom zero to infinity. In symbol,Example 1 : Find the Laplace transform ofwhenby using DirectIntegration MethodSolution 01 β„’{𝑓(𝑑)} 0 𝑒 𝑠𝑑 𝑓(𝑑)𝑑𝑑 β„’{1} 0 𝑒 𝑠𝑑 (1)𝑑𝑑 β„’{1} 𝑒 𝑠𝑑 𝑑𝑑01 β„’{1} [ 𝑒 𝑠𝑑 ]𝑠01 1 [ 𝑠𝑑 ]𝑠 𝑒 1 11[ 0]𝑠 𝑒11 (0 1) 𝑠𝑠Thus,SARIATI DALIBPage 3

Laplace TransformExample 2: Find the Laplace transform ofby using Direct IntegrationMethodSolution 02Thus,SARIATI DALIBPage 4

Laplace TransformExample 3: Find the Laplace transform of. by using DirectIntegration MethodSolution 03For.Using integration by parts:. LetUsing integration by parts again. LetSARIATI DALIBPage 5

Laplace TransformThus,Therefore,Exercise 1Find the Laplace transform of the following whenby using DirectIntegration Method1. 𝑓(𝑑) 42. 𝑓(𝑑) 𝑒 2𝑑3. 𝑓(𝑑) 𝑒 4𝑑SARIATI DALIBPage 6

Laplace TransformTable of Laplace Transforms of Elementary FunctionsBelow are some functionse-atSARIATI DALIBand their Laplace transforms.1𝑠 π‘ŽPage 7

Laplace TransformExercise 2Use table to find the laplace transform of the following;a) 𝑓(𝑑) 4d) 𝑓(𝑑) π‘π‘œπ‘  6𝑑b) 𝑓(𝑑) 𝑑 3e) 𝑓(𝑑) 𝑠𝑖𝑛 3𝑑c) 𝑓(𝑑) 𝑒 2𝑑f)𝑓(𝑑) 𝑒 3𝑑SARIATI DALIBPage 8

Laplace TransformProperties of Laplace Transform1. Constant MultipleIfis a constant andis a function of, thenExample:1. 𝑓(𝑑) 4 π‘π‘œπ‘ π‘‘πΉ(𝑠) 4 [ 𝑠2𝑠2𝑠] 124𝑠 12. 𝑓(𝑑) 5𝑑𝐹(𝑠) 5 β„’ t1 5 [ 2]𝑠 5𝑠2Linearity Property2.Linearity PropertyIfandare constants whileandare functions ofwhoseLaplace transform exists, thenProof of Linearity PropertySARIATI DALIBPage 9

Laplace TransformThis property can be easily extended to more than two functions as shownfrom the above proof. With the linearity property, Laplace transform can alsobe called the linear operator.Example 01: LinearityFind the Laplace transform of.Solution 01π‘‡β„Žπ‘’π‘ πΉ(𝑠) 5 2𝑠𝑠2Exercise : LinearityDetermine the Laplace Transform of following functions by using table andtheorems1. 𝑓(𝑑) 6 𝑒 5𝑑 𝑒3𝑑 5𝑑3 92. 𝑓(𝑑) 4π‘π‘œπ‘ 4𝑑 9𝑠𝑖𝑛4𝑑 2π‘π‘œπ‘ 10𝑑33. 𝑓(𝑑) 3 sin 2 𝑑4. 𝑓(𝑑) 5 𝑒 2𝑑 4 sin 3𝑑5. 𝑓(𝑑) 3 3𝑒 2𝑑6. 𝑓(𝑑) 6𝑑 5𝑑 37. 𝑓(𝑑) 2𝑠𝑖𝑛4𝑑 – 7π‘π‘œπ‘  3𝑑8. 𝑓(𝑑) 3 2𝑑 6𝑑 2SARIATI DALIBPage 10

Laplace Transform3.First Shifting PropertyIf, whenIn words, the substitutionthen,forin the transform corresponds tomultiplication of the original function bythe.Proof of First Shifting PropertyExample 01:First Shifting PropertyFind the Laplace transform of.Solution 01 (1)ℒ𝑒 2𝑑 1 . (2)𝑠 2Replace s in (1) with (s-2)SARIATI DALIBThus,Page 11

