Applications Of Raman Spectroscopy: Terrestrial Analogs .

2y ago
19 Views
3 Downloads
7.27 MB
57 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Xander Jaffe
Transcription

Applications of Raman Spectroscopy:Terrestrial analogs for Mars(Jaroso and RioTinto)Universidadde ValladolidFernando RullCentro deAstrobiologíaCentro de Astrobiologia and Unidad Asociada CSIC-Universidad de ValladolidHonolulu- 10- Feb-2006

Raman Spectroscopyin the Exploration of MarsMars meteoritesMars missionsMars analogs

The Raman effect

Radiation-matter interactionλ / cmhω0ω / s-1hωlKl 2π/λ(cm-1)K0KK- K0K0Kω 1/T c/λν lKl 2π/λ 2πω/chω0 hω (Elastic)lK0 l lKl

I(v) K [α′] 2RAMAN SCATTERINGLaserE1ω0ω0SV2V1V0ω0 ωω0ω0 ωEoRAS

Vibracional Spectroscopye1IRRAMANV2e0V1V0

Sir Chandra Shekhara Venketa RamanEinstein said:"C.V. Raman was the first to recognise anddemonstrate that the energy of photon can undergopartial transformation within matter. I stillrecall vividly the deep impression that this

HawaiiMediterranean Sea at Almuñecar (Spain)

RAMANConfiguración a 90ºEspectrómetroLáserLáserConfiguración a 180º

Raman has been considered and still is considered alaboratory techniqueNevertheless, in recent years several systems havespecifically developed for field applications.These systems profited from recent technical advances(lasers, optical fibers, CCD’s, small and robustspectrometers).At the same time these developments paved the way forits potential use in planetary exploration (landers orrovers) Contact instruments Remoteinstruments

Raman for Athena (Wang-Haskin )“Contact”

EXLIBRIS-ESA-PasteurImplementsimultaneouslyLIBS and Raman tostudy:ChemistryMineralogyOrganicsSylvestre MauriceFernando Rull(Coordinators)“Remote”

Raman at 10 mtrs. distanceCiclohexanoCalcitaBarita

Combined RAMAN Spectrometer/ Laser Laser-induced BreakdownSpectrometer.EXOMARS-PASTEUR PayloadESA

Terrestrial analogsVery probably no place onEarth is truly like Mars.Nevertheless, it is possible to definepotential sites on our planet(Martian analogs) as settings wheregeologicalfeatures,biologicalattributes, or combinations thereofoffer possibilities for comparisonswith possible counterparts on Mars,at present or earlier in that planet'shistory, and for partial simulationsof Martian conditions.

Possible Martian modelsRío TintowaterModern model of formation of sulfates, linked tosignificant acidophylic biogenic activity. Sulfatesmainly come from aqueous alteration of iron-richsulfide minerals of the Iberian Pyrite Belt (SWSpain).D.Fernandez-Ramolar Planet. Space. Sci. 2004El JarosoWorld type locality of jarositeAncient model of formation of supergenicsulfates associated with polymetallic (Fe,Pb,Ag)sulfides and sulfosalts which are geneticallylinked to the calc-alkaline shoshonitic volcanism(Upper Miocene) of the SE Mediterranean marginof Spain.J. Martinez-Frias Econ. Geol. (1992)J. Martinez-Frias Episodes (1998)

Rio Tinto

Near Corta AtalayaPEÑA del HIERRO

MethodologyThe main aims is the study of the mineral formation processes and thephysical-chemical properties of acidic aqueous solutions.- Description of the mineral phases present- Equilibrium properties of the solution- Transport properties- Computer simulation and models of mineral formation processes-Comparison with the real system and analysis of the biogeniccontribution-Development of techniques for in-situ analysis of minerals and aqueoussolutions in real conditionsMain toolsXRD, Raman and IR spectroscopyComputer simulation methods

EXPERIMENTALXRD, FTIR and Ramanspectroscopy were performed onthe natural samples without anypreparation.From selected samples in whichXRD show a large amount of aspecific mineral phase, detailedRaman spectra were taken atdifferent positions of the sample.Also in these cases microscopicRaman analysis were performed.

