Wavefront Shaping By A Small-Aperture Deformable Mirror In .

2y ago
22 Views
2 Downloads
1.40 MB
9 Pages
Last View : 8d ago
Last Download : 3m ago
Upload by : Bennett Almond
Transcription

Appl. Sci. 2017, 7, 379Appl. Sci. 2017, 7, 379Appl. Sci. 2017, 7, 3796 of 96 of 96 of 94.2. Wavefront Compensation with the Main Amplifiers in 2.WavefrontWavefrontCompensationwith thein OperationDependingon the perfectDMMainsurfaceachievedin the wavefront compensation utputwavefrontwiththe main amplifiersinDependingin thethewavefrontcompensationexperimentDepending onon thethe perfectperfect DM surface achievedachieved asuredwheninthesystemoperatesat a wavefront40 J levela 3thensamplifierspulseas inanwithoutamplifiersoperation,the outputwavefrontwithwiththemainin on,the outputwithmain �andisoperationmeasuredthe laseroperatesa 40 J levelwitha 3 nspulseduration,as an example.is whenmeasuredwhensystemthe lasersystematoperatesat a 40J levelwitha 3 nspulse duration,as ananRMSλ. initialThisis not wavefrontasdistributiongood 86 λofandRMSexample.Figureofthat5a0.14showsthat wavefronttheinitialoutputwitha thePV0.86anλ tortionthepumpedandan RMSvalue0.14λ.wavefrontis notasasofgoodthe onedynamicwithoutthe maindistortionamplifiersinvalueof 0.14λ. ofThisis not asgoodtheoneaswithoutthemain thermalamplifiersin n,becauseof thewavefrontdistortionthe pumpeddistortionandbecauseof thewavefrontdistortionof thepumped ofdynamicthermaldynamicdistortionthermaland residualheat inthewavefrontshapingintroducedSectionIn er bysystemresidualheatin themethodlaserTherefore,it is 2.necessarythe distortionthelasersystem.Therefore,it issystem.necessaryto incompensatetheby thewavefrontshapingmethodoperatesat shapingainsingle-shotrepetitionrateof approximately2 ofshotshour. ction2. Inthisperexperiment,thelaser systemintroducedSection2. lowIn termsof thisexperiment,thetermslasersystemoperatesa ates ata single-shotlow repetitionratehour.of approximately2 shotshour.inAsthethefollowingiterative severaltimesrepetitionrateof approximately2 shots perAs the iterativetimesperincreaseshapingthebest wavefrontof thefinal outputlaserisflatten.shownthein theFigure5b withincreaseinthe followingseveralthe process,outputwavefronttends shots,todistributionflatten.In thewavefrontshapingbestwavefrontashapingPV valueofλ andanRMSvalueof fthe5bfinaloutputlaser isofshownFigure5b withdistributionof 0.29thethefinaloutputlaserisdistributionshownwitha PV value0.29 λ inandan ectively.of 0.06 λ, respectively.2200-24040-220 4040y 20 00(m20-200 20y ( m)0-20m)mmm-40-40() -20-40 -40-20x 0.4λ(b)(b)Wavefront(λ) (λ)WavefrontWavefrontWavefront(λ) (λ)(a)(a)0.1λ20.1λ200λ00λ-24040 -0.1λ-2202040 y40 -0.1λ0(m 02020)m-20-20y ( )0mm-40 -40-200 (mm)-20x m)-40 -40(mxFigure 5. The output wavefront of the wavefront shaping with the main amplifiers in operation.