Laplace TransformExample 02: First Shifting PropertyFind the Laplace transform of 𝑓(𝑑) 𝑒 5𝑑 𝑠𝑖𝑛3𝑑Solution 02Using table : .(1)ℒ𝑒 5𝑑 1 . (2)𝑠 5Replace S in (1) with (S 5)Thus,β„’(𝑒 5𝑑 sin 3𝑑) 33 (𝑠 2 10𝑠 25) 9 𝑠 2 10𝑠 34Example 03 : First Shifting PropertyFind the Laplace transform of.Solution 03Using table :β„’π‘π‘œπ‘ π‘‘ 𝑑 𝑠𝑠 2 12ℒ𝑒 3𝑑 1𝑠 3 .(1) . (2)Replace S in (1) with (S 3)Thus,SARIATI DALIBPage 12

Laplace TransformExercise: First Shifting PropertyDetermine the Laplace Transform of following functions by using table andtheorems1. 𝑓(𝑑) 𝑒 2𝑑 π‘π‘œπ‘ 2𝑑2. 𝑓(𝑑) 𝑑 𝑒 2𝑑3. 𝑓(𝑑) 𝑒 3𝑑 (2𝑑 3)4. 𝑓(𝑑) 𝑒 𝑑 𝑑5. 𝑓(𝑑) 𝑒 𝑑 sin 2𝑑.SARIATI DALIBPage 13

Laplace TransformLaplace Transform of DerivativesFor first-order derivative:For second-order derivative:For third-order derivative:For nth order derivative:Proof of Laplace Transform of DerivativesUsing integration by parts,Thus,Apply the limits from 0 to :SARIATI DALIBPage 14

Laplace TransformExample 01: Laplace Transform of DerivativesFind the Laplace transform ofusing the transform of derivatives.Solution 01.Example 02: Laplace Transform of DerivativesFind the Laplace transform ofusing the transform of derivatives.Solution 02.SARIATI DALIBPage 15

Laplace TransformExample 03 : Laplace Transform of DerivativesFind the Laplace transform ofusing the transform of derivatives.Solution 03.SARIATI DALIBPage 16

Laplace TransformLaplace Transform of IntergralsTheoremIf,thenProofLetthen,andTaking the Laplace transform of both sides,From Laplace transform of derivative,and from theTheorem above,Thus,SARIATI DALIBPage 17

Laplace TransformExample 01: Laplace Transform of IntergralsFind the Laplace transform of.Solution 01Hence,SARIATI DALIBPage 18

Laplace TransformSummary of Laplace Transform PropertiesProperties of Laplace Transform1. Linearity Property: Constant MultipleIfis a constant andis a function of, then2. Linearity Property- addition/subtraction of function.Ifandare constants whileandare functions ofLaplace transform exists, thenwhoseExample:3. First Shifting PropertyIf, then,4. Transforms of DerivativesThe Laplace transform of the derivativeexists when, andIn general, the Laplace transform of nth derivative is5. Transforms of IntegralsTheoremIfSARIATI DALIB, thenPage 19

Laplace TransformThe InverseLaplace TransformSARIATI DALIBPage 20

Laplace TransformThe Inverse Laplace TransformDefinitionFrom, the valueis called the inverse Laplace transform of.In symbol,whereis called the inverse Laplace transform operator.Table of Inverse Laplace Transforms of Elementary Functions𝐹(𝑠) β„’{𝑓(𝑑)}SARIATI DALIB𝑓(𝑑) β„’ 1{F(s)}Page 21

Laplace TransformExercise : Inverse Laplace TransformFind the inverse Laplace transform of the following;a) 𝐹(𝑠) 1𝑠b) 𝐹(𝑠) 2𝑠c) 𝐹(𝑠) 23𝑠d) 𝐹(𝑠) 1𝑠2e) 𝐹(𝑠) 4𝑠2f)𝐹(𝑠) 1𝑠g) 𝐹(𝑠) 5𝑠3h) 𝐹(𝑠) 12𝑠3i)𝐹(𝑠) 3𝑠 4j)𝐹(𝑠) 22𝑠 6k)𝐹(𝑠) 89 𝑠2l)𝐹(𝑠) 3𝑠 6m) 𝐹(𝑠) 𝑠𝑠2 16n) 𝐹(𝑠) 3𝑠𝑠2 9SARIATI DALIBPage 22

