Precalculus Prerequisites A.k.a. 'Chapter 0' - Stitz Zeager

1y ago
1 Views
1 Downloads
742.83 KB
146 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Raelyn Goode
Transcription

Precalculus Prerequisitesa.k.a. ‘Chapter 0’byCarl Stitz, Ph.D.Lakeland Community CollegeJeff Zeager, Ph.D.Lorain County Community CollegeAugust 13, 2013

Table of Contents0 Prerequisites0.1Basic Set Theory and Interval Notation . . . . . . . . . . . .0.1.1 Some Basic Set Theory Notions . . . . . . . . . . .0.1.2 Sets of Real Numbers . . . . . . . . . . . . . . . . .0.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.1.4 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.2Real Number Arithmetic . . . . . . . . . . . . . . . . . . . .0.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.2.2 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.3Linear Equations and Inequalities . . . . . . . . . . . . . . .0.3.1 Linear Equations . . . . . . . . . . . . . . . . . . . .0.3.2 Linear Inequalities . . . . . . . . . . . . . . . . . . .0.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.3.4 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.4Absolute Value Equations and Inequalities . . . . . . . . . .0.4.1 Absolute Value Equations . . . . . . . . . . . . . . .0.4.2 Absolute Value Inequalities . . . . . . . . . . . . . .0.4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.4.4 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.5Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . .0.5.1 Polynomial Addition, Subtraction and Multiplication.0.5.2 Polynomial Long Division. . . . . . . . . . . . . . . .0.5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.5.4 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.6Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.6.1 Solving Equations by Factoring . . . . . . . . . . . .0.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.6.3 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.7Quadratic Equations . . . . . . . . . . . . . . . . . . . . . .0.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . .0.7.2 Answers . . . . . . . . . . . . . . . . . . . . . . . .0.8Rational Expressions and Equations . . . . . . . . . . . . 18283949596

ivTable of Contents.1081101111191241251261321331 Relations and Functions1.1Sets of Real Numbers and the Cartesian Coordinate Plane1.1.1 The Cartesian Coordinate Plane . . . . . . . . . . .1.1.2 Distance in the Plane . . . . . . . . . . . . . . . . .1.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.1.4 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.2Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.2.1 Graphs of Equations . . . . . . . . . . . . . . . . . .1.2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.2.3 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.3Introduction to Functions . . . . . . . . . . . . . . . . . . . .1.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.3.2 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.4Function Notation . . . . . . . . . . . . . . . . . . . . . . . .1.4.1 Modeling with Functions . . . . . . . . . . . . . . .1.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.4.3 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.5Function Arithmetic . . . . . . . . . . . . . . . . . . . . . . .1.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.5.2 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.6Graphs of Functions . . . . . . . . . . . . . . . . . . . . . .1.6.1 General Function Behavior . . . . . . . . . . . . . .1.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.6.3 Answers . . . . . . . . . . . . . . . . . . . . . . . .1.7Transformations . . . . . . . . . . . . . . . . . . . . . . . . .1.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . .1.7.2 Answers . . . . . . . . . . . . . . . . . . . . . . . 01208216219225232239246252272277.283. 283. 295. 301. 3050.90.100.8.1 Exercises . . . . . . . . . . . . . . . . . . . .0.8.2 Answers . . . . . . . . . . . . . . . . . . . .Radicals and Equations . . . . . . . . . . . . . . . .0.9.1 Rationalizing Denominators and Numerators0.9.2 Exercises . . . . . . . . . . . . . . . . . . . .0.9.3 Answers . . . . . . . . . . . . . . . . . . . .Complex Numbers . . . . . . . . . . . . . . . . . . .0.10.1 Exercises . . . . . . . . . . . . . . . . . . . .0.10.2 Answers . . . . . . . . . . . . . . . . . . . .2 Linear and Quadratic Functions2.1Linear Functions . . . . . .2.1.1 Exercises . . . . . .2.1.2 Answers . . . . . .2.2Absolute Value Functions .

