CHAPTER 5: Analytic Trigonometry - Kkuniyuk

2y ago
21 Views
2 Downloads
2.63 MB
8 Pages
Last View : 3d ago
Last Download : 3m ago
Upload by : Madison Stoltz
Transcription

(Answers for Chapter 5: Analytic Trigonometry) A.5.1CHAPTER 5:Analytic TrigonometrySECTION 5.1:FUNDAMENTAL TRIGONOMETRIC IDENTITIES1)Left Sidecsc ( x )tan ( x )tan ( x )Right Side1sin ( x )1cot ( x )sin ( x )cos ( x )Type of Identity (ID)Reciprocal IDReciprocal IDQuotient ID π tan x 2 cot ( x )Cofunction IDcos ( x ) π sin x 2 Cofunction ID( )cos ( x )tan ( x ) sin ( x )Even / Odd (Negative-Angle) IDcos ( x )Even / Odd (Negative-Angle) ID tan ( x )Even / Odd (Negative-Angle) ID1Pythagorean IDsec 2 ( x )Pythagorean IDcsc 2 ( x )Pythagorean IDsin xsin 2 ( x ) cos 2 ( x )tan 2 ( x ) 11 cot 2 ( x )()2) a) sec ( x ) ; b) sec 2 (θ ) ; c) 1; d) csc 4 x ; e) sin ( t ) ; f) sin (α )3) a) 4 cos (θ ) ; b) 6sec (θ ) ; c) 3tan (θ )SECTION 5.2: VERIFYING TRIGONOMETRIC IDENTITIES1) Solutions will vary.

(Answers for Chapter 5: Analytic Trigonometry) A.5.2SECTION 5.3: SOLVING TRIGONOMETRIC EQUATIONS1) π2π π 2π 2π n n . In [ 0, 2π ) : ,a) x x 2π n or x .33 3 3 3π 2π n n , or, equivalently,b) θ θ 4 3π5π 3π 5π θ θ 2πnorθ 2πnn . In [ 0, 2π ) : , .44 4 4 c) No real solutions; the solution set is . No real solutions in [ 0, 2π ) .(())() 3π 3π 2π n n . Solutions in [ 0, 2π ) : .d) u u 2 2 π π 3π e) u u π n n . Solutions in [ 0, 2π ) : , .2 2 2 7π11π 2π n or u 2π n n , or, equivalently,f) u u 66 7π 11π 7ππ 2π n or u 2π n n . In [ 0, 2π ) : , u u .666 6 πg) x x 2π n n , or, equivalently,3 π 5π π5π 2π n n . In [ 0, 2π ) : , . x x 2π n or x 33 3 3 ()()()(())()h) No real solutions; the solution set is . No real solutions in [ 0, 2π ) . π 7π πi) x x π n n . Solutions in [ 0, 2π ) : , .6 6 6 π π 3π j) θ θ π n n . Solutions in [ 0, 2π ) : , .2 2 2 πk) θ θ π n n , or, equivalently,6 π5π π 5π 7π 11π π n ( n ) . In [ 0,2π ) : , ,, θ θ π n or θ .66 6 6 6 6 ()()()

(Answers for Chapter 5: Analytic Trigonometry) A.5.3 3π π n n , or, equivalently,l) θ θ π n or θ 4 π7π 3π, π, θ θ π n or θ π n n . In [ 0, 2π ) : 0, .444 ()() ππ5π 2π n n .m) x x 2π n or x 2π n or x 626 π π 5π Solutions in [ 0, 2π ) : , , . 6 2 6 π2π nn , by rotational symmetry. Lessn) x x π n or x 23 π2π 2π n n efficiently: x x π n or x 2π n or x 23 (())( π 2π 4π 3π Solutions in [ 0, 2π ) : 0, ,,, .2332 π πn n . The following form mayo) x x 12 2 ( ) . ) π πn5π π n or x n .be more useful for later: x x 12 212 2 π 5π 7π 11π 13π 17π 19π 23π Solutions in [ 0, 2π ) : ,,,,,,, . 12 12 12 12 12 12 12 12 π 2π n π 5π 3π n . In [ 0, 2π ) : ,p) x x , .63 6 6 2 (()) π πnn . The following form may be more useful forq) x x 93 π πn2π π nor x n . Solutions in [ 0, 2π ) :later: x x 9393 π 2π 4π 5π 7π 8π 10π 11π 13π 14π 16π 17π ,,,,,,,,,, , .999999 9 9 9 9 9 9()(2) a){arctan 2,)π arctan 2} ; equivalently, { tan 1 2, π tan 1 2} .b) Approximately: {1.107, 4.249} . (Make sure your calculator is in radian mode.)c){ x x arctan 2 π n ( n )} , or { x x tan 1()}2 π n n .