Laplace TransformTheorems on Inverse Laplace TransformationTheorem 1: Linearity TheoremIf a and b are constants,Example 01: : Linearity Theorem𝐹(𝑠) Find the inverse transform of8𝑠3 3𝑠2 1𝑠Solution 01𝑓(𝑑) β„’ 1 { 8β„’ 183 1 2 }3𝑠𝑠𝑠111 1 1 3β„’ ℒ𝑠3𝑠2𝑠𝑑 3 1𝑑 2 1 8[] 3[] [𝑑](3 1)!(2 1)! 8𝑑2𝑑 3 121 4 𝑑 2 3𝑑 1Example 02: : Linearity TheoremFind the inverse transform of 𝐹 (𝑠) 6𝑠2 9Solution 02𝑓(𝑑) β„’ 1 {β„’ 1 {𝑠2𝑠26} 931} 6 β„’ 1 { 2} 9𝑠 32 6 13β„’ { 2}3𝑠 32 2𝑠𝑖𝑛3𝑑SARIATI DALIBPage 23

Laplace TransformExample 03: : Linearity TheoremFind the inverse transform of.Solution 03𝑓(𝑑) β„’ 1 {54𝑠 2}𝑠 2 𝑠 9 5β„’ 1 [1𝑠] 4β„’ 1 [ 2]𝑠 2𝑠 32 5𝑒 2𝑑 4π‘π‘œπ‘ 3𝑑Exercise : : Linearity TheoremUsing table ,find the inverse Laplace transform of :a) 𝐹(𝑠) 2𝑠3 SARIATI DALIB𝑠31𝑠𝑠 3b) 𝐹(𝑠) c) 𝐹(𝑠) 5𝑠 3𝑠2 9Page 24

Laplace TransformTheorem 2:First Shift TheoremExample 1: First Shift TheoremFind the inverse transform of4𝑠 4(𝑠 1)2 9Solution 1:𝑓(𝑑) β„’ 1 {4𝑠 4}(𝑠 1)2 9 β„’ 1 {4(𝑠 1)}(𝑠 1)2 9𝑠 4𝑒 𝑑 β„’ 1 { 2}𝑠 32 4𝑒 𝑑 π‘π‘œπ‘ 3𝑑Example 2: First Shift TheoremFind the inverse transform of2(𝑠 3)4Solution 2:𝑓(𝑑) β„’ 1 {21 3𝑑 1} 2𝑒ℒ{}( 𝑠 3) 4𝑠43!1 2𝑒 3𝑑 β„’ 1 { 3 1 π‘₯ }3!𝑠13! 2𝑒 3𝑑 π‘₯ β„’ 1 { 3 1 }6𝑠𝑒 3𝑑 3 𝑑3SARIATI DALIBPage 25

Laplace TransformExample 3: First Shift TheoremFind the inverse transform of𝑠 4(𝑠 2)2 4Solution 3:𝑓(𝑑) β„’ 1 {𝑠 4𝑠 2 2 1} β„’{}(𝑠 2)2 4(𝑠 2)2 22𝑠 22 β„’ 1 {} }22(𝑠 2) 2(𝑠 2)2 22𝑠2 𝑒 2𝑑 β„’ 1 2 𝑒 2𝑑 β„’ 1 22𝑠 2𝑠 22 𝑒 2𝑑 π‘π‘œπ‘ 2𝑑 𝑒 2𝑑 𝑠𝑖𝑛2𝑑Exercise: First Shift TheoremFind the inverse laplace transform of the following by using table andtheorems :π‘Ž) 𝐹(𝑠) 3𝑠 1𝑏) 𝐹(𝑠) 3(𝑠 1)6𝑐) 𝐹(𝑠) 3(𝑠 1)6 9𝑑) 𝐹(𝑠) 𝑠 2(𝑠 2)6 16SARIATI DALIBPage 26