(a)The5.initialoutputwithDM; frontofthethewavefrontshapingthe mainamplifiersin he mainamplifiersin operation.(a) tial output with DM; (b) the final output.1.01.00.80.80.60.60.40.40.20.20.00.0 000.20PV 0.20PVRMS 0.15RMS mpensation1 2 3 4 51 2 3 Shots4 The flattening wavefront distribution is achieved after the wavefront shaping by using theThe flatteningwavefrontdistributionis achievedafter thewavefrontby wavefrontusing thefront-stagesmall-apertureDM inthe high-powerlaser system.Figure6 showsshapingthe outputThe flattening wavefront distribution is achieved after the wavefront shaping by using system.Figure6showstheoutputwavefrontPV and RMS value change in the shaping process. Based on several iterations compensation, thefront-stage small-aperture DM in the high-power laser system. Figure 6 shows the output wavefrontPV andwavefrontRMS valuechange intotheshapingBasedon thanseveralcompensation,theoutputis correctedflattenwithprocess.a PV valueof less0.4 iterationsλ and an RMSvalue of aboutPV and RMS value change in the shaping process. Based on several iterations compensation, the outputoutputis correctedto flattena PV valuethan 0.4time,λ andanPVRMSvalueof valuesabout0.06λ, wavefrontrespectively.As a whole,with withthe increasein ofthelessiterativetheandRMSwavefrontis correctedAsto aflattenwith a PVvalue of lessthan 0.4 λ andan RMSvalue ofRMSaboutvalues0.06 λ,0.06 λ, respectively.whole,theisincreasein the iterativetime,graduallydecrease. Whenthe PVwithvaluesmall enough(less than0.5 theλ), PVwithandthe ytime,decrease.Whenwavefrontthe PV valueis RMSsmall valuesenough(lessa slightthan 0.5λ), with whichthe increaseiniterativethe outputPV andhavefluctuation,is causeddecrease.WhenthetheoutputPV valueis smallPVenough(less valuesthan 0.5 λ), withthe fluctuation,increase in iterativetheiterativetime,and RMSa slightistime,causedbythe randomnessof thewavefrontdynamic wavefrontdistortion haveand operationstability ofwhichthe fluctuation,whichiscausedbytherandomnessby therandomness of the dynamic wavefront distortion and operation stability of the front distortion and operation stability of the high-power laser system.Figure 6.6. TheThe outputoutput wavefrontwavefront PVPV andand RMSRMS valuesvalues duringduring theFigurethe processprocess ofof wavefrontwavefront compensationcompensationFigure6.mainThe outputwavefrontPV and RMS values during the process of wavefront compensationwiththeamplifiersinoperation.with the main amplifiers in operation.with the main amplifiers in operation.