Table of Contents2.32.42.5v2.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . .2.2.2 Answers . . . . . . . . . . . . . . . . . . . . . . .Quadratic Functions . . . . . . . . . . . . . . . . . . . . .2.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . .2.3.2 Answers . . . . . . . . . . . . . . . . . . . . . . .Inequalities with Absolute Value and Quadratic Functions2.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . .2.4.2 Answers . . . . . . . . . . . . . . . . . . . . . . .Regression . . . . . . . . . . . . . . . . . . . . . . . . . .2.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . .2.5.2 Answers . . . . . . . . . . . . . . . . . . . . . . .3 Polynomial Functions3.1Graphs of Polynomials . . . . . . . . . . . . . . . . . . . . . .3.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .3.1.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . .3.2The Factor Theorem and the Remainder Theorem . . . . . .3.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .3.2.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . .3.3Real Zeros of Polynomials . . . . . . . . . . . . . . . . . . . .3.3.1 For Those Wishing to use a Graphing Calculator . . .3.3.2 For Those Wishing NOT to use a Graphing Calculator3.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .3.3.4 Answers . . . . . . . . . . . . . . . . . . . . . . . . .3.4Complex Zeros and the Fundamental Theorem of Algebra . .3.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .3.4.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . .4 Rational Functions4.1Introduction to Rational Functions . . .4.1.1 Exercises . . . . . . . . . . . .4.1.2 Answers . . . . . . . . . . . .4.2Graphs of Rational Functions . . . . .4.2.1 Exercises . . . . . . . . . . . .4.2.2 Answers . . . . . . . . . . . .4.3Rational Inequalities and Applications4.3.1 Variation . . . . . . . . . . . .4.3.2 Exercises . . . . . . . . . . . .4.3.3 Answers . . . . . . . . . . . .316317321333336341353355358363366.369. 369. 380. 384. 391. 399. 401. 403. 404. 407. 414. 417. 421. 429. 431.437. 437. 450. 452. 456. 469. 471. 478. 486. 490. 493

viTable of Contents5 Further Topics in Functions5.1Function Composition . .5.1.1 Exercises . . . . .5.1.2 Answers . . . . .5.2Inverse Functions . . . . .5.2.1 Exercises . . . . .5.2.2 Answers . . . . .5.3Other Algebraic Functions5.3.1 Exercises . . . . .5.3.2 Answers . . . . .6 Exponential and Logarithmic Functions6.1Introduction to Exponential and Logarithmic Functions6.1.1 Exercises . . . . . . . . . . . . . . . . . . . . .6.1.2 Answers . . . . . . . . . . . . . . . . . . . . .6.2Properties of Logarithms . . . . . . . . . . . . . . . . .6.2.1 Exercises . . . . . . . . . . . . . . . . . . . . .6.2.2 Answers . . . . . . . . . . . . . . . . . . . . .6.3Exponential Equations and Inequalities . . . . . . . . .6.3.1 Exercises . . . . . . . . . . . . . . . . . . . . .6.3.2 Answers . . . . . . . . . . . . . . . . . . . . .6.4Logarithmic Equations and Inequalities . . . . . . . . .6.4.1 Exercises . . . . . . . . . . . . . . . . . . . . .6.4.2 Answers . . . . . . . . . . . . . . . . . . . . .6.5Applications of Exponential and Logarithmic Functions6.5.1 Applications of Exponential Functions . . . . .6.5.2 Applications of Logarithms . . . . . . . . . . .6.5.3 Exercises . . . . . . . . . . . . . . . . . . . . .6.5.4 Answers . . . . . . . . . . . . . . . . . . . . .7 Hooked on Conics7.1Introduction to Conics7.2Circles . . . . . . . . .7.2.1 Exercises . . .7.2.2 Answers . . .7.3Parabolas . . . . . . .7.3.1 Exercises . . .7.3.2 Answers . . .7.4Ellipses . . . . . . . .7.4.1 Exercises . . .7.4.2 Answers . . .7.5Hyperbolas . . . . . .7.5.1 Exercises . . .495495505508514530532533543547.553. 553. 566. 570. 575. 583. 585. 586. 594. 596. 597. 604. 606. 607. 607. 615. 620. 628.633. 633. 636. 640. 641. 643. 651. 652. 655. 664. 666. 671. 681