Laplace TransformInverse Laplace Transform by Partial Fraction ExpansionThis technique uses Partial Fraction Expansion to split up a complicatedfraction into forms that are in the Laplace Transform table. As you readthrough this section, you may find it helpful to refer to the section on partialfraction expansion techniques.1.Distinct Real RootsConsider first an example with distinct real roots.Example: Distinct Real RootsQ: Find the inverse Laplace Transform of:Solution:We can find the two unknown coefficients using the "cover-up" method orresidue method:𝐴 𝑠 11 (𝑠 2) 𝑠 0 2𝐡 𝑠 1 1 1 𝑠 𝑠 2 2 2So𝐹(𝑠) 1/21/2 𝑆𝑠 2And the inverse laplace𝑓(𝑑) SARIATI DALIB1 1 2𝑑 𝑒2 2Page 27

Laplace Transform2.Repeated Real RootsConsider next an example with repeated real roots (in this case at the origin,s 0).Example: Repeated Real RootsQ: Find the inverse Laplace Transform of the function F(s).Solution 1:We can find two of the unknown coefficients ( A and C)using the "coverup" method.𝐴 𝑠2 15 2𝑠4𝑠 2𝐢 𝑠2 11 (𝑠 2) 𝑠 0 2We find B using cross-multiplication:𝑠 2 1 𝑠 2 𝐴 𝑠(𝑠 2)𝐡 (𝑠 2)𝐢𝑠 2 1 𝑠 2 𝐴 𝐡𝑠 2 2𝐡𝑠 𝐢𝑠 2𝐢Equating like powers of "s" gives us:power of "s"left side right sidecoefficient coefficients21A Bs102B Cs012C𝐴 𝐡 151 445/41/4 1/2𝐹(𝑠) 2𝑠 2𝑠𝑠𝐡 1 𝐴 1 And511inverse laplace : 𝑓(𝑑) 4 𝑒 2𝑑 4 2 𝑑SARIATI DALIBPage 28

Laplace TransformSolution 2:We can find two of the unknown coefficients ( A and C)using cross –multiplication.𝐴𝐡 𝐢𝑠 2 1 𝑠 2 ( 𝑠 2) ( 2)𝑠 2 𝑠 𝑠𝑠 2 1 𝑠 2 𝐴 𝑠(𝑠 2)𝐡 (𝑠 2)𝐢𝐿𝑒𝑑 𝑠 2, 4 1 4π΄π‘‡β„Žπ‘’π‘  ,𝐿𝑒𝑑 𝑠 0𝐴 54, 0 1 2πΆπ‘‡β„Žπ‘’π‘  ,𝑐 𝐿𝑒𝑑 𝑠 𝑏𝑒 π‘Žπ‘›π‘¦ π‘›π‘’π‘šπ‘π‘’π‘Ÿ, 𝑠 15412, 1 1 𝐴 3𝐡 3𝐢122 3𝑏 π‘₯3323𝐡 2 5433𝐡 4π‘‡β„Žπ‘’π‘  ,𝐡 14511 𝑠2 144𝐹(𝑠) 2 22𝑠 (𝑠 2) 𝑠 2𝑠𝑠51 1𝑓(𝑑) 𝑒 2𝑑 𝑑44 2Many texts use a method based upon differentiation of the fraction whenthere are repeated roots.SARIATI DALIBPage 29

Laplace Transform3.Complex RootsAnother case that often comes up is that of complex conjugateroots. Consider the fraction:The second term in the denominator cannot be factored into real terms. Thisleaves us with two possibilities - either accept the complex roots, or find away to include the second order term.Simplify the function F(s) so that it can be looked up in the LaplaceTransform table.Solution:Another way to expand the fraction without resorting to complex numbersis to perform the expansion as follows.𝐴 𝑠 3 𝑠 2 4𝑠 5 𝑠 5 5 3( 5)2 4( 5) 5 2 25 20 521 105 We can find the quantities B and C from cross-multiplication.𝑠 3 𝐴(𝑠2 4𝑠 5) (𝐡𝑠 𝐢)(𝑠 5)SARIATI DALIBPage 30

