ANNALES SCIENnIFIQUES D L ÉCOLE H ORMALE SUPÉRIEU KE

3y ago
28 Views
3 Downloads
513.79 KB
5 Pages
Last View : 3d ago
Last Download : 3m ago
Upload by : Callan Shouse
Transcription

ISSN 0012-9593ASENAHquatrième série - tome 53fascicule 2mars-avril 2020aNNALESSCIENnIFIQUESdeL ÉCOLEhORMALESUPÉRIEUkEAlan HAYNES & Jens MARKLOFHigher dimensional Steinhaus and Slaterproblems via homogeneous dynamicsSOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l’École Normale SupérieurePubliées avec le concours du Centre National de la Recherche ScientifiqueResponsable du comité de rédaction / Editor-in-chiefPatrick B Comité de rédaction au 1 er janvier 2020Publication fondée en 1864 par Louis PasteurP. B D. H de 1883 à 1888 par H. D S. B A. N de 1889 à 1900 par C. H G. C J. S de 1901 à 1917 par G. D Y. C S. V ̃ N . de 1918 à 1941 par É. P A. D A. W de 1942 à 1967 par P. M G. G G. W Continuée de 1872 à 1882 par H. S -C D Rédaction / EditorAnnales Scientifiques de l’École Normale Supérieure,45, rue d’Ulm, 75230 Paris Cedex 05, France.Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.annales@ens.frÉdition et abonnements / Publication and subscriptionsSociété Mathématique de FranceCase 916 - Luminy13288 Marseille Cedex 09Tél. : (33) 04 91 26 74 64Fax : (33) 04 91 41 17 51email : abonnements@smf.emath.frTarifsAbonnement électronique : 420 euros.Abonnement avec supplément papier :Europe : 551 e. Hors Europe : 620 e ( 930). Vente au numéro : 77 e. 2020 Société Mathématique de France, ParisEn application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisationde l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form orby any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.ISSN 0012-9593 (print) 1873-2151 (electronic)Directeur de la publication : Stéphane SeuretPériodicité : 6 nos / an

Ann. Scient. Éc. Norm. Sup.4 e série, t. 53, 2020, p. 537 à 557HIGHER DIMENSIONAL STEINHAUS AND SLATERPROBLEMS VIA HOMOGENEOUS DYNAMICS A HAYNES J MARKLOFA . – The three gap theorem, also known as the Steinhaus conjecture or three distancetheorem, states that the gaps in the fractional parts of ; 2 ; : : : ; N take at most three distinct values.Motivated by a question of Erdős, Geelen and Simpson, we explore a higher-dimensional variant,which asks for the number of gaps between the fractional parts of a linear form. Using the ergodicproperties of the diagonal action on the space of lattices, we prove that for almost all parameter valuesthe number of distinct gaps in the higher dimensional problem is unbounded. Our results in particularimprove earlier work by Boshernitzan, Dyson and Bleher et al. We furthermore discuss a close link withthe Littlewood conjecture in multiplicative Diophantine approximation. Finally, we also demonstratehow our methods can be adapted to obtain similar results for gaps between return times of translationsto shrinking regions on higher dimensional tori.R . – Le théorème des trois distances affirme que les intervalles entre les parties fractionnaires de ; 2 ; : : : ; N ont au plus trois longueurs distinctes. Motivés par une question de Erdős, Geelen et Simpson, nous explorons une variante en dimension supérieure, qui pose la question du nombred’écarts entre les parties fractionnaires d’une forme linéaire. En utilisant les propriétés ergodiques del’action diagonale sur l’espace des réseaux, nous prouvons que pour presque toutes valeurs des paramètres le nombre d’écarts distincts dans le problème en dimension supérieure est non-borné. Notrerésultat améliore en particulier les travaux antérieurs de Boshernitzan, Dyson et Bleher et al. Nous discutons en outre le lien étroit avec la conjecture de Littlewood en approximation diophantienne multiplicative. Finalement, nous démontrons également comment nos méthodes peuvent être adaptées pourobtenir des résultats similaires pour les écarts entre les temps de retour de translations dans des régionscontractantes sur les tores de plus grande dimension.AH: Research supported by EPSRC grants EP/L001462, EP/M023540.JM: The research leading to these results has received funding from the European Research Council under theEuropean Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 291147.0012-9593/02/ 2020 Société Mathématique de France. Tous droits réservésANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEUREdoi:10.24033/asens.2427