Appl. Sci. 2017, 7, 3797 of 9From the results of the wavefront-shaping experiment, the output wavefront can be achieved asthe flattening distribution by the wavefront compensation without the main amplifiers in operation,but the output wavefront with the main amplifiers in operation is not necessarily good because of thewavefront distortion caused by the main amplifiers. By wavefront shaping with the main amplifiers inoperation, the output wavefront meets the expectation with a PV value of less than 0.4 λ. The 1053 nmflattening wavefront laser can be injected into the frequency conversion module of the high-powerlaser system for the third harmonic generation.5. ConclusionsIn summary, we report here a wavefront beam shaping technique for a high-power laser systemby utilizing the measured wavefront with a Shack–Hartmann wavefront sensor at the output of thesystem as feedback to control the small-aperture DM at the front stage. A closed-loop algorithm isproposed in controlling the motors inside the DM to correct the wavefront distortion. Finally, the outputwavefront is successfully shaped to be flat by using this approach, with the output PV value improvedfrom 3.34 λ to 0.29 λ and the RMS value improved from 0.65 λ to 0.06 λ at 1053 nm. This methodshows great potential for wavefront shaping in a complex high-power laser system with low cost andhigh efficiency.Acknowledgments: The authors appreciate the efforts of Meng Xia, Xi Chen, Dexin Ba, and Xin Wang fromthe Harbin Institute of Technology, who have been instrumental in the success of this project. This work issupported by the project of the National Natural Science Foundation of China (NSFC) under Grant No. 61622501.The support does not constitute an endorsement by the NSFC of the views expressed in this article.Author Contributions: The experiments were done by Sensen Li, Luoxian Zhou, and Can Cui. Kai Wang,Xiusheng Yan, and Yirui Wang contributed to the data analysis and the discussion of the results. Lei Dingparticipated in research plan development. Zhiwei Lu and Yulei Wang conceived and supervised this work.Sensen Li wrote the paper with contribution from all authors.Conflicts of Interest: The authors declare no conflict of interest.References1.2.3.4.5.6.7.8.9.10.Moses, E.I. Ignition on the National Ignition Facility: A path towards inertial fusion energy. Nucl. Fusion2009, 49, 104022. [CrossRef]Obenschain, S.; Lehmberg, R.; Kehne, D.; Hegeler, F.; Wolford, M.; Sethian, J.; Weaver, J.; Karasik, M.High-energy krypton fluoride lasers for inertial fusion. Appl. Opt. 2015, 54, 103–122. [CrossRef] [PubMed]Edwards, C.B.; Danson, C.N. Inertial confinement fusion and prospects for power production. High PowerLaser Sci. Eng. 2015, 3, e4. [CrossRef]Beck, R.J.; Parry, J.P.; MacPherson, W.N.; Waddie, A.; Weston, N.J.; Shephard, J.D.; Hand, D.P. Applicationof cooled spatial light modulator for high power nanosecond laser micromachining. Opt. Express 2010, 18,17059–17065. [CrossRef] [PubMed]Bai, Z.; Cui, C.; Liu, Z.; Yuan, H.; Wang, H.; Wang, Y.; Lu, Z. Drilling study on Cu, Mo, W and Ti by using SBSpulse compressed steep leading edge hundred picoseconds laser. Optik 2016, 127, 11156–11160. [CrossRef]Elder, I. Performance requirements for countermeasures lasers. Proc. SPIE 2010, 7836, 783605.Remo, J.L.; Adams, R.G. High energy density laser interactions with planetary and astrophysical materials:methodology and data. Proc. SPIE 7005 High-Power Laser Ablation VII 2008, 7005. [CrossRef]Liu, J.; Wang, W.; Wang, Z.; Lv, Z.; Zhang, Z.; Wei, Z. Diode-pumped high energy and high average powerall-solid-state picosecond amplifier systems. Appl. Sci. 2015, 5, 1590–1602. [CrossRef]Divoky, M.; Smrz, M.; Chyla, M.; Sikocinski, P.; Severova, P.; Novak, O.; Huynh, J.; Nagisetty, S.; Miura, T.;Pilař, J. Overview of the HiLASE project: high average power pulsed DPSSL systems for research andindustry. High Power Laser Sci. Eng. 2014, 2, e14. [CrossRef]Novák, O.; Miura, T.; Smrž, M.; Chyla, M.; Nagisetty, S.S.; Mužík, J.; Linnemann, J.; Turčičová, H.;Jambunathan, V.; Slezák, O. Status of the high average power diode-pumped solid state laser developmentat HiLASE. Appl. Sci. 2015, 5, 637–665. [CrossRef]