Laplace Transform𝑠 3 (𝐴𝑠2 4𝐴𝑠 5𝐴) (𝐡𝑠2 5𝐡𝑠 𝐢𝑠 5𝐢)𝑠 3 𝑠2 (𝐴 𝐡) 𝑠(4𝐴 5𝐡 𝐢) (5𝐴 5𝐢)If we equate like powers of "s" we getorder ofleft side right sidecoefficient coefficient coefficient2nd (s2)0A B1st (s1)14A 5B C0th (s0)35A 5CπΈπ‘žπ‘›1. 𝐴 𝐡 0𝐴 𝐡 π‘‡β„Žπ‘’π‘  𝐡 𝐴 , 𝐡 1/5Eqn 3.5A 5C 35𝑐 3 5𝐴13 5 ( ) 3 1 45 𝐢 555ThusFinally, we get114𝑠 555𝐹(𝑠) 2𝑆 5𝑠 4𝑠 5141( )𝑠 555𝐹(𝑠) 𝑠 5 𝑠 2 4𝑠 5 The inverse Laplace Transform is given below :1𝑠 45 (1)π‘₯𝐹(𝑠) 2𝑠 55 𝑠 4𝑠 5 SARIATI DALIBPage 31

Laplace TransformThen use method : Completing the square15 (1)π‘₯ 𝑠 2 2𝐹(𝑠) 𝑠 55 (𝑠 2)2 1 1𝑠 225 (1) {[𝐹(𝑠) ] []}2𝑠 55 (𝑠 2) 1(𝑠 2)2 1 The inverse laplace transform :11𝑓(𝑑) 𝑒 5𝑑 𝑒 2𝑑 [π‘π‘œπ‘ π‘‘ 2𝑠𝑖𝑛𝑑 ]55𝑓(𝑑) 0.2𝑒 5𝑑 0.2𝑒 2𝑑 [π‘π‘œπ‘ π‘‘ 2𝑠𝑖𝑛𝑑 ]SARIATI DALIBPage 32

Laplace TransformHow To Complete The SquareGiven a term of the formΞ±s2 bs cit is often useful to express it as(s d)2 eThis is often useful when solving certain quadratic equations. In our case itlets us more easily use Laplace Transform Tables (in the table the form(s a)2 Ο‰02 comes up frequently).Without loss of generality, we will only consider the case where Ξ± 1. If wedivide the original equation by through by Ξ± and let b Ξ²/Ξ± and c Ξ³/Ξ±, wegets2 bs cand our task is to express it as(s d)2 eWe start by setting the two terms to be equal to each otherx2 bx c (x d)2 eExpand the right hand sidex2 bx c x2 2dx d2 eEquating the coefficients of like powers of x we getb 2d,c d2 eSARIATI DALIBor d b/2, and e c - d2Page 33

Laplace TransformExample 1: Completing the squareComplete the square for the expression: s2 2s 10Solution:The original function is of the form "s2 bs c", so b 2, c 10, andd b/2 1e c - d2 10 - 1 9.The desired expression is "(s d)2 e" or (s 1)2 9Thus :s2 2s 10 (s 1)2 9Example 2: Completing the squareComplete the square for the expression: x2 4x 29Solution:The original function is of the form "x2 bx c", so b 4, c 29, andd b/2 2e c - d2 29 - 4 25.The desired expression is "(x d)2 e" or (x 2)2 25Thus ,x2 4x 29 (x 2)2 25SARIATI DALIBPage 34

Laplace TransformExercise 1:Perform the indicated operation:Solution 1For𝐴 𝑠 5 3 58 𝑠 2 𝑠 3 3 25𝐡 𝑠 52 53 𝑠 3 𝑠 2 2 35Thus,SARIATI DALIBPage 35

Laplace TransformExercise 2:Find the inverse transform ofSolution 2For𝐴 2𝑠 2 5𝑠 62 5 61 (𝑠 3)(𝑠 5) 𝑠 14( 4) 162𝑠 2 5𝑠 62( 3)2 5( 3) 6 18 15 63𝐡 (𝑠 1)(𝑠 5) 𝑠 3( 3 1)( 3 5)( 4 )( 8)32𝑐 2𝑠 2 5𝑠 62(5)2 5(5) 650 25 6 69 (𝑠 1)(𝑠 3) 𝑠 5(5 1)(5 3)(4)(8)32Therefore,SARIATI DALIBPage 36