538A. HAYNES AND J. MARKLOF1. Introduction1.1. The Steinhaus problemLet D Rd be a bounded convex set. For 2 Rd , define(1.1)S. ; D/ D fm mod 1 j m 2 Zd \ Dg R Z;and let G. ; D/ be a number of distinct gaps between the elements of S. ; D/. In otherwords, the set S. ; D/ partitions R Z into intervals of G. ; D/ distinct lengths.In the classical case d D 1, the three gap theorem (also referred to as Steinhaus conjectureor three distance theorem) asserts that for all 2 R and any interval D, we have G. ; D/ 3.The first proofs of this remarkable fact were published in 1957 by Sós [25], in 1958 by Surányi[26], and in 1959 by Świerczkowski [27]. The theorem has been rediscovered repeatedly, andmany authors have considered generalizations to various settings [1, 8, 9, 15, 18, 17, 19, 21,22, 24, 28].In this paper we are firstly interested in a higher dimensional version of the Steinhausproblem, which was previously studied by Geelen and Simpson [16], Fraenkel and Holzman[14], Chevallier [7], Boshernitzan [4, 5], Dyson [11], and Bleher, Homma, Ji, Roeder, and Shen[3]. For this problem our goal is twofold: to demonstrate the close connection between themulti-dimensional Steinhaus problem and the Littlewood conjecture, and to show how wellknown results from ergodic theory on the space of unimodular lattices in Rd can be used toshed new light on a question of Erdős as stated by Geelen and Simpson [16, Section 4].Our first theorem describes the generic failure of the finite gap phenomenon in higherdimensions. Denote by R D D fRx j x 2 Dg the homothetic dilation of D by a factorof R. We say a sequence 0 R1 R2 R3 : : : is subexponential ifRiC1D 1:(1.2)lim Ri D 1;limi!1i !1 RiT 1. – Let d 2. There exists a set P Rd of full Lebesgue measure, such that forevery bounded convex D Rd with non-empty interior, every 2 P , and every subexponentialsequence .Ri /i , we have(1.3)sup G. ; Ri D/ D 1iand(1.4)lim inf G. ; Ri D/ 1:iA previous result in this direction is due to Bleher, Homma, Ji, Roeder, and Shen [3], whoshow in the case d D 2, and for a certain set of , that(1.5)sup G. ; R D/ D 1;R 1where D is the triangle in R2 with vertices at .0; 0/; .0; 1/; and .1 2; 0/. For purposes ofcomparison with Theorem 1, a careful computation shows that the size of the set of to which the proof in [3] applies, has Hausdorff dimension 3 2. (For the details of thiscomputation, the reader may consult Lemma 6.1 of [18] and the paragraphs immediatelyfollowing its proof.) Theorem 1 on the other hand admits a set of of full Hausdorffdimension d .4 e SÉRIE – TOME 53 – 2020 – No 2