Table of Contents7.5.2viiAnswers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6848 Systems of Equations and Matrices8.1Systems of Linear Equations: Gaussian Elimination8.1.1 Exercises . . . . . . . . . . . . . . . . . . . .8.1.2 Answers . . . . . . . . . . . . . . . . . . . .8.2Systems of Linear Equations: Augmented Matrices .8.2.1 Exercises . . . . . . . . . . . . . . . . . . . .8.2.2 Answers . . . . . . . . . . . . . . . . . . . .8.3Matrix Arithmetic . . . . . . . . . . . . . . . . . . . .8.3.1 Exercises . . . . . . . . . . . . . . . . . . . .8.3.2 Answers . . . . . . . . . . . . . . . . . . . .8.4Systems of Linear Equations: Matrix Inverses . . . .8.4.1 Exercises . . . . . . . . . . . . . . . . . . . .8.4.2 Answers . . . . . . . . . . . . . . . . . . . .8.5Determinants and Cramer’s Rule . . . . . . . . . . .8.5.1 Definition and Properties of the Determinant8.5.2 Cramer’s Rule and Matrix Adjoints . . . . . .8.5.3 Exercises . . . . . . . . . . . . . . . . . . . .8.5.4 Answers . . . . . . . . . . . . . . . . . . . .8.6Partial Fraction Decomposition . . . . . . . . . . . .8.6.1 Exercises . . . . . . . . . . . . . . . . . . . .8.6.2 Answers . . . . . . . . . . . . . . . . . . . .8.7Systems of Non-Linear Equations and Inequalities .8.7.1 Exercises . . . . . . . . . . . . . . . . . . . .8.7.2 Answers . . . . . . . . . . . . . . . . . . . .9 Sequences and the Binomial Theorem9.1Sequences . . . . . . . . . . . . .9.1.1 Exercises . . . . . . . . . .9.1.2 Answers . . . . . . . . . .9.2Summation Notation . . . . . . . .9.2.1 Exercises . . . . . . . . . .9.2.2 Answers . . . . . . . . . .9.3Mathematical Induction . . . . . .9.3.1 Exercises . . . . . . . . . .9.3.2 Selected Answers . . . . .9.4The Binomial Theorem . . . . . . .9.4.1 Exercises . . . . . . . . . .9.4.2 Answers . . . . . . . . . .689. 689. 702. 704. 707. 714. 716. 718. 731. 735. 738. 749. 752. 754. 754. 758. 763. 767. 768. 776. 777. 778. 787. 789.793. 793. 801. 803. 804. 813. 815. 816. 821. 822. 824. 834. 836

viiiTable of Contents10 Foundations of Trigonometry10.1 Angles and their Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.1.1 Applications of Radian Measure: Circular Motion . . . . . . . . . . .10.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.1.3 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.2 The Unit Circle: Cosine and Sine . . . . . . . . . . . . . . . . . . . . . . . .10.2.1 Beyond the Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . .10.2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.2.3 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.3 The Six Circular Functions and Fundamental Identities . . . . . . . . . . . .10.3.1 Beyond the Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . .10.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.3.3 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.4 Trigonometric Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.4.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.5 Graphs of the Trigonometric Functions . . . . . . . . . . . . . . . . . . . . .10.5.1 Graphs of the Cosine and Sine Functions . . . . . . . . . . . . . . .10.5.2 Graphs of the Secant and Cosecant Functions . . . . . . . . . . . .10.5.3 Graphs of the Tangent and Cotangent Functions . . . . . . . . . . .10.5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.5.5 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.6 The Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . .10.6.1 Inverses of Secant and Cosecant: Trigonometry Friendly Approach10.6.2 Inverses of Secant and Cosecant: Calculus Friendly Approach . . .10.6.3 Calculators and the Inverse Circular Functions. . . . . . . . . . . . .10.6.4 Solving Equations Using the Inverse Trigonometric Functions. . . .10.6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.6.6 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.7 Trigonometric Equations and Inequalities . . . . . . . . . . . . . . . . . . . .10.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10.7.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Applications of Trigonometry11.1 Applications of Sinusoids11.1.1 Harmonic Motion11.1.2 Exercises . . . . .11.1.3 Answers . . . . .11.2 The Law of Sines . . . . .11.2.1 Exercises . . . . .11.2.2 Answers . . . . .11.3 The Law of Cosines . . .1031. 1031. 1036. 1042. 1045. 1047. 1055. 1059. 1061