Laplace TransformUsing Inverse Laplace Transforms to Solve Differential EquationsThe Laplace Transform Of A DerivativesLet f(t) be a function of f and let F(s) be the laplace transform of f. The valueof f and its derivatives when t 0 are denoted by f(0) , f’(0) , f’’’(0) and so on.The nth derivatives of f is denoted by fn(t). Then it can be shown that thelaplace transform of fn(t) is given by:fn(t). Sn F(s) – Sn-1 f(0) – Sn-2 f’(0) .f(n-1)(0)Two common cases are when n 1 and n 2:f1 (t) SF(s) – f(0)f2 (t) S2 F(s) – S1 f(0) – f ’(0)Example 1: DerivativesQ: The laplace transform of f(t) is F(s). Given f(0) 2 and f’(0) -3. Writeexpression for the laplace transform of :a) f β€˜ (t)b) f 11 (t)Solution:a) 𝐹(𝑠) 𝑠𝐹(𝑠) 𝑓(0) 𝑠𝐹(𝑠) 2b) 𝐹(𝑠) 𝑠 2 𝐹(𝑠) 𝑠𝑓(0) 𝑓 β€² (0) 𝑠 2 𝐹(𝑠) 2𝑠 3SARIATI DALIBPage 37

Laplace TransformExample 2: DerivativesQ; If the initial value, f(0) y(0) 2 and f’(0) y’(0) -3. Write expression for thelaplace transform of :a) 2f’’ – 3f’ fb)π’‡β€²β€²πŸ πŸπ’‡β€² 𝒇c)πŸ‘π’…πŸ π’šπ’…π’•πŸ π’…π’šπ’…π’•Solution;β€²π‘Ž) 2𝑓 β€²β€² 3𝑓 β€² 𝑓 2 [𝑠2 𝐹(𝑠) 𝑠𝑓(0) 𝑓 (0)] 3[𝑠𝐹(𝑠) 𝑓(0)] 𝐹(𝑠) 2[𝑠2 𝐹(𝑠) 2𝑠 3] 3[𝑠𝐹(𝑠) 2] 𝐹(𝑠) 2𝑠 2 𝐹(𝑠) 4𝑠 6 3𝑠𝐹(𝑠) 6 𝐹(𝑠) 𝐹(𝑠)[ 2𝑠 2 3𝑠 1] 4𝑠 1211′𝑏) 𝑓 β€²β€² 2𝑓 β€² 𝑓 [𝑠2 𝐹(𝑠) 𝑠𝑓(0) 𝑓 (0)] 2[𝑠𝐹(𝑠) 𝑓(0)] 𝐹(𝑠)22 1 2[𝑠 𝐹(𝑠) 2𝑠 3] 2[𝑠𝐹(𝑠) 2] 𝐹(𝑠)213 [ 𝑠2 𝐹(𝑠)) 𝑠 ] [2𝑠𝐹(𝑠) 4] 𝐹(𝑠)2213 𝐹(𝑠) [ 𝑠 2 2𝑠 1] 𝑠 42215𝐹(𝑠) [ 𝑠 2 2𝑠 1] 𝑠 22𝑐)3𝑑2 𝑦 𝑑𝑦 3𝑦 β€²β€² 𝑦𝑑𝑑 2𝑑𝑑 3[𝑠 2 π‘Œ(𝑠) 𝑠𝑦(0) 𝑦 β€² (0)] π‘Œ(𝑠) 3[𝑠 2 π‘Œ(𝑠) 2𝑠 3] π‘Œ(𝑠) 3π‘Œ(𝑠)(𝑠 2 1) 6𝑠 9SARIATI DALIBPage 38

Laplace TransformSolving Differential Equation using laplace Transform:Example 1: Solve DEQ: Consider the initial value problem.Solve𝑑𝑦𝑑𝑑 3𝑦 0 , 𝑦(0) 4Solution:𝑑𝑦 3𝑦 0π‘‘π‘‘π‘ π‘Œ(𝑠) 𝑦(0) 3π‘Œ(𝑠 ) 0π‘ π‘Œ(𝑠) 4 3π‘Œ(𝑠 ) 0π‘Œ(𝑠)[𝑠 3]π‘Œ(𝑠) 44𝑠 3Inverse laplace𝑦(𝑑) 4𝑒 3𝑑Exercise: Solve DE1. Solve𝑑π‘₯𝑑𝑑2. Solve𝑑2 𝑦𝑑𝑑 23. Solve 2π‘₯ 2𝑒 3𝑑 , π‘₯(0) 2 𝑦 2 , 𝑦(0) 𝑦 β€² (0) 0𝑦 β€²β€² 𝑦 β€² 2𝑦 4 , 𝑦(0) 2, 𝑦 β€² (0) 1SARIATI DALIBPage 39

