A Six-Node Curved Triangular Element And A Four-Node .

2y ago
6 Views
2 Downloads
1.47 MB
58 Pages
Last View : 30d ago
Last Download : 3m ago
Upload by : Camille Dion
Transcription

NASA/CR-2004-210725A Six-Node Curved Triangular Element and aFour-Node Quadrilateral Element for Analysisof Laminated Composite Aerospace StructuresC. Wayne Martin and David M. BreinerMartin Engineering Inc.Lincoln, NebraskaUnder NASA Contracts NAS4-97007,NAS4-50079, NCA2-318, and NCA2-497July 2004

The NASA STI Program Office in ProfileSince its founding, NASA has been dedicatedto the advancement of aeronautics and spacescience. The NASA Scientific and TechnicalInformation (STI) Program Office plays a keypart in helping NASA maintain thisimportant role.The NASA STI Program Office is operated byLangley Research Center, the lead center forNASA’s scientific and technical information.The NASA STI Program Office provides accessto the NASA STI Database, the largest collectionof aeronautical and space science STI in theworld. The Program Office is also NASA’sinstitutional mechanism for disseminating theresults of its research and development activities.These results are published by NASA in theNASA STI Report Series, which includes thefollowing report types: TECHNICAL PUBLICATION. Reports ofcompleted research or a major significantphase of research that present the results ofNASA programs and include extensive dataor theoretical analysis. Includes compilationsof significant scientific and technical dataand information deemed to be of continuingreference value. NASA’s counterpart ofpeer-reviewed formal professional papers buthas less stringent limitations on manuscriptlength and extent of graphic presentations.TECHNICAL MEMORANDUM. Scientificand technical findings that are preliminary orof specialized interest, e.g., quick releasereports, working papers, and bibliographiesthat contain minimal annotation. Does notcontain extensive analysis.CONTRACTOR REPORT. Scientific andtechnical findings by NASA-sponsoredcontractors and grantees. CONFERENCE PUBLICATION.Collected papers from scientific andtechnical conferences, symposia, seminars,or other meetings sponsored or cosponsoredby NASA. SPECIAL PUBLICATION. Scientific,technical, or historical information fromNASA programs, projects, and missions,often concerned with subjects havingsubstantial public interest. TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientificand technical material pertinent toNASA’s mission.Specialized services that complement the STIProgram Office’s diverse offerings includecreating custom thesauri, building customizeddatabases, organizing and publishing researchresults even providing videos.For more information about the NASA STIProgram Office, see the following: Access the NASA STI Program Home Pageat http://www.sti.nasa.gov E-mail your question via the Internet tohelp@sti.nasa.gov Fax your question to the NASA Access HelpDesk at (301) 621-0134 Telephone the NASA Access Help Desk at(301) 621-0390 Write to:NASA Access Help DeskNASA Center for AeroSpace Information7121 Standard DriveHanover, MD 21076-1320

NASA/CR-2004-210725A Six-Node Curved Triangular Element and aFour-Node Quadrilateral Element for Analysisof Laminated Composite Aerospace StructuresC. Wayne Martin and David M. BreinerMartin Engineering Inc.Lincoln, NebraskaPrepared forNASA Dryden Flight Research CenterEdwards, CaliforniaUnder NASA Contracts NAS4-97007,NAS4-50079, NCA2-318, and NCA2-497National Aeronautics andSpace AdministrationDryden Flight Research CenterEdwards, California 93523-0273July 2004

NOTICEUse of trade names or names of manufacturers in this document does not constitute an official endorsementof such products or manufacturers, either expressed or implied, by the National Aeronautics andSpace Administration.Available from the following:NASA Center for AeroSpace Information (CASI)7121 Standard DriveHanover, MD 21076-1320(301) 621-0390National Technical Information Service (NTIS)5285 Port Royal RoadSpringfield, VA 22161-2171(703) 487-4650

CONTENTSPageSUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1ELEMENT PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2MATHEMATICAL DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4CONCLUDING REMARKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8ACKNOWLEDGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9APPENDIX A: CURVED ELEMENT DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19APPENDIX B: MODIFICATIONS TO Bo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27APPENDIX C: SHEAR PERPENDICULAR TO SURFACE IN FLAT ELEMENTS . . . . . . 28APPENDIX D: STRAIN CALCULATION AT NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36APPENDIX E: OUT-OF-PLANE ROTATION STIFFNESS . . . . . . . . . . . . . . . . . . . . . . . . . 39APPENDIX F: SIMULATED ANTI-SYMMETRIC BENDING MODE . . . . . . . . . . . . . . . . 42APPENDIX G: 6-NODE FLAT SHEAR PANEL (USING 10 NODE SHAPE FUNCTIONS). . 45TABLES1.NAFEMS LE2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.NAFEMS LE3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.Scordelis-Lo Roof Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.Morley Skew Plate Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135.Plunkette’s Vibrating Wedge Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146.NAFEMS T1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.Results for NAFEMS Laminated Strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168(a). NAFEMS LE2 Curved Shell Patch Test 1989 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 178(b). NAFEMS LE3 Pinched Hemisphere Shell 1989 Results . . . . . . . . . . . . . . . . . . . . . . . . 179.Error Summary for 6 and 8 Node Elements on Six Critical Test Cases. . . . . . . . . . . . . . . . . 18iii

FIGURESPage1.NAFEMS LE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.NAFEMS LE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113(a). Scordelis-Lo Roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123(b). Scordelis-Lo Roof Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124(a). Morley Skew Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134(b). Morley Skew Plate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135.Plunkett’s Vibrating Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146.NAFEMS T1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.NAFEMS Laminating Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16C.1. Sign Conventions and Shear Deformation Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29(a). Deformation in x-z plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29(b). Deformation in y-z plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29(c). Shear deformation without bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29C.2.Nodal Configurations and Interpolation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30G.1. 10-Node Triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45iv

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Form ApprovedOMB No. 0704-0188REPORT DOCUMENTATION PAGEPublic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering andmaintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.1. AGENCY USE ONLY (Leave blank)2. REPORT DATE3. REPORT TYPE AND DATES COVEREDJuly 2004Contractor Report4. TITLE AND SUBTITLE5. FUNDING NUMBERSA Six-Node Curved Triangular Element and a Four-Node QuadrilateralElement for Analysis of Laminated Composite Aerospace Structures710-55-24-E8-RR-00-0006. AUTHOR(S)C. Wayne Martin and David M. Breiner7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)8. PERFORMING ORGANIZATIONREPORT NUMBERNASA Dryden Flight Research CenterP.O. Box 273Edwards, California 93523-0273H-24699. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)10. SPONSORING/MONITORINGAGENCY REPORT NUMBERNational Aeronautics and Space AdministrationWashington, DC 20546-0001NASA/CR-2004-21072511. SUPPLEMENTARY NOTESThis work was done as partial fulfillment for contract numbers NAS4-97007, NAS4-50079, NCA2-318, and NCA2-497ranging from 1991–1998. NASA Technical Monitor – Kajal K. Gupta, NASA Dryden Flight Research Center.12a. DISTRIBUTION/AVAILABILITY STATEMENT12b. DISTRIBUTION CODEUnclassified—UnlimitedSubject Category 05This report is available at http://www.dfrc.nasa.gov/DTRS/13. ABSTRACT (Maximum 200 words)Mathematical development and some computed results are presented for Mindlin plate and shell elements,suitable for analysis of laminated composite and sandwich structures. These elements use the conventional3 (plate) or 5 (shell) nodal degrees of freedom, have no communicable mechanisms, have no spurious shearenergy (no shear locking), have no spurious membrane energy (no membrane locking) and do not requirearbitrary reduction of out-of-plane shear moduli or under-integration. Artificial out-of-plane rotationalstiffnesses are added at the element level to avoid convergence problems or singularity due to flat spots inshells. This report discusses a 6-node curved triangular element and a 4-node quadrilateral element. Findingsshow that in regular rectangular meshes, the Martin-Breiner 6-node triangular curved shell (MB6) isapproximately equivalent to the conventional 8-node quadrilateral with 2 2 integration. The 4-nodequadrilateral (MB4) has very good accuracy for a 4-node element, and may be preferred in vibration analysisbecause of narrower bandwidth. The mathematical developments used in these elements, those discussed in theseven appendices, have been applied to elements with 3, 4, 6, and 10 nodes and can be applied to other nodalconfigurations.14. SUBJECT TERMS15. NUMBER OF PAGESAerospace engineering, Composites, Curved elements, Finite element, Structuraldesign17. SECURITY CLASSIFICATIONOF REPORTUnclassifiedNSN 7540-01-280-550018. SECURITY CLASSIFICATIONOF THIS PAGEUnclassified19. SECURITY CLASSIFICATIONOF ABSTRACTUnclassified5816. PRICE CODE20. LIMITATION OF ABSTRACTUnlimitedStandard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z39-18298-102