Table of Contents11.3.1 Exercises . . . . . . . . .11.3.2 Answers . . . . . . . . .11.4 Polar Coordinates . . . . . . . .11.4.1 Exercises . . . . . . . . .11.4.2 Answers . . . . . . . . .11.5 Graphs of Polar Equations . . . .11.5.1 Exercises . . . . . . . . .11.5.2 Answers . . . . . . . . .11.6 Hooked on Conics Again . . . . .11.6.1 Rotation of Axes . . . . .11.6.2 The Polar Form of Conics11.6.3 Exercises . . . . . . . . .11.6.4 Answers . . . . . . . . .11.7 Polar Form of Complex Numbers11.7.1 Exercises . . . . . . . . .11.7.2 Answers . . . . . . . . .11.8 Vectors . . . . . . . . . . . . . .11.8.1 Exercises . . . . . . . . .11.8.2 Answers . . . . . . . . .11.9 The Dot Product and Projection .11.9.1 Exercises . . . . . . . . .11.9.2 Answers . . . . . . . . .11.10 Parametric Equations . . . . . .11.10.1 Exercises . . . . . . . . .11.10.2 Answers . . . . . . . . 7121912231229

xTable of Contents

Chapter 0PrerequisitesThe authors would like nothing more than to dive right into the sheer excitement of Precalculus.However, experience - our own as well as that of our colleagues - has taught us that is it beneficial, if not completely necessary, to review what students should know before embarking on aPrecalculus adventure. The goal of Chapter 0 is exactly that: to review the concepts, skills andvocabulary we believe are prerequisite to a rigorous, college-level Precalculus course. This reviewis not designed to teach the material to students who have never seen it before thus the presentation is more succinct and the exercise sets are shorter than those usually found in an IntermediateAlgebra text. An outline of the chapter is given below.Section 0.1 (Basic Set Theory and Interval Notation) contains a brief summary of the set theoryterminology used throughout the text including sets of real numbers and interval notation.Section 0.2 (Real Number Arithmetic) lists the properties of real number arithmetic.1Section 0.3 (Linear Equations and Inequalities) focuses on solving linear equations and linearinequalities from a strictly algebraic perspective. The geometry of graphing lines in the plane isdeferred until Section 2.1 (Linear Functions).Section 0.4 (Absolute Value Equations and Inequalities) begins with a definition of absolute valueas a distance. Fundamental properties of absolute value are listed and then basic equations andinequalities involving absolute value are solved using the ‘distance definition’ and those properties.Absolute value is revisited in much greater depth in Section 2.2 (Absolute Value Functions).Section 0.5 (Polynomial Arithmetic) covers the addition, subtraction, multiplication and division ofpolynomials as well as the vocabulary which is used extensively when the graphs of polynomialsare studied in Chapter 3 (Polynomials).Section 0.6 (Factoring) covers basic factoring techniques and how to solve equations using thosetechniques along with the Zero Product Property of Real Numbers.Section 0.7 (Quadratic Equations) discusses solving quadratic equations using the technique of‘completing the square’ and by using the Quadratic Formula. Equations which are ‘quadratic inform’ are also discussed.1You know, the stuff students mess up all of the time like fractions and negative signs. The collection is close toexhaustive and definitely exhausting!

2PrerequisitesSection 0.8 (Rational Expressions and Equations) starts with the basic arithmetic of rational expressions and the simplifying of compound fractions. Solving equations by clearing denominatorsand the handling negative integer exponents are presented but the graphing of rational functionsis deferred until Chapter 4 (Rational Functions).Section 0.9 (Radicals and Equations) covers simplifying radicals as well as the solving of basicequations involving radicals.Section 0.10 (Complex Numbers) covers the basic arithmetic of complex numbers and the solvingof quadratic equations with complex solutions.