Laplace TransformExample 2:Solve DEWrite down the subsidiary equations for the following differential equationsand hence solve them.𝑑𝑦𝑑𝑑 𝑦 𝑠𝑖𝑛3𝑑,given that y 0 when t 0.Solution:Taking Laplace transform of both sides gives:π‘ π‘Œ(𝑠) 𝑦(0) π‘Œ(𝑠) π‘Œ(𝑠)[ 𝑠 1] 𝑦(0) π‘Œ(𝑠)[ 𝑠 1] 𝑠2𝑠23 32𝑠23 93𝑠𝑖𝑛𝑐𝑒 𝑦(0) 0 9Solving for Y(s) and finding the partial fraction decomposition gives:π‘Œ(𝑠) 3𝐴𝐡𝑠 𝐢 22(𝑠 1)(𝑠 9) 𝑠 1 (𝑠 9)𝐴 𝑠233 9 𝑠 1 10Apply β€˜cross multiplication’:3 𝐴(𝑠 2 9) (𝐡𝑠 𝐢)(𝑠 1)3 𝐴𝑠 2 9𝐴 𝐡𝑠 2 𝐡𝑠 𝐢𝑠 𝐢left sidecoefficientright sidecoefficients20A Bs10B Cs039A Cpower of "s"SARIATI DALIBPage 40

Laplace TransformπΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 1 𝐴 𝐡 0𝐡 𝐴 310πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 2; 𝐡 𝐢 0𝐢 𝐡 [ Soπ‘Œ(𝑠) 33] 10103𝐴𝐡𝑠 𝐢 22(𝑠 1)(𝑠 9) 𝑠 1 (𝑠 9)333( 10) 𝑠 1010 𝑠 1(𝑠 2 9) 31 𝑠 1[ 2]10 𝑠 1 (𝑠 3231 𝑠1[ 2 ]10 𝑠 1 (𝑠 32 ) (𝑠 2 32 )Finding the inverse Laplace tranform gives us the solution for y as a functionof t:𝑦(𝑑) SARIATI DALIB3 𝑑31𝑒 π‘π‘œπ‘ 3𝑑 𝑠𝑖𝑛3𝑑101010Page 41

Laplace TransformExample 5 : Solve DESolve𝑑2𝑦𝑑𝑑 2 2𝑑𝑦𝑑𝑑 5𝑦 0 , given that 𝑦 β€² (0) 0, 𝑦(0) 1when t 0Solution:Taking Laplace transform of both sides and applying initial conditions of y(0) 1 and y'(0) 0 gives:𝑠 2 π‘Œ(𝑠) 𝑠𝑦(0) 𝑦 β€² (0) 2(π‘ π‘Œ(𝑠) 𝑦(0) 5π‘Œ(𝑠) 0(𝑠 2 π‘Œ(𝑠) 𝑠) 2(π‘ π‘Œ(𝑠) 1) 5π‘Œ(𝑠) 0(𝑠 2 2𝑠 5)π‘Œ(𝑠) 𝑠 2Solving for Y and completing the square on the denominator gives:π‘Œ(𝑠) 𝑠2𝑠 2𝑠 2 (𝑠 1)2 4 2𝑠 5 𝑠 1 1(𝑠 1)2 4𝑠 11 22(𝑠 1) 2(𝑠 1)2 22𝑠 112 22(𝑠 1) 22 (𝑠 1)2 22Now, finding the inverse Laplace Transform gives us the solution for y as afunction of t:1𝑦(𝑑) 𝑒 𝑑 π‘π‘œπ‘ 2𝑑 𝑒 𝑑 𝑠𝑖𝑛2𝑑2SARIATI DALIBPage 42