(Answers for Chapter 5: Analytic Trigonometry) A.5.43) 1 1 a) Solutions in [ 0, 2π ) : arccos , π arccos . Equivalent forms: 5 5 1 1 1 1 1 1 cos , π cos , π arccos , π arccos , and55 55 1 1 arccos , 2π arccos .55 b) Approximately: {1.772, 4.511} . (Make sure your calculator is in radian mode.) 1 c) x x arccos 2π n n , or, equivalently, 5 1 1 x x cos 2πnn , or, equivalently, 5 1 x x arccos 2n 1 π n . 5 ()(() ())SECTIONS 5.4 and 5.5:MORE TRIGONOMETRIC IDENTITIES1)Left SideRight SideType of Identity (ID)sin u v()sin ( u ) cos ( v ) cos ( u ) sin ( v )Sum ID()cos ( u ) cos ( v ) sin ( u ) sin ( v )Sum ID()sin u v()sin ( u ) cos ( v ) cos ( u ) sin ( v )Difference ID()cos ( u ) cos ( v ) sin ( u ) sin ( v )Difference ID()cos u vtan u vcos u vtan u v( )sin 2utan ( u ) tan ( v )1 tan ( u ) tan ( v )tan ( u ) tan ( v )1 tan ( u ) tan ( v )2 sin ( u ) cos ( u )Sum IDDifference IDDouble-Angle ID

(Answers for Chapter 5: Analytic Trigonometry) A.5.5Left SideRight Sidecos ( u ) sin ( u ) , 1 2sin ( u ) , and2( )cos 2u22cos ( u ) 122 tan ( u )tan ( 2u )1 cos ( 2u )21 cos 2u( )cos 2 ( u )2 θ sin 2 or1 1 cos ( 2u )2 2or1 1 cos 2u2 2( ) 1 cos (θ ) 1 cos (θ )2(Choose the sign appropriately.) θ cos 2 2(Choose the sign appropriately.) 1 cos (θ )1 cos (θ ) 1 cos (θ )sin (θ )Type of Identity (ID)Double-Angle ID(write all three versions)Double-Angle ID1 tan 2 ( u )sin 2 ( u ) θ tan 2 2 sin (θ )1 cos (θ )(Choose the sign appropriately.)Power-Reducing ID(PRI)Power-Reducing ID(PRI)Half-Angle IDHalf-Angle IDHalf-Angle ID(write all three versions)2)a)2 6; b)43)2 224)2 226 2; c)43 2 (rationalize the denominator in3 3).3 31323; b) ; c); d)22226) cos ( 2θ )5) a)7)tan ( 4x )68)a) Hint: Use a Sum Identity.b) Hints: Use a Double-Angle Identity and a Pythagorean Identity.c) Hints: Use the Sum Identities for sine and cosine, and then divide the numeratorand the denominator by cos ( u ) cos ( v ) .

(Answers for Chapter 5: Analytic Trigonometry) A.5.6.9) π5π π n or x π n n a) All real solutions: x x 1212 π 5π 13π 17π Solutions in [ 0, 2π ) : ,,, 12 12 12 12 ( ) . 2π 2π n or x π 2π n n , or,b) All real solutions: x x 3 2π4π 2π n or x 2π n or x π 2π n n equivalently, x x 33 ()(4π 2πSolutions in [ 0, 2π ) : , π , 3 3 πc) All real solutions: x x π n or x 2π n n , or,3 π5π 2π n n ,equivalently, x x π n or x 2π n or x 33 π 2π nor, equivalently, x x 2π n or x n .33 ()(())5π πSolutions in [ 0, 2π ) : 0, , π , 3 310) 2x 1 x 211) cos 4 ( x ) 38 1cos ( 2x ) 21cos ( 4x )812)a)11 cos ( 2θ ) cos ( 8θ ) , which is simplified from cos ( 2θ ) cos ( 8θ ) ;22b) 2 cos ( 4α ) cos (α ) ; c) 2sin ( 2x ) cos ( x )d)11 sin (19θ ) sin (θ ) , which is simplified from sin (19θ ) sin ( θ ) ;22e)1 cos 3x cos 5x ; f) 2sin 4x sin 3x ; g) 2cos 5α sin 3α ; 2 h)1 sin ( 9α ) sin (α ) 2 ( )( )( ) ( )( ) ( ) ) .