0.1 Basic Set Theory and Interval Notation0.13Basic Set Theory and Interval Notation0.1.1Some Basic Set Theory NotionsLike all good Math books, we begin with a definition.Definition 0.1. A set is a well-defined collection of objects which are called the ‘elements’ ofthe set. Here, ‘well-defined’ means that it is possible to determine if something belongs to thecollection or not, without prejudice.The collection of letters that make up the word “smolko” is well-defined and is a set, but thecollection of the worst Math teachers in the world is not well-defined and therefore is not a set.1In general, there are three ways to describe sets and those methods are listed below.Ways to Describe Sets1. The Verbal Method: Use a sentence to define the set.2. The Roster Method: Begin with a left brace ‘{’, list each element of the set only onceand then end with a right brace ‘}’.3. The Set-Builder Method: A combination of the verbal and roster methods using a“dummy variable” such as x.For example, let S be the set described verbally as the set of letters that make up the word“smolko”. A roster description of S is {s, m, o, l, k}. Note that we listed ‘o’ only once, eventhough it appears twice in the word “smolko”. Also, the order of the elements doesn’t matter,so {k , l, m, o, s} is also a roster description of S. Moving right along, a set-builder descriptionof S is: {x x is a letter in the word “smolko”}. The way to read this is ‘The set of elements xsuch that x is a letter in the word “smolko”.’ In each of the above cases, we may use the familiarequals sign ‘ ’ and write S {s, m, o, l, k} or S {x x is a letter in the word “smolko”}.Notice that m is in S but many other letters, such as q, are not in S. We express these ideas ofset inclusion and exclusion mathematically using the symbols m S (read ‘m is in S’) and q /S(read ‘q is not in S’). More precisely, we have the following.Definition 0.2. Let A be a set. If x is an element of A then we write x A which is read ‘x is in A’. If x is not an element of A then we write x / A which is read ‘x is not in A’.Now let’s consider the set C {x x is a consonant in the word “smolko”}. A roster descriptionof C is C {s, m, l, k}. Note that by construction, every element of C is also in S. We express1For a more thought-provoking example, consider the collection of all things that do not contain themselves - thisleads to the famous Russell’s Paradox.

4Prerequisitesthis relationship by stating that the set C is a subset of the set S, which is written in symbols asC S. The more formal definition is given below.Definition 0.3. Given sets A and B, we say that the set A is a subset of the set B and write‘A B’ if every element in A is also an element of B.Note that in our example above C S, but not vice-versa, since o S but o / C. Additionally,the set of vowels V {a, e, i, o, u}, while it does have an element in common with S, is not asubset of S. (As an added note, S is not a subset of V , either.) We could, however, build a setwhich contains both S and V as subsets by gathering all of the elements in both S and V togetherinto a single set, say U {s, m, o, l, k, a, e, i, u}. Then S U and V U. The set U we havebuilt is called the union of the sets S and V and is denoted S V . Furthermore, S and V aren’tcompletely different sets since they both contain the letter ‘o.’ The intersection of two sets is theset of elements (if any) the two sets have in common. In this case, the intersection of S and V is{o}, written S V {o}. We formalize these ideas below.Definition 0.4. Suppose A and B are sets. The intersection of A and B is A B {x x A and x B} The union of A and B is A B {x x A or x B (or both)}The key words in Definition 0.4 to focus on are the conjunctions: ‘intersection’ corresponds to‘and’ meaning the elements have to be in both sets to be in the intersection, whereas ‘union’corresponds to ‘or’ meaning the elements have to be in one set, or the other set (or both). In otherwords, to belong to the union of two sets an element must belong to at least one of them.Returning to the sets C and V above, C V {s, m, l, k , a, e, i, o, u}.2 When it comes to theirintersection, however, we run into a bit of notational awkwardness since C and V have no elementsin common. While we could write C V {}, this sort of thing happens often enough that we givethe set with no elements a name.Definition 0.5. The Empty Set is the set which contains no elements. That is, {} {x x 6 x}.As promised, the empty set is the set containing no elements since no matter what ‘x’ is, ‘x x.’Like the number ‘0,’ the empty set plays a vital role in mathematics.3 We introduce it here more asa symbol of convenience as opposed to a contrivance.4 Using this new bit of notation, we have forthe sets C and V above that C V . A nice way to visualize relationships between sets and setoperations is to draw a Venn Diagram. A Venn Diagram for the sets S, C and V is drawn at thetop of the next page.2Which just so happens to be the same set as S V .Sadly, the full extent of the empty set’s role will not be explored in this text.4Actually, the empty set can be used to generate numbers - mathematicians can create something from nothing!3

0.1 Basic Set Theory and Interval Notation5UCosmlkaeiuSVA Venn Diagram for C, S and V .In the Venn Diagram above we have three circles - one for each of the sets C, S and V . Wevisualize the area enclosed by each of these circles as the elements of each set. Here, we’vespelled out the elements for definitiveness. Notice that the circle representing the set C is completely inside the circle representing S. This is a geometric way of showing that C S. Also,notice that the circles representing S and V overlap on the letter ‘o’. This common region is howwe visualize S V . Notice that since C V , the circles which represent C and V have nooverlap whatsoever.All of these circles lie in a rectangle labeled U (for ‘universal’ set). A universal set contains allof the elements under discussion, so it could always be taken as the union of all of the sets inquestion, or an even larger set. In this case, we could take U S V or U as the set of lettersin the entire alphabet. The reader may well wonder if there is an ultimate universal set whichcontains everything. The short answer is ‘no’ and we refer you once again to Russell’s Paradox.The usual triptych of Venn Diagrams indicating generic sets A and B along with A B and A Bis given below.UUUA BABSets A and B.AA BBA B is shaded.ABA B is shaded.