Laplace TransformExample 6: Solve DESolvey'' y' - 2y 4y(0) 2y'(0) 1Solution[ y’’ y’ – 2y] {4}A table of Laplace transforms is useful here. We get(s2{y} - 2s - 1) (s{y} - 2) - 2{y} 4/sNext, combine like terms to get(s2 s - 2){y} 4/s 2s 3Putting under a common denominator, dividing and factoring we get𝐿{π‘Œ(𝑠)} 2𝑠 2 3𝑠 4(𝑠)(𝑠 1)(𝑠 2)Use partial fractions. We write𝐿{π‘Œ(𝑠)} 2𝑠 2 3𝑠 4𝐴𝐡𝐢 (𝑠)(𝑠 1)(𝑠 2) 𝑠 𝑠 1 (𝑠 2)which givesA(s - 1)(s 2) Bs(s 2) Cs(s - 1) 2s2 3s 4Letting s 0 gives-2A 4Letting s 1 gives3B 9Letting s -2 givesA -2B 36C 6C 1Now we solve𝐿{π‘Œ(𝑠)} 231 𝑠𝑠 1 (𝑠 2)Now we can use the table to get𝑦(𝑑) 2 3𝑒 𝑑 𝑒 2𝑑SARIATI DALIBPage 43

Laplace TransformApply Laplace Transform In RLCCircuit AnalysisSARIATI DALIBPage 44

Laplace TransformSARIATI DALIBPage 45

Laplace TransformLaplace Transform in RL CircuitExample 1: RL circuitBy using laplace transform, find i(t) when switch is close at t 0. The initialcurrent value i(0) 0.Solution:Derive the circuit equation in t-domain then transform these differentialequation in s-domain.By KVL:In t-domain;𝑉 𝑖𝑅 𝐿 𝑑𝑖/𝑑𝑑𝑑𝑖100 25𝑖 0.1 𝑑𝑑Applying lapl

Nov 27, 2014Β Β· If needed we can find the inverse Laplace transform, which gives us the solution back in "t-space". Definition of Laplace Transform Let be a given function which is defined for . If there exists a function so that , Then is called the Laplace Transform of , and will be denoted by

Related Documents:

Laplace Transform in Engineering Analysis Laplace transforms is a mathematical operation that is used to β€œtransform” a variable (such as x, or y, or z, or t)to a parameter (s)- transform ONE variable at time. Mathematically, it can be expressed as: L f t e st f t dt F s t 0 (5.1) In a layman’s term, Laplace transform is used

Introduction to Laplace transform methods Page 1 A Short Introduction to Laplace Transform Methods (tbco, 3/16/2017) 1. Laplace transforms a) Definition: Given: ( ) Process: β„’( ) ( ) 0 Μ‚( ) Result: Μ‚( ), a function of the β€œLaplace tr

Using the Laplace Transform, differential equations can be solved algebraically. 2. We can use pole/zero diagrams from the Laplace Transform to determine the frequency response of a system and whether or not the system is stable. 3. We can tra

Objectives: Objectives: Calculate the Laplace transform of common functions using the definition and the Laplace transform tables Laplace-transform a circuit, including components with non-zero initial conditions. Analyze a circuit in the s-domain Check your s-domain answers using the initial value theorem (IVT) and final value theorem (FVT)

No matter what functions arise, the idea for solving differential equations with Laplace transforms stays the same. Time Domain (t) Transform domain (s) Original DE & IVP Algebraic equation for the Laplace transform Laplace transform of the solu

Intro & Differential Equations . He formulated Laplace's equation, and invented the Laplace transform. In mathematics, the Laplace transform is one of the best known and most widely used integral transforms. It is commo

The Laplace transform technique is a huge improvement over working directly with differential equations. It is relatively straightforward to convert an input signal and the network description into the Laplace domain. However, performing the Inverse Laplace transform can be challeng

Fundamentals; Harmony; Jazz, Pop, and Contemporary Music Theory (including Twentieth-Century Music); and Form in Music. The format for each volume is consistent: 1. The left column lists terms to help you organize your study and find topics quickly. 2. Bold indicates key concepts. 3. Each volume ends with a Remember-Forever Review and More