Primary minerals in Rio Tinto

JarositeHaematite MagnetitePyriteHaematiteSulfurBarite

HaematiteHaematite MagnetiteQuarzHaematite GoethiteGoethite

Pyrite FeS2SulfurJarositeKFe3(SO4)2(OH)6BariteBaSO4

x10Jarosita Rio TintoKFe3(SO4)(OH)6

Secondary mineralsEvaporític processes and efflorescencesMay 2003

July 2003

September 2003

Precipitation modelAugust 2005Spatial distribution sequence of precipitation and mineral association

Ferricopiapite Fe5(SO4)6(OH)2 .20H2ORozenite FeSO4. 4H2OCoquimbite Fe2(SO4)3. 4H2OSzomolnokite FeSO4H2O1028

Rio Tinto EvaporitesSzomolnokite (*)Rozenite (*)CoquimbiteFerricopiapiteRhomboclase (*)(*) minerals first observed in Rio Tinto, T. Buckby et.al. Am. Min. (2003)

Chemical equilibrium and transport properties inacidic aqueous solutions1- Laboratory studySulfuric acid – water ( 1-18 M)Saturated solutions FeSO4 (pH 2, 3, 4, 5.5)2.- Rio Tinto natural samples study

High concentration H2SO4H2SO4 H2OHSO4- H3O K1 Qc1Kγ1Low concentration H2SO4HSO4- H2OSO42- H3O K2 Qc2Kγ2In Rio Tinto, the chemical equilibrium is dominated bythe second process

High concentration Sulfuric acid-water18 M13 M8M0.5 M

Low concentration Sulfuric acid4M-0.4M

Chemical EquilibriumSO42-System H2SO4 – H2OHSO4PI- HSO4-HSO4- H2O SO4 2- H3O SO42-α 22 αm2 m(T()T )K γK(T )( T ) 2 K γ (KKK ) KT ) (T )2 (T()cKT 2cγγ1 α21 α2A2 []SO[A ASOSOα [SO4]] α 2 α [SO 2] [HSO ] A A[SO[SO4 ] [[HSOHSO] 4 ]A A SOA A HSO222 4 2 42 4 2 4 4 4SO24 SO24 SO24 SO24 HSO 4 2HSO442 4 4

Concentración especiesArea de la banda 0.0020.0010020406080100Concentración disolución / wt%DegreeDegree ofof dissociationdissociation αα22 ofof aqueousaqueous sulfuricsulfuric acidacid atat 293293 KK asas functionfunction ofof acidacidconcentrationconcentration obtainedobtained fromfrom RamanRaman spectroscopy:spectroscopy: , , thisthis work;work; , , obtainedobtained bybyC.C. E.E. LundLund MyhreMyhre etet al.al. J.J. PhysPhys Chem.Chem. AA 2003,2003, 107,107, 1979-19911979-1991

ActivityActivity coefficientscoefficients productproduct KKγγ atat 293293 KK asas functionfunction ofof acidacid concentration:concentration: , , thisthis work;work; , , DawsonDawson etet al.al. J.J. Phys.Phys. Chem.Chem. 1986,1986, 90,90, 334-341;334-341; , , KnopfKnopf etet al.al.J.J. Phys.Phys. Chem.Chem. A,A, 2003,2003, 107(21),107(21), 4328.4328.