6Prerequisites0.1.2Sets of Real NumbersThe playground for most of this text is the set of Real Numbers. Many quantities in the ‘real world’can be quantified using real numbers: the temperature at a given time, the revenue generatedby selling a certain number of products and the maximum population of Sasquatch which caninhabit a particular region are just three basic examples. A succinct, but nonetheless incomplete5definition of a real number is given below.Definition 0.6. A real number is any number which possesses a decimal representation. Theset of real numbers is denoted by the character R.Certain subsets of the real numbers are worthy of note and are listed below. In fact, in moreadvanced texts,6 the real numbers are constructed from some of these subsets.Special Subsets of Real Numbers1. The Natural Numbers: N {1, 2, 3, .} The periods of ellipsis ‘.’ here indicate that thenatural numbers contain 1, 2, 3 ‘and so forth’.2. The Whole Numbers: W {0, 1, 2, .}.3. The Integers: Z {. , 3, 2, 1, 0, 1, 2, 3, .} {0, 1, 2, 3, .}.a 4. The Rational Numbers: Q ba a Z and b Z . Rational numbers are the ratios ofintegers where the denominator is not zero. It turns out that another way to describe therational numbersb is:Q {x x possesses a repeating or terminating decimal representation}5. The Irrational Numbers: P {x x R but x / Q}.c That is, an irrational number is areal number which isn’t rational. Said differently,P {x x possesses a decimal representation which neither repeats nor terminates}aThe symbol

Section0.3(Linear Equations and Inequalities) focuses on solving linear equations and linear inequalities from a strictly algebraic perspective. The geometry of graphing lines in the plane is deferred until Section2.1(Linear Functions). Section0.4(Absolute Value Equations and Inequalities) begins with a definition of absolute value as a distance.

Related Documents:

PreCalculus Student Solutions Manual- Precalculus 6th Ed Sullivan 1 PreCalculus Precalculus: Enhanced with Graphing Utilities 3rd Ed (Instructor Ed) M.Sullivan, M. Sullivan III 1 PreCalculus Precalculus 8 Sullivan

Speak with a Precalculus Program Director if you have any questions or concerns. Learning Resources in the Precalculus Program Below is a list of resources available to help you succeed in the Precalculus Program. e-text Contains the course objec

PACKET FOR PRECALCULUS STUDENTS Summer, 2017 Congratulations. You've made it to Precalculus! INSTRUCTIONS: . PRECALCULUS SUMMER ASSIGNMENT Name:_ SHOW ALL WORK NEATLY ON THE SEPARATE ANSWER SHEET. b. 44 hr d. 22 hr Solve the problem.57. Brandon can paint a fence in 12 hours and Elaine can paint the same fence in 11 hours. .

Honors PreCalculus Summer Review Packet This packet is a review of information you learned in Algebra, Geometry, & Advanced Algebra. You need to know this information to be successful in PreCalculus. Therefore, this packet is due on your FIRST DAY IN PRECALCULUS. It is to be completed CORRECTLY, NEATLY, and on SEPARATE sheets of paper.

Precalculus Prerequisites a.k.a. ‘Chapter 0’ by Carl Stitz, Ph.D. Jeff Zeager, Ph.D. Lakeland Community College Lorain County Community College

MAC 2233 assumes that you have essential precalculus skills necessary to succeed in calculus. This course does not cover trigonometry. To enroll in MAC 2233, you must have (1) earned a grade of C or better in MAC 1140, precalculus algebra, or MAC 1147, precalculus or (2) earned calculus credit through an exam or earlier

Name class date SpringBoard Precalculus, Unit 5 Practice, ? 1. 12 SpringBoard Precalculus, Unit 5 Practice (1 ((( .

Precalculus 1A Semester Credit by Exam Information Plano ISD Now uses the Texas Tech University ISD Credit by Exam Test for Precalculus Format: first semester consists of 28 questions; open-response items The recommen