HIGHER DIMENSIONAL STEINHAUS AND SLATER PROBLEMS539In the case d D 2, for D D Œ0; 1/2 a square, a folklore problem of Erdős (see thediscussion at the end of [16]) asks whether eq. (1.5) holds whenever 1; 1 ; 2 are Q-linearlyindependent. The answer to this question is in fact, negative. As recorded in [3], this appearsto have first been noticed in a private correspondence between Freeman Dyson and MichaelBoshernitzan [4, 5, 11], who showed that (1.5) fails for badly approximable .We say that 2 Rd is badly approximable if there is c 0 such that km kR Z ckmk dfor all non-zero m 2 Zd . Here kxkR Z D mink2Z kx C kk denotes the distance to the nearestinteger.T 2 (Boshernitzan and Dyson; Bleher, Homma, Ji, Roeder, and Shen).Let d 2. For every bounded convex D Rd with non-empty interior, and every badlyapproximable 2 Rd , we havesup G. ; R D/ 1:(1.6)R 1We will see below that this statement is an immediate consequence of our dynamical interpretation of G. ; R D/ combined with Dani’s correspondence between badly approximablevectors and bounded orbits in the space of lattices.Let us now turn to the connection between the Steinhaus problem and the Littlewoodconjecture in multiplicative Diophantine approximation. The Littlewood conjecture statesthat for every 1 ; 2 2 R,(1.7)lim inf nkn 1 kR Z kn 2 kR Z D 0:n!1There is a higher dimensional version of this conjecture, that for any d 2 and for every 2 Rd ,(1.8)lim inf nkn 1 kR Z kn d kR Z D 0:n!1Resolving the conjecture for d D 2 would imply the higher dimensional statement for alld 2, but at present the conjecture has not been proved in full for any value of d . However,it is known that (1.8) holds for a set of whose complement has Hausdorff dimension zero[12].Consider the (in general non-homogeneous) dilation DT D fxT j x 2 Dg of D, whereT D diag.T1 ; : : : ; Td / is a diagonal matrix with expansion factors Ti 0.T 3. – Let d 2. Assume D Rd is bounded convex and contains the cube Œ0; /dfor some 0. If D . 1 ; : : : ; d / 2 Rd is such that(1.9)supT1 ;:::;Td 1G. ; DT / D 1;then(1.10)lim inf nkn 1 kR Z kn d kR Z D 0:n!1Theorem 1 implies that eq. (1.9) holds for a set of of full Lebesgue measure. We expectthat there is a more concise characterisation of the set of exceptions, in analogy to the caseof the Littlewood conjecture. But, unlike the Littlewood conjecture, eq. (1.9) is not true forall . This is obvious for 2 Qd . The following theorem gives a less trivial class of examples.ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

Annales ScientiÞques de lÕ cole Normale Sup”rieure, 45, rue dÕUlm, 75230 Paris Cedex 05, France. T”l. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80. annales@ens.fr dition et abonnements / Publication and subscriptions Soci”t” Math”matique de France Case 916 - Luminy

Related Documents:

t. The log-normal distribution is described by the Cole-Cole a, and the mode of the distribution is the time constant of relaxation [Cole and Cole, 1941]. If the Cole-Cole distribution parameter, a, is unity, then there is a single time constant of relaxation and the Cole

The Cole-Cole (II is a number that is often used to describe the divergence of a measured dielectric dispersion from the ideal dispersion exhibited by a Debye type of dielectric relaxation, and is widely . [27] equation, introduced by the Cole brothers [28] in which an additional parameter, the Cole-Cole (Y, is used to characterise the fact .

the Cole–Cole and PLS models, the latter technique giving more satisfactory results. Keywords On-line biomass monitoring In-situ spectroscopy Scanning capacitance (dielectric) spectroscopy Cole–Cole equation PLS Calibration model robustness Introduction Over the last few decades, the field of biotechnology has

Equation 20 is the prove of equation 1 which relate water saturation to cole cole time; maximum cole cole time and fractal dimension. The capillary pressure can be scaled as logSw (Df 3) logPc constant 21 Where Sw the water saturation, Pc the capillary pressure and

and Cole, 1941) (Cole and Cole, 1941) and GEMTIP model (Zhdanov, 2008). These two models have been used in a number of publications for the interpretation of IP data. The parameters of the conductivity relaxation model can be used for discrimination of the different types of rock formations, which is an important goal in mineral and petroleum

Cole-Cole plot analysis A simple evaluation of the Debye Equations (3) and (4) shows that the relation between ε' and ε" of the complex dielectric constant (ε٭) is the equation of a circle. By eliminating (ωτ), these two Equations 2, 3) can be combined and written in the form of a circle:

the Cole-Cole model of a time-dependent conductivity, and then compare overdetermined and underdetermined inversion . equation 1. The frequency domain solution is then converted to the time domain using digital filters. Before proceeding to inversion of observed data with this for-

published by the American Petroleum Institute (API, 1984, 1991) are generally not consistent with the physical processes that dictate actual pile capacity. For example, the experimental observa- tion of a gradual reduction in the rate of increase of pile capacity with embedment depth is allowed for by imposing limiting values of end-bearing and shaft friction beyond some critical depth .