(Answers for Chapter 6: Additional Topics in Trigonometry) A.6.1CHAPTER 6:Additional Topics in TrigonometrySECTION 6.1: THE LAW OF SINES1) a) 35.0 m; b) 22.0 m; c) 372 m 22) a) 180.09 ft; b) 224.86 ft; c) 20,137 ft 2SECTION 6.2: THE LAW OF COSINES1) a) 25.8 ; b) 140.2 ; c) No (that would violate the Triangle Inequality); d) 496 ft 22) 13.8 miSECTION 6.3: VECTORS IN THE PLANE1) a) 2, 3 or 2 m, 3 m ; b) 13 m; c) 56.3 2) a) 5, 3 or 5 m, 3 m ; b)34 m; c) 210.96 3)a)1v3v 3vb) 4, 3c)d)e) 5, 5

(Answers for Chapter 6: Additional Topics in Trigonometry) A.6.2.4) 8.0 ft, 8.9 ft5) a) 2 29 5 298 29 20 29,,; b) 111.8 ; c) 292929296) a) 327.53 ; b)22 17014 170, 17177) Yes8) No (they point in opposite directions)9) a) 20.3 mph; b) 18.3 mphSECTION 6.4: VECTORS AND DOT PRODUCTS1) 142) a) scalar; b) vector; c) undefined; d) scalar; e) undefined; f) undefined3) 104) Hint: v w5)v2 w2 (v w) (v w) .26) The Pythagorean Theorem7) 19.7 ; acute8) 167.7 ; obtuse 9) 47.7 . Hint: Find the angle between the vectors BA and BC .10) a) 0 ; b) 180 ; c) 90 11) Yes12) No13) 0 and 1()14) Hint: Use the formula: cos θ 15)14 1717v w.v w

(Answers for Chapter 5: Analytic Trigonometry) A.5.1 CHAPTER 5: Analytic Trigonometry SECTION 5.1: FUNDAMENTAL TRIGONOMETRIC IDENTITIES 1) Left Side Right Side Type of Identity (ID) csc(x) 1 sin(x) Reciprocal ID tan(x) 1

Related Documents:

Part One: Heir of Ash Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26 Chapter 27 Chapter 28 Chapter 29 Chapter 30 .

TO KILL A MOCKINGBIRD. Contents Dedication Epigraph Part One Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Part Two Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18. Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 Chapter 24 Chapter 25 Chapter 26

DEDICATION PART ONE Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 PART TWO Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Chapter 21 Chapter 22 Chapter 23 .

CHAPTER 1 1 Angles and Applications 1.1 Introduction Trigonometry is the branch of mathematics concerned with the measurement of the parts, sides, and angles of a triangle. Plane trigonometry, which is the topic of this book, is restricted to triangles lying in a plane. Trigonometry is based on certain ratio

Trigonometry Standard 12.0 Students use trigonometry to determine unknown sides or angles in right triangles. Trigonometry Standard 5.0 Students know the definitions of the tangent and cotangent functions and can graph them. Trigonometry Standard 6.0 Students know the definitions of the secant and cosecant functions and can graph them.

Analytic Continuation of Functions. 2 We define analytic continuation as the process of continuing a function off of the real axis and into the complex plane such that the resulting function is analytic. More generally, analytic continuation extends the representation of a function

COMPLEX ANALYTIC GEOMETRY AND ANALYTIC-GEOMETRIC CATEGORIES YA’ACOV PETERZIL AND SERGEI STARCHENKO Abstract. The notion of a analytic-geometric category was introduced by v.d. Dries and Miller in [4]. It is a category of subsets of real analytic manifolds which extends the c

IEE Colloquia: Electromagnetic Compatibility for Automotive Electronics 28 September 1999 6 Conclusions This paper has briefly described the automotive EMC test methods normally used for electronic modules. It has also compared the immunity & emissions test methods and shown that the techniques used may give different results when testing an identical module. It should also be noted that all .