Appl. Sci. 2017, 7, .27.28.29.8 of 9Bai, Z.; Wang, Y.; Lu, Z.; Yuan, H.; Zheng, Z.; Li, S.; Chen, Y.; Liu, Z.; Cui, C.; Wang, H.; Liu, R. High compact,high quality single longitudinal mode hundred picoseconds laser based on stimulated brillouin scatteringpulse compression. Appl. Sci. 2016, 6, 29. [CrossRef]Yu, M.; Hu, G.; An, N.; Qian, F.; Wu, Y.; Zhang, X.; Gu, Y.; Wang, Q.; Zheng, J. Hard X-ray transmissioncurved crystal spectrometers (10–100 keV) for laser fusion experiments at the ShenGuang-III laser facility.High Power Laser Sci. Eng. 2016, 4, e2. [CrossRef]Kruschwitz, B.; Bahk, S.-W.; Bromage, J.; Moore, M.; Irwin, D. Accurate target-plane focal-spot characterizationin high-energy laser systems using phase retrieval. Opt. Express 2012, 20, 20874–20883. [CrossRef] [PubMed]Barker, C.E.; Auerbach, J.M.; Adams, C.H.; Bumpas, S.E.; Hibbard, R.; Lee, C.S.; Roberts, D.; Campbell, J.H.;Wegner, P.J.; Van Wonterghem, B.M. National Ignition Facility frequency converter development. Proc. SPIE1997, 3047, 197–202.Auerbach, J.M.; Wegner, P.J.; Couture, S.A.; Eimerl, D.; Hibbard, R.L.; Milam, D.; Norton, M.A.; Whitman, P.K.;Hackel, L.A. Modeling of frequency doubling and tripling with measured crystal spatial refractive-indexnonuniformities. Appl. Opt. 2001, 40, 1404–1411. [CrossRef] [PubMed]Schwarz, J.; Ramsey, M.; Smith, I.; Headley, D.; Porter, J. Low order adaptive optics on Z-Beamlet using asingle actuator deformable mirror. Opt. Commun. 2006, 264, 203–212. [CrossRef]Kasprzack, M.; Canuel, B.; Cavalier, F.; Day, R.; Genin, E.; Marque, J.; Sentenac, D.; Vajente, G. Performanceof a thermally deformable mirror for correction of low-order aberrations in laser beams. Appl. Opt. 2013, 52,2909–2916. [CrossRef] [PubMed]Kuzmin, A.A.; Khazanov, E.A.; Kulagin, O.V.; Shaykin, A.A. Neodymium glass laser with a phase conjugatemirror producing 220 J pulses at 0.02 Hz repetition rate. Opt. Express 2014, 22, 20842–20855. [CrossRef][PubMed]Kong, H.J.; Park, S.; Cha, S.; Ahn, H.; Lee, H.; Oh, J.; Lee, B.J.; Choi, S.; Kim, J.S. Conceptual design of theKumgang laser: A high-power coherent beam combination laser using SC-SBS-PCMs towards a dream laser.High Power Laser Sci. Eng. 2015, 3, e1. [CrossRef]Dane, C.; Zapata, L.; Neuman, W.; Norton, M.; Hackel, L. Design and operation of a 150 W neardiffraction-limited laser amplifier with SBS wavefront correction. IEEE J. Quantum Electron. 1995, 31,148–163. [CrossRef]Dane, C.B.; Hackel, L.A.; Halpin, J.M.; Daly, J.; Harrisson, J.; Harris, F.B., Jr. High-throughput laser peeningof metals using a high-average-power Nd: Glass laser system. Proc. SPIE 2000, 3887, 211–221.Kalal, M.; Kong, H.J.; Slezak, O.; Koresheva, E.R.; Park, S.; Startsev, S.A. Recent progress made in the SBSPCM approach to self-navigation of lasers on direct drive IFE targets. J. Fusion Energy 2010, 29, 527–531.[CrossRef]Bahk, S.-W.; Fess, E.; Kruschwitz, B.E.; Zuegel, J.D. A high-resolution, adaptive beam-shaping system forhigh-power lasers. Opt. Express 2010, 18, 9151–9163. [CrossRef] [PubMed]Liao, Z.M. Initial Demonstration of Mercury Wavefront Correction System; Report UCRL-TR-218721; LawrenceLivermore National Laboratory (LLNL): Livermore, CA, USA, 2006.Canova, F.; Flacco, A.; Canova, L.; Clady, R.; Chambaret, J.-P.; Ple, F.; Pittman, M.; Planchon, T.; Silva, M.;Benocci, R. Efficient aberrations pre-compensation and wavefront correction with a deformable mirror in themiddle of a petawatt-class CPA laser system. Laser Part. Beams 2007, 25, 649–655. [CrossRef]Dong, B.; Li, Y.; Han, X.-L.; Hu, B. Dynamic aberration correction for conformal window of high-speedaircraft using optimized model-based wavefront sensorless adaptive optics. Sensors 2016, 16, 1414. [CrossRef][PubMed]Devaney, N.; Dalimier, E.; Farrell, T.; Coburn, D.; Mackey, R.; Mackey, D.; Laurent, F.; Daly, E.; Dainty, C.Correction of ocular and atmospheric wavefronts: A comparison of the performance of various deformablemirrors. Appl. Opt. 2008, 47, 6550–6562. [CrossRef] [PubMed]Florentin, R.; Kermene, V.; Benoist, J.; Desfargesberthelemot, A.; Pagnoux, D.; Barthélémy, A.; Huignard, J.P.Shaping the light amplified in a multimode fiber. Light Sci. Appl. 2017, 6, e16208. [CrossRef]Zacharias, R.; Bliss, E.; Winters, S.; Sacks, R.A.; Feldman, M.; Grey, A.; Koch, J.A.; Stolz, C.J.; Toeppen, J.S.;Van Atta, L. Wavefront control of high-power laser beams in the National Ignition Facility (NIF). Proc. SPIE2000, 3889, 332–343.