Rio Tinto samplesSO42pH 1.72PI-Fe2 -SO42-PI- HSO4-HSO42SO42HSO42-

Transport propertiesdL/d 10LH2 0Raman probe headsLaser 632,8 nmLaser 514,4 nmH2SO460% vol.Capillary Raman analysis

z 10z 8z 6z 4z 10z 8z 6z 4z 2día 6z 2día 64z 0z 0d ía 6z 3 cm .d ía 5d ía 4d ía 3d ía 2

370 h350 hDiffusion Model325 h t 0, z c w 0 c w x c t D w w z 0, t c w c w 0 t z z c z L, t w 0 z,Dw c1 c 2 c 3cc1c 2 3D1wD2 wD3w

Jarosite/Mars/El CapitánSquyres et al (2004) Science 306, 1709

Breithaupt (1852))El Jaroso (Cuevas del Almanzora,Almería province, SE Spain)(Jarosite: World type locality)Jarosita/El JarosoMartínez-Frías, J. (1999) "Mining vs. Geological Heritage: The Cuevasdel Almanzora Natural Area (SE Spain), AMBIO, 28, 2: 204-207

EL JAROSO: (Jarosite)

EL JAROSO: F01 (natrojarosite)

EL JAROSO: halotrichite

ConclusionsA detailed XRD, FTIR and Raman study has been performed on the sulphateminerals from Rio Tinto and Jaroso Ravine (Jaroso hydrothermal system)Rio TintoJaroso RavineSzomolnokite (*)Rozenite (*)Coquimbite (*)Ferricopiapite(*)Rhomboclase ichiteBariteGypsum

MahaloThanks for your attention

XRD, FTIR and Raman spectroscopy were performed on the natural samples without any preparation. From selected samples in which XRD show a large amount of a specific mineral phase, detailed Raman spectra were taken at different positions of the sample.

Related Documents:

Raman spectroscopy in few words What is Raman spectroscopy ? What is the information we can get? Basics of Raman analysis of proteins Raman spectrum of proteins Environmental effects on the protein Raman spectrum Contributions to the protein Raman spectrum UV Resonances

Raman spectroscopy utilizing a microscope for laser excitation and Raman light collection offers that highest Raman light collection efficiencies. When properly designed, Raman microscopes allow Raman spectroscopy with very high lateral spatial resolution, minimal depth of field and the highest possible laser energy density for a given laser power.

Understanding Raman Spectroscopy Principles and Theory Basic Raman Instrumentation Figure 1 Raman Theory Raman scattering is a spectroscopic technique that is complementary to infrared absorption spectroscopy. The technique involves shining a monochromatic light source (i

1. Introduction to Spectroscopy, 3rd Edn, Pavia & Lampman 2. Organic Spectroscopy – P S Kalsi Department of Chemistry, IIT(ISM) Dhanbad Common types? Fluorescence Spectroscopy. X-ray spectroscopy and crystallography Flame spectroscopy a) Atomic emission spectroscopy b) Atomic absorption spectroscopy c) Atomic fluorescence spectroscopy

Raman Spectroscopy Kalachakra Mandala of Tibetian Buddhism Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch. Raman spectroscopy Literature: M.A. Banares, Raman Spectroscopy, in In situ spectroscopy of catalysts (Ed. B.M. Weckhuysen), ASP, Stevenson Ranch, CA, 2004, pp. 59-104

Introduction Rotational Raman Vibrational RamanRaman spectrometer Lectures in Spectroscopy Raman Spectroscopy K.Sakkaravarthi DepartmentofPhysics NationalInstituteofTechnology Tiruchirappalli-620015 TamilNadu India sakkaravarthi@nitt.edu www.ksakkaravarthi.weebly.com K. Sakkaravarthi Lectures in Spectroscopy 1/28

Raman involves red (Stokes) shifts of the incident light, but anti-Stokes Raman can be combined with pulsed lasers to enable stimulated Raman techniques such as Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy and microscope imaging. Historically, Raman was used to provide data based on vibrational resonances, the so-called

Quantitative biological Raman spectroscopy 367 FIGURE 12.1: Energy diagram for Rayleigh, Stokes Raman, and anti-Stokes Ra-man scattering. initial and final vibrational states, hνV, the Raman shift νV, is usually measured in wavenumbers (cm¡1), and is calculated as νV c. Raman shifts from a given molecule are always the same, regardless of the excitation frequency (or wavelength).