show that in regular rectangular meshes, the Martin-Breiner 6-node triangular curved shell (MB6) is approximately equivalent to the conventional 8-node quadrilateral with integration. The 4-node quadrilateral (MB4) has very good accuracy for a 4-node element, and may be prefe

Related Documents:

Tall With Spark Hadoop Worker Node Executor Cache Worker Node Executor Cache Worker Node Executor Cache Master Name Node YARN (Resource Manager) Data Node Data Node Data Node Worker Node Executor Cache Data Node HDFS Task Task Task Task Edge Node Client Libraries MATLAB Spark-submit script

5. Who uses Node.js 6. When to Use Node.js 7. When to not use Node.js Chapter 2: How to Download & Install Node.js - NPM on Windows 1. How to install Node.js on Windows 2. Installing NPM (Node Package Manager) on Windows 3. Running your first Hello world application in Node.js Chapter 3: Node.js NPM Tutorial: Create, Publish, Extend & Manage 1.

6. What is the formula for finding the surface area of a triangular prism? 7. What is the surface area of this figure? Directions: Find the surface area of each triangular prism. 8. A triangular prism has a triangular end with a base of 4 inches and a height of 3 inches. The length of each

A triangular prism has two triangular bases, joined by three rectangular sides. The net for a triangular prism shows the 2 triangular bases and 3 rectangular faces. This cheese is cut in the shape of a triangular prism. Just as you can draw a net for a three-dimensional fi gure, you can use a

CMSC 330 - Spring 2011 Recursive Descent: Basic Strategy ! Initially, “current node” is start node When processing the current node, 4 possibilities Node is the empty string Move to next node in DFS order that has not yet been processed Node is a terminal that matches lookahead Advance lookahead by one symbol and move to next node in

potential of node a or b with respect to the reference node, c. To solve for the unknown node voltages in this circuit, begin by applying Kirchhoff's current law at node a. Using Ohm’s Law, the current through R 1 and R 2 can be expressed in terms of the unknown node voltage at node

A RPL node may attach to a DODAG as a leaf node only. One example of such a case is when a node does not understand or does not support (policy) the RPL Instance's OF or advertised metric/constraint,the node may either join the DODAG as a leaf node or may not join the DODAG. A node operating as a leaf node must obey the following rules: 1.

MINISTRY OF COMMERCE AND INDUSTRY (Department of Industrial Policy and Promotion) NOTIFICATION New Delhi, the 11th April, 2018 G.S.R. 364(E).—This notification is being issued in supersession of Gazette Notification No. G.S.R. 501(E) dated May 23, 2017. Definitions 1. In this notification,— (a) An entity shall be considered as a Startup: i .