Appl. Sci. 2017, 7, .46.9 of 9Zacharias, R.A.; Beer, N.R.; Bliss, E.S.; Burkhart, S.C.; Cohen, S.J.; Sutton, S.B.; Van Atta, R.; Winters, S.E.;Salmon, J.T.; Latta, M.R. Alignment and wavefront control systems of the National Ignition Facility. Opt. Eng.2004, 43, 2873–2884. [CrossRef]Waxer, L.; Maywar, D.; Kelly, J.; Kessler, T.; Kruschwitz, B.; Loucks, S.; McCrory, R.; Meyerhofer, D.; Morse, S.;Stoeckl, C. High-energy petawatt capability for the OMEGA laser. Opt. Photonics News 2005, 16, 30–36.[CrossRef]Bromage, J.; Bahk, S.-W.; Irwin, D.; Kwiatkowski, J.; Pruyne, A.; Millecchia, M.; Moore, M.; Zuegel, J. Afocal-spot diagnostic for on-shot characterization of high-energy petawatt lasers. Opt. Express 2008, 16,16561–16572. [PubMed]Mainguy, S.; Grosset-Grange, C.; Bordenave, E. Performance of a high-resolution deformable mirror forwavefront correction on the LIL/LMJ and PETAL baselines. J. Phys. Conf. Ser. 2010, 244, 032021. [CrossRef]Wanjun, D.; Dongxia, H.; Wei, Z.; Junpu, Z.; Feng, J.; Zeping, Y.; Kun, Z.; Xuejun, J.; Wu, D.; Runchang, Z.Beam wavefront control of a thermal inertia laser for inertial confinement fusion application. Appl. Opt.2009, 48, 3691–3694. [CrossRef] [PubMed]Jing, F.; Dai, W.; Hu, D.; Wang, D.; Liu, L.; Zhou, W.; Zhang, X.; Deng, W.; Zhang, K. Beam wavefrontcorrection scheme for application in a multi-pass amplifier system. In Proceedings of the Conference onLasers and Electro-Optics/Pacific Rim, Sydney, Australia, 28 August–1 September 2011.Divoky, M.; Sikocinski, P.; Pilar, J.; Lucianetti, A.; Sawicka, M.; Slezak, O.; Mocek, T. Design ofhigh-energy-class cryogenically cooled Yb3 :YAG multislab laser system with low wavefront distortion.Opt. Eng. 2013, 52, 064201. [CrossRef]Pilar, J.; Slezak, O.; Sikocinski, P.; Divoky, M.; Sawicka, M.; Bonora, S.; Lucianetti, A.; Mocek, T.; Jelinkova, H.Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).Appl. Opt. 2014, 53, 3255–3261. [CrossRef] [PubMed]Lucianetti, A.; Sawicka, M.; Slezak, O.; Divoky, M.; Pilar, J.; Jambunathan, V.; Bonora, S.; Antipenkov, R.;Mocek, T. Design of a kJ-class HiLASE laser as a driver for inertial fusion energy. High Power Laser Sci. Eng.2014, 2, e13. [CrossRef]Williams, W.H.; Auerbach, J.M.; Henesian, M.A.; Lawson, J.K.; Hunt, J.T.; Sacks, R.A.; Widmayer, C.C.Modeling characterization of the National Ignition Facility focal spot. Proc. SPIE 1998, 3264, 93–104.Haber, A.; Polo, A.; Smith, C.S.; Pereira, S.F.; Urbach, P.; Verhaegen, M. Iterative learning control of amembrane deformable mirror for optimal wavefront correction. Appl. Opt. 2013, 52, 2363–2373. [CrossRef][PubMed]Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Chen, Y.; Du, P.; Ba, D.; Zheng, Z.; Wang, X.; Yuan, H.; et al.Hundred-Joule-level, nanosecond-pulse Nd:glass laser system with high spatiotemporal beam quality.High Power Laser Sci. Eng. 2016, 4, e10. [CrossRef]Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Chen, Y.; Du, P.; Zheng, Z.; Ba, D.; Yuan, H.; Zhu, C. Hundred-J-Level,Nanosecond-Pulse Nd: glass Laser System with High Beam Quality. In Proceedings of the EuropeanConference on Lasers and Electro-Optics, Munich, Germany, 21–25 June 2015.Wang, Y.; Liu, R.; Yuan, H.; Li, S.; Liu, Z.; Zhu, X.; He, W.; Lu, Z. Using an active temporal compensatingsystem to achieve the super-Gaussian pulses in high-power lasers. In Proceedings of the SPIE, InternationalSymposium on Photonics and Optoelectronics, Shanghai, China, 22 August 2015.Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Cui, C.; Chen, Y.; Pengyuan, D.; Ba, D.; Zheng, Z.; Yuan, H.; et al. Spatialbeam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator.Opt. Commun. 2016, 367, 181–185. [CrossRef]Ding, L.; Li, S.; Zhou, L.; Lu, Z.; Wang, Y.; Tan, T.; Yuan, H.; Bai, Z.; Cui, C. Study on near-field imageextraction in high power lasers. Optik 2016, 127, 4495–4497. [CrossRef]Li, S.; Wang, Y.; Lu, Z.; Ding, L.; Du, P.; Chen, Y.; Zheng, Z.; Ba, D.; Dong, Y.; Yuan, H. High-quality near-fieldbeam achieved in a high-power laser based on SLM adaptive beam-shaping system. Opt. Express 2015, 23,681–689. [CrossRef] [PubMed] 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

It can compensate the wavefront distortion caused by the following amplification and transmission. The Shack Hartmann wavefront sensor (Thorlabs WFS150-5C) is placed at the end to measure the output wavefront distribution. The cavity mirror position is the image relay plane. The DM and the Shack Hartmann wavefront sensor are both at the Figure 1.

Related Documents:

2.3 - Wavefront Sensors Purpose: The wavefront sensors are the test articles for the experiment. Requirements: A Shack-Hartmann Array sensor from Thorlabs will be provided A Roddier Curvature Wavefront Sensor must be developed using COTS components Shack-Hartmann Array: Roddier Method: 22

beam expander Laser Wavefront signal (S1) RF signal (S2) Laser pulse (S3) wavefront response pulse generator controllable delay time 15 ns time 10 ms (a) (b) RF signal (S2) (S1) (S3) TAG lens wavefront sensor Figure 1. Experimental setup. (a) Scheme of the setup used to characterize the

WISHED: Wavefront imaging sensor with high resolution and depth ranging Yicheng Wu , Fengqiang Li , Florian Willomitzer, Ashok Veeraraghavan, Oliver Cossairt Abstract—Phase-retrieval based wavefront sensors have been shown to reconstruct the complex field from an object with a high spatial resolution.

a given wavefront sensor is the primary goal of the AWESoMe testbed. Figures 1 and 2 provide a visual representation of the method for measuring the wavefront errors as well as the physical hardware required to do so. 2.2.Roddier Curavture Wavefront Sensor Because the RCWS method is relatively new compared to the Shack-Hartmann array method .

The pyramid wavefront sensor (1996 by Ragazzoni)6 is a pupil plane wavefront sensor that in e ect works as a 2-D Foucault knife-edge test. In commonly used con gurations, the focal plane . and OCAM2K were mounted on a coaxial rail system from ThorLabs. Custom mounting plates

Coded Wavefront Sensor: Analogy!12 [Ng et al. 2005] Lenslet light field camera [Veeraraghavan et al. 2007, Marwah et al. 2013] Mask-based light field cameras [Wang et al. 2017] Coded wavefront sensor [Shack and Platt 1971] Shack-Hartmann wavefront sensor

wavefront, B is the deviation of Airy spot centroid from the plane wavefront case. We use standard commercial PSD (Thorlabs PSD4M; New Focus Model 2931) and the distance d between the aperture and the sensor is arbitrarily set to 5 cm. The sensitivity of the technique is strongly

English Language Arts: Grade 2 READING Guiding Principle: Students read a wide range of fiction, nonfiction, classic, and contemporary works, to build an understanding of texts, of themselves, and of the cultures of the United States and the world; to acquire new information; to respond to the needs and demands of society and the workplace .